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Abstract. Efficient and scalable discovery mechanisms are critical for
enabling service-oriented architectures on the Semantic Web. The ma-
jority of currently existing approaches focuses on centralized architec-
tures, and deals with efficiency typically by pre-computing and storing
the results of the semantic matcher for all possible query concepts. Such
approaches, however, fail to scale with respect to the number of service
advertisements and the size of the ontologies involved. On the other hand,
this paper presents an efficient and scalable index-based method for Se-
mantic Web service discovery that allows for fast selection of services at
query time and is suitable for both centralized and P2P environments.
We employ a novel encoding of the services descriptions, allowing the
match between a request and an advertisement to be evaluated in con-
stant time, and we index these representations to prune the search space,
reducing the number of comparisons required. Given a desired ranking
function, the search algorithm can retrieve the top-k matches progres-
sively, i.e., better matches are computed and returned first, thereby fur-
ther reducing the search engine’s response time. We also show how this
search can be performed efficiently in a suitable structured P2P overlay
network. The benefits of the proposed method are demonstrated through
experimental evaluation on both real and synthetic data.

1 Introduction

Web services enable interoperability and integration between heterogeneous sys-
tems and applications. Current industry standards for describing and locating
Web services (WSDL, UDDI), describe the structure of the service interface
and of the exchanged messages. Even though this provides interoperability at
the syntactic level, it limits the discovery process to essentially keyword-based
search. To increase the precision of the discovery process, appropriate services



should be identified and selected in terms of the semantics of the requested and
offered capabilities. To that end, Semantic Web services combine the benefits of
Semantic Web and Web services technology. Several approaches have been pro-
posed for semantically enhancing the descriptions of Web services (OWL-S [1],
WSDL-S [2], WSMO [3]), and automating the service discovery, composition,
and execution. Service requests and advertisements are annotated by concepts
from associated ontologies, and the matchmaking is based on subsumption rea-
soning between concepts corresponding to the requested and offered parameters.

As the number of services on the Web increases, the efficiency and the scal-
ability of service discovery techniques become a critical issue. Moreover, several
applications are inherently distributed. Consider, for example, a network of busi-
nesses or institutions, each providing its own services; creating and maintaining
a centralized registry would not be desirable. However, the majority of current
approaches focuses on centralized architectures, i.e., a single service registry or
multiple service registries synchronizing periodically. This introduces bottlenecks
and single points of failure, and fails to scale when the availability and demand
for services grows significantly. On the other hand, P2P networks support large-
scale, decentralized applications, offering scalability and reliability. In addition,
structured P2P overlays provide guarantees for retrieving all search results in
bounded time and distributing the load among peers. Hence, there has been
recently a lot of research interest in issues overlapping the two fields, Semantic
Web and P2P computing, primarily focusing on distributed RDF stores [4–6].

Regarding Semantic Web services, proposed approaches for service discov-
ery in P2P environments typically rely on the use of ontologies to partition the
network topology into concept clusters, and then forward requests to the appro-
priate cluster. However, constructing concept clusters in a fully automated way
is not straightforward, as well as providing guarantees regarding search times
and load balancing. In this paper we address the issue of Semantic Web ser-
vice discovery, focusing on the aspects of efficiency and scalability. We present
a method for fast search and selection of services at query time that is suitable
for both centralized and P2P environments. In particular, our contributions are
summarized in the following:

– We employ a novel encoding of the services’ descriptions, allowing the match
between a service request and a service advertisement to be evaluated in
constant time, avoiding the overhead of invoking the reasoner at query time.

– We index the service representations to prune the search space, minimzing
the number of comparisons required to locate the matching services.

– We discuss the need for ranking the matched services, and present an al-
gorithm that, given a desired ranking function, fetches the top-k matches
progressively, thereby further reducing the search engine’s response time.

– We extend our method to a structured P2P overlay network, showing that
the search process can be done efficiently in a decentralized, dynamic envi-
ronment.

– We demonstrate the efficiency and the scalability of our approach through
experimental evaluation.
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Fig. 1: (a) A sample ontology fragment, (b) A service request (R) and three
service advertisements (S1, S2, S3), (c) Intervals assigned to ontology concepts

The rest of the paper is organized as follows. Section 2 discusses Semantic
Web services matchmaking and ranking, and presents our encoding for services
descriptions. Section 3 presents the indexing and searching of services in a cen-
tralized registry. Section 4 shows how service descriptions can be distributed and
searched efficiently in a structured P2P overlay network. Experimental evalua-
tion of the proposed approach is presented in Section 5, while related work is
reviewed in Section 6. Finally, Section 7 concludes the paper.

2 The Matchmaking Framework

In this section we present our framework for efficient Semantic Web service
matchmaking in centralized and P2P environments. First, we describe the service
selection and ranking process in Section 2.1. Our framework is based on the
encoding and indexing of service descriptions discussed in Section 2.2.

2.1 Semantic Selection of Services

In the following, we consider an ontology as a set of hierarchically organized
concepts. Since multiple inheritance is allowed, the concepts form a rooted di-
rected acyclic graph. The nodes of the graph correspond to concepts, with the
root corresponding to the top concept, e.g., owl:Thing in an OWL ontology,
whereas the edges represent subsumption relationships between the concepts,
directed from the father to the child. To allow for semantic search of services on
the Web, the description of a service is enhanced by annotating its parameters
(typically inputs and outputs) with concepts from an associated ontology [1–3].
A service request is the description of a desired service, also annotated with on-
tology concepts. Figure 1a illustrates a sample ontology fragment, while a sample
set of a service request and 3 service advertisements is shown in Figure 1b. The
underlying assumption is that if a service provides as output (resp., accepts as
input) a concept C, then it is also expected to likely provide (resp., accept) the



subconcepts of C. For instance, a service advertised as selling computers is ex-
pected to sell servers, desktops, laptops, PDAs, etc.; similarly, a service offering
delivery in Europe is expected to provide delivery within all (or at least most)
European countries.

Matchmaking of semantically annotated Web services is then based on sub-
sumption reasoning between the semantic descriptions of the service request
and the service advertisement. Along the lines of earlier works [7, 8], we specify
the match between a service request R and a service advertisement S based on
the semantic match between the corresponding parameters in their descriptions.
More specifically, for a service parameter CS and a request parameter CR, we
consider the match as exact, if CS is equivalent to CR (CS ≡ CR); plug-in, if CS

subsumes CR (CS A CR); subsumes, if CS is subsumed by CR (CS @ CR); fail,
otherwise. Exact matches are preferable to plug-in matches, which in turn are
preferable to subsumes matches. In the example of Figure 1, service S1 provides
one exact and two plug-in, service S2 provides one plug-in, one subsumes, and
one exact, whereas S3 provides two fail and one plug-in matches.

Given that a large number of services may provide a partial match to the
request, differentiating between the results within the same type of match is
also required. Further following the aforementioned assumption regarding the
semantics of a service description, we use as a criterion for assessing the degree
of match between two concepts C1 and C2 the portion of their common sub-
concepts, or in other words, the extend to which the subtrees (more generally,
subgraphs) rooted at C1 and C2 overlap. Intuitively, the higher the overlap, the
more likely it is for the service to match the request. Thus, in the following, we
consider the degree of match between two concepts C1 and C2 as

degreeOfMatch(C1, C2) =
|{C | C v C1 ∧ C v C2}|

max(|{C | C v C1}|, |{C | C v C2}|)
(1)

Returning to our example from Figure 1, notice that regarding the requested
input, services S1 and S2 provide a plug-in match. However, using Equation (1),
the degree of match for the service S1 is 1/5, whereas for the service S2 is 1/2.
Notice that the proposed approach for service selection is not limited by this
criterion. Different ranking criteria may be appropriate in different applications
(for example, see [9] for a more elaborate similarity measure for ranking Semantic
Web services). Our approach is generic and it can accommodate different ranking
functions (see Section 3 for details). Retrieving services in descending order of
their degree of match to the given request constitutes an important feature for
a service discovery engine. In the case that the requester is a human user, it can
be typically expected that he/she will navigate only the first few results. In fact,
experiments conducted in a recent survey [10] showed that the users viewed the
top-1 search result in about 80% of the queries, whereas results ranked below
3 were viewed in less than 50% of the queries. Even though this study refers
to Web search, it is reasonable to assume a roughly similar behavior for users
searching for services. On the other hand, Semantic Web service discovery plays
an important role in fully automated scenarios, where a software agent, such as



a travel planning agent, acting on behalf of a human user, selects and composes
services to achieve a specific task. Typically, the agent will select the top-1 match,
ignoring the rest of the results. Hence, computing only the best possible match
would be sufficient in this case. In fact, this often makes sense for human users
as well; Google’s “I’m Feeling Lucky” feature is a characteristic example based
on this assumption.

2.2 Encoding of Service Descriptions

Invoking the reasoner to check for subsumption relationships between the on-
tology concepts annotating the service parameters constitutes a significant over-
head, which has to be circumvented in order to allow for fast service selection at
query time. For this purpose, we employ an appropriate service encoding based
on labeling schemes [11]. The main idea works as follows. In the case of a tree
hierarchy, each concept is labeled with an interval of the form [begin, end]. This
is achieved by performing a depth-first traversal of the tree, and maintaining a
counter, which is initially set to 1 and is incremented by 1 at each step. Each
concept is visited twice, once before visiting any of its subconcepts and once af-
ter all its subconcepts have been visited. The interval assigned to the concept is
constructed by setting its lower (resp., upper) bound to the value of the counter
when the concept is visited for the first (resp., second) time. Observe that due
to the way intervals are assigned, a concept C1 is subsumed by another concept
C2 if and only if its interval is contained in that of C2, i.e., IC1 ⊂ IC2 . This
scheme generalizes to the case of graphs, which is the typical case for ontologies
on the Semantic Web, by first computing a spanning tree T and applying the
aforementioned process. Then, for each non spanning tree edge, the interval of a
node is propagated recursively upwards to its parents. Therefore, more than one
intervals may be assigned to each concept. As before, subsumption relationships
are checked through interval containment: C1 is subsumed by C2 if and only if
every interval of C1 is contained in some interval of C2.

In our example, the intervals assigned to the ontology concepts are shown
in Figure 1c, and have been computed considering the spanning tree formed by
removing the edge (C5, C9). Notice how the interval assigned to the concept C9

is then propagated to the concepts C5, C2, and C0 (in the latter, it is subsumed
by the initially assigned interval).

Consequently, a service request or advertisement can be represented by the
set of intervals associated to its input and output concepts. With this encoding,
determining the type of match between two service parameters is reduced to
checking for containment relationship between the corresponding intervals; a
constant time operation. In particular, we can rewrite the conditions determining
the type of match between a request parameter CR and a service parameter CS ,
as shown in Table 1, where IC denotes the set of intervals assigned to C.

Furthermore, the ranking criterion discussed in Section 2.2 can be expressed
by means of the intervals based representation. For a concept C, the size of the
subgraph rooted at C, GC , is given by



Type of match Condition

exact ICR = ICS

plug-in ICR ⊂ ICS

subsumes ICR ⊃ ICS

Table 1: Types of match using the intervals based encoding
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Fig. 2: Interval based search

|GC | =
∑

I∈IC

⌈
|I|
2

⌉
(2)

Hence, for two concepts C1, C2, where C1 v C2 or C1 w C2, Equation 1 becomes:

degreeOfMatch(C1, C2) =
min{|GC1|, |GC2|}
max{|GC1|, |GC2|}

(3)

The above presented service representation allows the evaluation of the type
and degree of match between a pair of requested and offered services in constant
time. Still, the number of comparisons required is proportional to the number
of available services. To further reduce the time required by the matcher, an
index structure is employed for pruning the search space, keeping the number
of comparisons required to a minimum. For this purpose, each interval is repre-
sented as a point in a 2-dimensional space, with the coordinates corresponding
to the intervals’ lower and upper bounds respectively, i.e., begin and end. Then,
checking for containment between intervals is translated to a range query on this
space. Figures 2a and 2b draw the input and output parameters, respectively,
of the example in Figure 1. Points labeled as qx, correspond to the parameters
of the requested service, whereas pix correspond to parameters of the i-th of-
fered service. For example, the output parameters of service S2 is represented
by points p2a = (8, 9) for class C9 and p2b = (17, 18) for class C7. For a given
interval, the intervals contained by it are those located in its lower-right region,
whereas those containing it are located in its upper-left region.



3 Centralized Service Discovery

In a centralized environment a single registry contains the information about all
the advertised services and is responsible for performing the matchmaking and
ranking process. Under our framework, this registry encodes all service descrip-
tions and uses multi-dimensional indexes, such as the R-tree [12], to expedite
service selection. The R-tree partitions points in hierarchically nested, possi-
bly overlapping, minimum bounding rectangles (MBR). Each node in the tree
stores a variable number of entries, up to some predefined maximum. Leaf nodes
contain data points, whereas internal nodes contain the MBRs of their children.

We use two R-trees, Tin, Tout to index the services, where Tin (Tout) stores
the intervals associated with the input (output) parameters. Consider as an
example the 3 services discussed in Section 2.2. Figure 3 shows the MBRs and
the structure of the two R-trees. An MBR is denoted by Ni and its corresponding
entry as ei. Notice that points that are close in the space (e.g., p1, p2 in Figure 3a)
are grouped and stored in the same leaf node (N2 in Figure 3b).
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Fig. 3: R-trees example

In the following we describe the algorithm (shown in Figure 4) for finding
the services matching a request using our running example. The algorithm ex-
amines all request parameters in turn (Line 2). Assume that the first examined
parameter par is the input corresponding to concept C8; thus, Tin is examined
(Line 3). The intervals, in this case [4, 5], associated with the ontology concept
is inserted in I (Line 5). Subsequently, three queries are posed to Tin retrieving
the exact matches under point (4, 5) (Line 7), the plug-in matches inside the
range extending from (0, 5) up to (4,∞) (Line 8) and the subsumes matches
inside (4, 0) up to (∞, 5) (Line 9). A range query is processed traversing the R-
tree starting from the root. At each node, only its children whose MBR overlaps
with the requested range are visited. Similarly, for the case of a point query, only
children whose MBR contains the requested point are visited. A small perfor-
mance optimization is to perform the three queries in parallel minimizing, thus,
node accesses. Subsequently, all matches to par are merged into mpar (Line 10).



Once all parameters have been examined, the candidate services SR are con-
structed by intersecting the parameter matching results (Line 11). This retains
only the services which match all request parameters. Since some services in SR
can have additional input parameters that are not satisfied by the request, they
are filtered out from the final result (Line 12).

Search Algorithm

Input: request R, available services S indexed in Tin, Tout

Output: services SR matching R
begin1

foreach par ∈ INR ∪OUTR do2

if par ∈ INR then T ← Tin3

else T ← Tout4

I ← the intervals associated with par5

foreach interval I = (is, ie) ∈ I do6

mex
par ← point [is, ie] query in T7

mpl
par ← range (0, ie)× (is,∞) query in T8

msb
par ← range (is, 0)× (∞, ie) query in T9

mpar = mex
par ∪mpl

par ∪msb
par10

SR =
⋂
par

mpar

11

SR = SR \ {S : ∃INS not matched by any INR}12

return SR13

end14

Fig. 4: Algorithm for index-based service matchmaking

As discussed in Section 2.1, in many cases a ranked list of the top-k best
matching services is preferred as the result of the matchmaking process. Figure 5
illustrates the Progressive Search Algorithm to retrieve the top-k services given
a request R using our framework. As before we present the algorithm using our
running example. Initially, all intervals associated with the request parameters
are inserted into I (Line 2). In particular, I contains [4, 5] (represented by point
q in Figure 3a) for the input parameter, and [7, 10], [17, 18] (represented by
points qa, qb, respectively, in Figure 3c) for the two output parameters. A heap
HI is associated with each interval I = [is, ie] ∈ I (Lines 3–7); in our case there
are 3 heaps for q, qa and qb. Initially, these heaps contain the root node of Tin or
Tout, depending on the interval’s parameter type (Lines 5–6). Entries eI in I’s
heap are R-tree nodes and are sorted increasingly by their minimum distance
(MINDIST) to (is, ie). The MINDIST of a leaf node, i.e., a point, is its distance
from (is, ie). The MINDIST of an internal node, i.e., an MBR, is the minimum
distance of the MBR from (is, ie).



Progressive Search Algorithm

Input: request R, available services S indexed in Tin, Tout, k
Output: services SR matching R, in descending order of degree of match
begin1

I ← the intervals associated with all parameters in INR ∪OUTR2

foreach I = [is, ie] ∈ I do3

create a heap HI4

if I corresponds to some par ∈ INR then insert in HI root of Tin5

else insert in HI root of Tout6

HI entries are sorted increasingly by their MINDIST to (is, ie)7

while k > 0 do8

find the heap HI whose head entry has the minimum MINDIST9

eI ← pop(HI)10

if eI is an internal node then insert in HI all children of eI11

else12

let S be the service corresponding to eI13

let parI be the parameter corresponding to interval I14

mark that S has a match for parI15

if S has matches for all parameters in INR ∪OUTR then16

insert S in SR ; // S is a result17

k ← k − 118

if k = 0 then return SR19

end20

Fig. 5: Algorithm for progressively returning matches

The Progressive Search Algorithm proceeds examining heap entries until k
services have been retrieved (Lines 8–19). The heap whose head entry has the
minimum MINDIST is selected (Line 9). In our example both heaps for qa and
qb have MINDIST 0 as their head entry (Tout’s root) contains both qa and qb;
assume qa’s heap is selected. The entry (node N1 in out) is popped from the
heap (Line 10) and since it is an internal node all its children are inserted in the
heap (Line 11). Then, the heaps are examined again and qa’s heap is selected,
as node N2 is in its head and has MINDIST 0. N2 is popped and its children
are inserted. Repeating the process once more, a leaf entry p1a is popped, which
corresponds to the first output parameter of service S1 (Lines 13–14). We mark
that S1 has a match for a request parameter (Line 15). Then, S is checked if it
has matches for all parameters, i.e., it is a result (Lines 16–19). The algorithm
returns when k results have been found.

The output of the algorithm is the ranked service list S2, S1, S3. Notice that
S2 has a subsumes match but it is ranked higher than S1, having only exact and
plug-in matches. Further S3 is included even though is has two fail matches. This
is due to the fact that the MINDIST function described does not discriminate
among points in different regions with respect to the point corresponding to a
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request parameter’s interval. For example, in Figure 3c p2a and p1b are closer
to qa than p3 and are regarded as better matches to parameter qa, even though
they are only subsumes matches (they lie in the lower right quadrant w.r.t.
qa). To obtain arbitrary rankings as described in Section 2.1, MINDIST can be
trivially modified to be region aware. For example, it can evaluate heap entries
that correspond to plug-in as closer compared to subsumes matches.

4 P2P Service Discovery

As the availability and demand for Web services grows, the issue of managing
Semantic Web services in a distributed environment becomes vital. We describe
a scalable and fault-tolerant solution that is adaptable and efficient in a dis-
tributed environment. From the variety of paradigms of distributed systems, we
choose to focus on flat P2P overlays, as the latter represent the current trend
for distributed data management. More specifically, we employ a structured P2P
overlay, since it provides self-maintenance and robustness, as well as efficiency in
data management. In the following we discuss the adaptation of our framework
to the distributed setting.

4.1 The Underlying P2P Overlay

Before discussing distributed service discovery, we have to choose a suitable
framework. To support the adaptation of the algorithms presented in Section 3,
such a framework must support both point and range queries, so as to allow
for the retrieval of both exact and plug-in/subsumes matches, respectively. Fur-
thermore, since our proposed service encoding and service search algorithm are
based on the 2-dimensional space, it is necessary to select a P2P framework that
is efficient and scalable for 2-dimensional data. More specifically, the selected
P2P framework should preserve locality and directionality, if possible.

SpatialP2P [13] is a recently proposed structured P2P framework, targeted
to spatial data. It handles areas, which are either cells of a grid-partitioned space
or sets of cells that form a rectangular. The basic assumption of the framework
is that each area has knowledge of its own coordinates and the coordinates of
some other areas to which it is directly linked. The goal of SpatialP2P is to



guarantee that any stored area can be searched and reached from any other,
solely by exploiting local area knowledge.

Figure 6 shows an example of a SpatialP2P overlay with four peers. Each
peer maintains links to others towards the four directions of the 2D space. The
grid is hashed to the four peers, such that each cell is stored and managed by
the closest peer. In the figure cells and their storing peers share the same color.

In SpatialP2P, search is routed according to locality and directionality. This
means that search is propagated to the area that is closer to and towards the
same direction with the sought area, choosing from the available areas that are
linked to the one on which the search is currently iterated.

4.2 Managing Services in the P2P Overlay

The management of services in the P2P overlay consists of two basic operations:
insertion of services and search for services in the system. Search can be either
exhaustive, i.e., seeking for any possible results, or top-k, i.e., seeking the k best-
matching results. In the following we discuss the details of these operations.
Service insertion. In order to use the P2P framework for the distributed man-
agement of Semantic Web services, we assume that the ID space of the overlay
(i.e. the space of values for node and data IDs) corresponds to the space of values
defined by the encoding of the services descriptions.

When a new service is published, its description is encoded using the inter-
vals based representation presented in Section 2, and then it is inserted in the
network. Specifically, each encoded service parameter is hashed to and eventu-
ally stored by the peer whose ID is closer to its value in the 2-dimensional space.
Each inserted service parameter is accompanied by some meta-data about the
respective type, (input or output), as well as the service it belongs to.

The locality-preserving property of the SpatialP2P overlay guarantees that
similar services are stored by the same or neighboring peers. By similar, we mean
services whose input and output parameters correspond to matching concepts.
Moreover, the preservation of directionality means that following subsequent
peers in a particular direction results, for example, in locating concepts sub-
suming or subsumed by the ones previously found. As described below, these
properties are essential for minimizing the search time, and this applies to both
exhaustive range and top-k queries.
Service search. Searching for services in the P2P overlay is performed by an
adaptation of the search algorithm of Section 3 to the SpatialP2P API. For each
requested service parameter, a point or a range query is performed, depend-
ing on the requirement of exact, plug-in or subsumes match with the available
service parameters. An exact request for a service parameter corresponding to
interval I = [is, ie] is performed by a point query asking the retrieval of the
point (is, ie), if such data exists in the overlay. For plug-in and subsumes re-
quests for a parameter associated to the interval I = [is, ie], a pair of range
queries is initiated. Since the data space is bounded (recall the intervals con-
struction from Section 2.2), these requests are represented by range queries for



rectangular areas. Specifically, for plug-in matches, a query requesting the range
extending from (0, ie) up to (is,∞) is issued, while for the subsumes request, the
corresponding range is (is, 0) × (∞, ie) (see Figure 7). The results of these two
queries are unified to provide the answer to the requested parameter. Parallel
searches are conducted for each requested parameter, and the results are finally
intersected to compute the final matches.

Finding the top-k matches. SpatialP2P supports top-k search by extending
search for range queries to dynamically increase the respective range. In detail,
a search for a service parameter represented by an interval I = [is, ie] is initiated
as the minimum range query that includes (is, ie); thus, the minimum range is
extended only in the grid cell in which the point (is, ie) resides. After the search
is performed in this minimum range, if the number of retrieved results is lower
than k, then the range is increased towards the desired direction of the 2D space
by the minimum, i.e., by one grid cell. The process repeats iteratively, until k
results have been retrieved (or the whole space has been searched).

5 Experimental Evaluation

Experimental setup. We have evaluated our approach on two data sets. For
the first data set, to simulate a real-world scenario, we used the OWL-S service
retrieval test collection OWLS-TC v24. This collection contains services retrieved
mainly from public IBM UDDI registries, and semi-automatically transformed
from WSDL to OWL-S. More specifically, it comprises: (a) a set of ontologies,
derived from 7 different domains (education, medical care, food, travel, com-
munication, economy and weapons), comprising a total of 3500 concepts, used
to semantically annotate the service parameters, (b) a set of 576 OWL-S ser-
vices, (c) a set of 28 sample requests, and (d) the relevance set for each request
(manually identified).

The second data set was synthetically generated, based on the first one, so
as to maintain the properties of real-world service descriptions. In particular, we
constructed a set of approximately 10K services, by creating variations of the 576
services of the original data set. For each original service, we selected randomly
one or more input or output parameters, and created a new service description
by replacing them with randomly chosen superconcepts or subconcepts from the
corresponding domain ontology. A set of 100 requests was generated following
the same process, based on the original 28 requests. All the experiments were
conducted on a Pentium D 2.4GHz with 2GB of RAM, running Linux.

Ranking. In the first set of experiments we used the first data set to evaluated
the effectiveness of the ranking approach. For each of the 28 queries we retrieved
the ranked list of match results, and compared them against the provided rel-
evance sets. We use well-established IR metrics5 to evaluate the performance

4 http://projects.semwebcentral.org/projects/owls-tc/
5 http://trec.nist.gov/
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of the search and ranking process. In particular, Figure 8a depicts the micro-
averaged recall-precision curves for all the 28 queries, i.e., the precision (averaged
over all queries) for different recall levels. Observe that a 30% of the relevant
services can be retrieved with precision higher than 80%, whereas for retrieving
more than 70% of the relevant services the precision drops below 50%. Also, the
following metrics are presented in Figure 8b: (a) precision at k, i.e., the (aver-
age) precision after k results have been retrieved; (b) success at k, i.e., whether
a relevant result has been found after k results have been retrieved.

As we can see, the precision drops below 70% after the top-10 matches have
been retrieved. Moreover, for the set of 28 queries, in 24 of them the top-1
match is a relevant one, in 27 queries there is a relevant result among the top-2
matches, and in all cases there is a relevant result among the top-4 matches.
The above results opt for the emphasis on top-k queries and on fetching results
progressively, as discussed in Section 2.

Experiments for centralized search. In this set of experiments we measured
the time required by our search algorithm to discover and rank services in a
centralized registry. In particular, we investigated the performance benefits, i.e.,



the reduction in response time, resulting from restricting the search to retrieving
only the top-k matches. For this purpose, we used the synthetically generated
data set described previously. We varied the number of services from 2K up
to 10K, and we measured the processing time (averaged over 100 queries) for
retrieving: (i) all matches, and (ii) the top-k matches for k ∈ {1, 50, 500}. The
experimental results are illustrated in Figure 9a. Notice the significant savings
in the processing time when restricting the search to top-k matches, as well as
the fact that the processing time in the latter case is significantly less sensitive
to the number of available services.
Experiments for search in P2P environment. In the last set of experiments,
we evaluated our search method in a P2P environment, as described in Section
4. We varied the size of the P2P network, from 1K up to 10K peers, and we
inserted a total of 10K services. We conducted two experiments. In the first
experiment, we retrieved, for each request, all the identified matches, whereas in
the second, we restricted the search range to obtain (approximately) the top-10
results for each request. For each of the experiments we report two measures:
(i) total number of hops (i.e., number of peers processing the query), and (ii)
number of falsedrops (i.e., number of peers on the search path not contributing
to the result set). The results are shown in Figure 9b. Both measures are quite
low and relatively stable w.r.t. the size of the network. As discussed in Section 4,
this is due to the fact that SpatialP2P is particularly designed to preserve the
locality and the directionality of the data space, thus queries are effectively
routed towards peers containing relevant information. As in the centralized case,
the search cost is significantly lower, when retrieving only the top-k matches.

6 Related work

Service discovery is an important issue for the Semantic Web, hence several
works have dealt with this problem. Matchmaking for Semantic Web services
based on inputs and outputs has been studied in [7, 8], and more recently in
[14, 15]. These form the basis of our matching approach, however they do not
deal with the aspects of efficiency, ranking, and discovery in P2P networks,
which are the main issues of our work. Implemented systems for matchmaking
of OWL-S and WSMO services are described in [16, 17]. In [9, 18] similarity
measures for ranking Semantic Web services are presented. These measures can
be used by our top-k search algorithm, and hence are complementary to our
work. The efficiency of the discovery process is considered in [19]. However, it is
based on pre-computing and storing, for each concept in the ontology, the list of
services matching this concept (together with the type of match). This imposes
excessive storage requirements, and fails to scale as the number of available
services (i.e., the size of the stored lists) and the size of the ontologies (i.e., the
number of lists to store) grows significantly. Efficient matchmaking, together
with ranked retrieval, is presented in [20]. Similar to our work, it uses intervals
and indexing, which are however constructed in a different way. Moreover, search
in P2P networks is not considered.



A P2P approach for Web service discovery is presented in [21]. However, the
services are not semantically described; instead, the search is based on (possibly
partial) keywords. Semantic Web service discovery in P2P networks has been
studied in [22, 23]. In contrast to our work, these approaches deal with unstruc-
tured networks. In [24] Web services descriptions are indexed by keywords taken
from domain ontologies, and are then stored on a DHT network. In [25] the peers
are organized in a hypercube and the ontology is used to partition the network
into concept clusters, so that queries are forwarded to the appropriate cluster.
However, the subset of concepts to be used as structuring concepts should be
known in advance. The approach in [26] distributes semantic service advertise-
ments among available registries, by categorizing concepts into different groups
based on their semantic similarity, and assigning groups to peers. In [27] services
are distributed to registries depending on their type, e.g., a registry related to
the travel domain will only maintain Web services specific to this domain.

7 Conclusions

We have presented and evaluated an efficient and scalable approach to Semantic
Web service discovery and ranking. Efficiency is achieved by employing a suit-
able encoding for the service descriptions, and by indexing these representations
to effectively prune the search space, consequently reducing the search engine’s
response time. To allow for scalability, we describe how the service representa-
tions can be distributed in a suitable structured P2P overlay network, and we
show how the search is performed in this setting.

In this work we have treated the matching of service requests and advertise-
ments as a matching of their inputs and outputs. However, service descriptions
may also contain preconditions and effects, as well as QoS parameters. The de-
scribed ideas can be easily extended to consider these additional criteria. In the
future we plan to incorporate such parameters in our search algorithm.
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