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Abstract. Novel energy-aware cloud management methods dynamically reallo-
cate computation across geographically distributed data centers to leverage re-
gional electricity price and temperature differences. As a result, a managed vir-
tual machine (VM) may suffer occasional downtimes. Current cloud providers
only offer high availability VMs, without enough flexibility to apply such energy-
aware management. In this paper we show how to analyse past traces of dynamic
cloud management actions based on electricity prices and temperatures to esti-
mate VM availability and price values. We propose a novel service level agree-
ment (SLA) specification approach for offering VMs with different availability
and price values guaranteed over multiple SLAs to enable flexible energy-aware
cloud management. We determine the optimal number of such SLAs as well as
their availability and price guaranteed values. We evaluate our approach in a user
SLA selection simulation using Wikipedia and Grid’5000 workloads. The results
show higher customer conversion and 39% average energy savings per VM.
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1 Introduction
Energy consumption of data centers accounts for 1.5% of global electricity usage [11]
and annual electricity bills of $40M for large cloud providers [18]. In an effort to reduce
energy demand, new energy-aware cloud management methods leverage geographical
data center distribution along with location- and time-dependent factors such as electric-
ity prices [21] and cooling efficiency [23] that we call geotemporal inputs. By dynam-
ically reallocating computation based on geotemporal inputs, promising cost savings
can be achieved [18].

Energy-aware cloud management may reduce VM availability, because certain man-
agement actions like VM migrations cause temporary downtimes [14]. As long as the
resulting availability is higher than the value guaranteed in the SLA, cloud providers
can benefit from the cost savings. However, current cloud providers only offer high
availability SLAs, e.g. 99.95% in case of Google and Amazon. Such SLAs do not leave
enough flexibility to apply energy-aware cloud management or result in SLA violations.

Alternative SLA approaches exist, such as auction-based price negotiation in Ama-
zon spot instances [6] or calculating costs per resource utilisation [5]. However, esti-
mating availability and price values that can be guaranteed in SLAs for VMs managed
based on geotemporal inputs is still an open research issue. This problem is challenging,



because exact VM availability and energy costs depend on electricity markets, weather
conditions, application memory access patterns and other volatile factors.

In this paper, we propose a novel approach for estimating the optimal number of
SLAs, as well as their availability and price values under energy-aware cloud man-
agement. Specifically, we present a method to analyse past traces of dynamic cloud
management actions based on geotemporal inputs to estimate VM availability and price
values that can be guaranteed in an SLA. Furthermore, we propose a progressive SLA
specification where a VM can belong to one of multiple treatment categories, where a
treatment category defines the type of energy-aware management actions that can be
applied. An SLA is generated for each treatment category using our availability and
price estimation method.

We evaluate our method by estimating availability and price values for SLAs of
VMs managed by two energy-aware cloud management schedulers – the live migration
scheduler adapted for clouds from [3, 15] and the peak pauser scheduler [16]. We eval-
uate the SLA specification in a user SLA selection simulation based on multi-auction
theory [10] using Wikipedia and Grid’5000 workloads to represent multiple user types.
Our results show that more users with different requirements and payment willingness
can find a matching SLA using our specification, compared to existing high availability
SLAs. Average energy savings of 39% per VM can be achieved due to the extra flex-
ibility of lower availability SLAs. Furthermore, we determine the optimal number of
offered SLAs based on customer conversion.

2 Related Work
The related work consists of: (1) energy-aware distributed system management methods
and (2) alternative VM pricing models suited for energy-aware cloud management.

Qureshi et al. simulate gains from temporally- and geographically-aware content
delivery networks in [18], with predicted electricity cost savings of up to 45%. Lin et
al. [13] analyse a scenario with temporal variations in electricity prices and renewable
energy availability for computation consolidation. Liu et al. [15] define an algorithm
for power demand shifting according to renewable power availability and cooling ef-
ficiency. A job scheduling algorithm for geographically-distributed data centers with
temperature-dependent cooling efficiency is given in [22]. A method for using migra-
tions across geographically distributed data centers based on cooling efficiency is shown
in [12]. These approaches, however, do not consider the implications of energy-aware
cloud management on quality of service (QoS) and costs in the SLA specification.

The disadvantages of current VM pricing models relying on constant rates have
been shown by Berndt et al. [5]. A new charging model for platform as a service (PaaS)
providers, where variable-time requests can be specified by the users, is developed in
[20]. Ibrahim et al. applied machine learning to compensate interferences between VMs
for a pay-as-you-consume pricing scheme [9]. Though related, Amazon spot instances
[6] permanently terminate VMs that get outbidden, hence requiring fault-resilient appli-
cation architectures. Aside from this, they perform exactly like other Amazon instances,
again not allowing temporary downtimes necessary every day for energy-aware cloud
management. Amazon spot instances do show that end users are willing to accept a
more complex pricing model to lower their costs for certain applications, indicating the



feasibility of such approaches in real cloud deployments. None of the mentioned pric-
ing approaches consider energy-aware cloud management based on geotemporal inputs
or the accompanying QoS and energy cost uncertainty, which is the focus of our work.

3 Progressive SLA Specification
To be able to reason about energy-aware cloud management in terms of SLA spec-

ification, we analyse two concrete schedulers: (1) migration scheduler (adapted for
clouds from [3, 15]) – applies a genetic algorithm to dynamically migrate VMs, such
that energy costs based on geotemporal inputs are minimised, while also minimising the
number of migrations per VM to retain high availability. (2) peak pauser scheduler [16]
– pauses the managed VMs for a predefined duration every day, choosing the hours
of the day that are statistically most likely to have the highest energy cost, thus reduc-
ing VM availability, but also the average energy cost. To illustrate the inputs affecting
scheduling decisions, a three-day graph of real-time electricity prices and temperatures
in four US cities is shown in Fig. 1 (we describe the source dataset in the following sec-
tion). Rapid changes in electricity prices can be seen on the 13th of January, and very
small changes the following day. Subsequently, the migration scheduler would trigger
more frequent VM migrations on the first day, As we cannot predict future geotemporal
inputs with 100% accuracy, we can also only estimate future scheduling actions.
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Fig. 1: Real-time electricity prices and temperatures in four US cities over three days

With such energy-aware cloud management methods in mind, we propose a pro-
gressive SLA specification, where services are divided among multiple treatment cate-
gories, each under a different SLA with different availability and price values. Hence,
different schedulers can be used for VMs in different treatment categories (or the same
scheduler with different QoS constraint parameters). The goal of this approach is to al-
low different levels of energy-aware cloud management and thus achieve higher energy
savings on VMs with lower availability requirements. What is given, therefore, are the
schedulers for each treatment category, and the historical traces of generated schedules.
What we have to find are the availability and price values that can be guaranteed in
the SLAs for each treatment category and the optimal number of such SLAs to balance
SLA flexibility and search difficulty for users.

We illustrate this approach in Fig. 2. A cloud provider operates a number of VMs,
each hosted on a physical machine (PM) located in one of the geographically-distributed
data centers (DC). Each VM belongs to a treatment category (TC) that determines the
type of scheduling that can be applied to it. For example, TC 1 is a high availability
category where no actions are applied on running VMs. TC 2 is a category for moderate
cloud management actions, such as live VM migrations (marked by an arrow) which
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Fig. 2: Progressive SLA specification
result in short downtimes. TC 3 is a more aggressive category where VMs can be paused
(marked as hatched with two vertical lines above it) for longer downtimes. Other TCs
can be defined using other scheduling algorithms or by varying parameters, e.g. the
maximum pause duration. The optimal number of TCs (and therefore also SLAs) n is
determined by analysing user SLA selection to have enough variety to satisfy most user
types, yet not make the search too difficult, which we explore in Section 6. Aside from
selecting the number of SLAs, another task is setting availability and price values for
every SLA. As energy-aware cloud management that depends on geotemporal inputs
introduces a degree of randomness into the resulting availability and price values of
a VM, we can only estimate the values that can be guaranteed. We do this using a
probabilistic SLA modelling method for analysing historical cloud management action
traces to calculate the most likely worst-case availability and average energy cost for a
VM in a TC. For the example in Fig. 2, sample values are given for the SLAs. SLA 1
might have an availability (Av) of 99.95% and a high cost of 0.3 $/h due to no energy-
aware management, SLA 2 might have slightly lower values due to live migrations
being applied on VMs in TC 2, SLA 3 might have even lower values due to longer
downtimes caused by VM pausing. . . In the following section, we will show how to
actually estimate availability and price values for the SLAs using probabilistic SLA
modelling.

4 Probabilistic SLA Modelling
To estimate availability and price values that can be guaranteed in an SLA using prob-
abilistic modelling for a certain TC, we require historical cloud management traces.
Cloud management traces can be obtained through monitoring, but for evaluation pur-
poses we simulate different scheduling algorithm behaviour. VM price is estimated
by accounting for the average energy costs. To calculate VM availability, we anal-
yse the factors that cause VM downtime. While the downtime duration of the peak
pauser scheduler can be specified beforehand, the total downtime caused by the migra-
tion scheduler depends on VM migration duration and rate as dictated by geotemporal
inputs, so we individually analyse both factors.

4.1 Cloud Management Simulation
Our modelling method can be applied to different scheduling algorithms and cloud en-
vironments. To generate a concrete SLA offering for evaluation purposes, we consider
a use case of a cloud consisting of six geographically distributed data centers. We use
a dataset of electricity prices described in [4] and temperatures from the Forecast web
service [1]. We represent a deployment with world-wide data center distribution shown
in Fig. 3. Indianapolis and Detroit were used as US locations. Due to limited data avail-
ability3, we modified data for Mankato and Duluth to resemble Asian locations and

3 US-only electricity price source and a limit of free API requests for temperatures.



Alton and Madison to resemble European locations (using inter-continent differences
in time zones and annual mean values). The effects of the migration and peak pauser
scheduler are determined in a simulation using the Philharmonic cloud simulator we de-
veloped [7]. The cloud simulation parameters are summarised in Table 1. We illustrate
the application of the presented methods with this use case as a running example.

USA 1 USA 2
Europe 1

Europe 2

Asia 1

Asia 2

Fig. 3: Simulated world-wide data centers

duration DCs PMs VMs
3 months 6 20 80

Table 1: Cloud simulation

4.2 Migration Duration
Even a live VM migration incurs a temporary downtime, in the stop-and-copy phase of
VM memory transferring. A very accurate model, with less than 7% estimation errors,
for calculating this downtime overhead is presented in [14]. The total VM downtime
during a single live migration Tdown is a function of the VM’s memory Vmem, data trans-
mission rate R, memory dirtying rate D, pre-copying termination threshold Vthd and
Tresume, the time necessary to resume a VM.

Tdown =
VmemDn

Rn+1 +Tresume , where n =

⌈
log D

R

Vthd

Vmem

⌉
(1)

All of the parameters can be determined beforehand by the cloud provider, except
for R and D which depend on the dynamic network conditions and application-specific
characteristics. Based on historical data, it is possible to reason about the range of these
variables. In our running example, we assume a historical range from low to high values.
R values in the 10–1000 Mbit/s range were taken based on an independent benchmark
of Amazon EC2 instance bandwidths. D values from 1 kbit/s (to represent almost no
memory dirtying) to 1 Gbit/s were taken (the maximum is not important, as will be
shown). We assumed constant Vmem = 4GB, Vthd = 1GB, Tresume = 5s, as these values
do not affect the order of magnitude of Tdown. We show how Tdown changes for different
R and D in Fig. 4. Looking at the graph, we can see that higher R and D values result in
convergence towards negligible downtime durations and the only area of concern is the
peak happening when R and D are both very low. This happens, because close R and D
values lead to a small number of pre-copying rounds and copying the whole VM under
slow speeds leads to long downtimes. Tdown is under 400 s in the worst-case scenario,
which will be our SLA estimation as suggested in [5].

4.3 Migration Rate
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Fig. 4: VM downtime during a live migration

Aside from understanding migration ef-
fects, we need to analyse how often they
occur, i.e. the migration rate. We present a
method to analyse migration traces obtained
from the cloud manager’s past operation. A
histogram of migration rates for the migra-
tion traces from our running example de-
scribed in Section 4.1 can be seen in Fig. 5.



The two plots show different zoom levels, as there are few hours with higher migra-
tion rates. Most of the time, no migrations are scheduled, with one migration per hour
happening about 3% of the time.
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Fig. 5: Hourly migration rate histogram
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Fig. 6: Aggregated worst-case migration rate

The idea is to group migrations per VM and process them in a function that aggre-
gates migrations in intervals meaningful to the user. We consider an aggregation interval
of 24 hours. The aggregated worst-case function counts the migrations per VM per day
and selects the highest migration count among all the VMs in every interval. The output
time series is shown in Fig. 6. There is one or zero migrations per VM most of the time,
with an occasional case with a higher rate, such as the peak in January. Such peaks can
occur due to more turbulent geotemporal input changes.

Given that this data is highly dependent of the scheduling algorithm used and the
actual environmental parameters, fitting one specific statistical distribution to the data
to get the desired percentile value would be hard to generalise for different use cases
and might require manual modelling. Instead, we propose applying the distribution-
independent bootstrap confidence interval method [8] to predict the maximum aggre-
gated migration rate. For our migration dataset, the 95% confidence interval for the
worst-case migration rate is from three to four migrations per day.

4.4 SLA Options
By combining the migration rate and duration analyses, we can estimate the upper
bound for the total VM downtime and, therefore, the availability that can be warranted
in the SLA. We define availability (Av) of a VM as:

Av = 1− total VM downtime
total VM lease time

(2)

For our migration dataset and the previously discussed migration duration and rate,
we estimate the total downtime of a VM controlled by the migration scheduler to be 27
minutes per day in the worst case, meaning we can guarantee an availability of 98.12%.
We can precisely control the availability of the VMs managed by the peak pauser.

The average energy savings (en_savings) for a VM running in a treatment category
TCi can be calculated by comparing it to the high availability TC1. From the already
described simulation, we calculate en_cost, the average cost of energy consumed by a
VM based on real-time electricity prices and temperatures. We divide the energy costs
equally among VMs within a TC. This is an approximation, but serves as an estimation
of the energy saving differences between TCs. We calculate energy savings as:

en_savings(V MTCi) = 1−
en_cost(V MTCi)

en_cost(V MTC1)
(3)



where en_cost(V MTC1) is the average energy cost for a VM in TC1 with no actions
applied and en_cost(V MTCi) is the average energy cost for a VM in the target TCi.

The VM cost consists of several components. Aside from en_cost, service_cost
groups other VM upkeep costs (manpower, hardware amortization, profit margin etc.)
during a charge unit (typically one hour in infrastructure as a service (IaaS) clouds). We
assume the service component to be charged linearly to the VM’s availability.

cost = en_cost +Av · service_cost (4)

To generate the complete SLA offering we consider an Amazon m3.xlarge instance
which costs 0.280 $/h (Table 2) as a base VM with no energy-aware scheduling. Base
instances with different resource values (e.g. RAM, number of cores) can be used, but
this is orthogonal to the QoS requirements of availability that we consider and would
not influence the energy-aware cloud management potential. Similarly, Amazon spot
instances were not considered specially as they perform exactly the same as normal
instances while running, as we explained in Section 2. We assumed the service com-
ponent to be 0.1 $/h, about a third of the VM’s price. The prices of VMs controlled
by the two energy-efficient schedulers were derived from it, applying en_savings ob-
tained in the cloud simulation. The resulting SLAs are shown in Fig. 7. SLA 1 is the
base VM. SLA 2 is the VM controlled by the migration scheduler. The remaining SLAs
are VMs controlled by the peak pauser scheduler with downtimes uniformly distributed
from 12.5% to 66.67% to represent a wide spectrum of options. We chose eight SLAs to
analyse how SLA selection changes from the user perspective. We later show that this
number is in the 95% confidence interval for being the optimal number of SLAs based
on our simulation. We analyse a wider range of 1–60 offered SLAs and how they im-
pact customer conversion from the cloud provider’s perspective in Section 6. The lines
in the background illustrate value progression. Av decreases only slightly for the migra-
tion SLA, yet the energy savings are significant due to dynamic VM consolidation and
PM suspension. For peak pauser SLAs, availability and costs decrease linearly, from
high to low values. The en_savings values are at first lower than those attainable with
the migration scheduler, as the peak pauser scheduler cannot migrate VMs to a fewer
number of PMs, but can only pause them for a certain time. With lower availability re-
quirements, however, the peak pauser can achieve higher en_savings and lower prices,
which could not be reached by VM migrations alone.
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Fig. 7: SLAs generated for different TCs

type m3.xlarge
Av 99.95%
cost 0.28 $/h

service 0.1 $/h

Table 2: Base VM

5 User Modelling
Knowing the SLA offering, the next step is to model user SLA selection in order to
analyse the benefits of our progressive SLA specification. We first describe how we
derive user requirements and then the utility model used to simulate user SLA selection
based on their requirements.



5.1 User Requirements Model
To model user requirements, we use real traces of web and high-performance comput-
ing (HPC) workload, since I/O-bound web and CPU-bound HPC applications represent
two major usage patterns of cloud computing. As we do not have data on availability
requirements of website owners, we generate this dataset based on the frequency of end
user HTTP requests directed at different websites and counting missed requests, simi-
larly to how reliability is determined from the mean time between failures [17]. A public
dataset of HTTP requests made to Wikipedia [19] is used. To obtain data for different
websites, we consider Wikipedia in each language as an individual website, because of
its unique group of end users (different in number and usage pattern). In this scenario
we consider a website owner to be the user of an IaaS service (not to be confused with
the end user, a website visitor). The number of HTTP requests for a small subset of four
websites (German, French, Italian and Croatian Wikipedia denoted by their two-letter
country codes) is visualised in Fig. 8 (a) for illustration purposes (we use the whole
dataset with 38 websites for actual requirements modelling). The data exemplifies sig-
nificant differences in amplitudes. Users of the German Wikipedia send between 1k and
2k requests per minute, while the Italian and Croatian Wikipedia have less than 300 re-
quests per minute. Due to this variability, we assume that different Wikipedia websites
represent diverse requirements of website owners. We model availability requirements
by applying a heuristic – a website’s required availability is the minimum necessary
to keep the number of missed requests below a constant threshold (we assume 100 re-
quests per hour). Using this heuristic, we built an availability requirements dataset for
the web user type from 5.6 million requests divided among 38 Wikipedia language sub-
domains. The resulting availability requirement histogram can be seen in Fig. 8 (b). It
follows an exponential distribution (marked in red). There is a high concentration of
sites that need almost full availability, with a long tail of sites that need less (0.85–1.0).
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Fig. 8: Web user modelling

For HPC workload, we use a dataset of job submissions made to Grid’5000 (G5k)
[2], a distributed job submission platform spread across 9 locations in France. The num-
ber of jobs submitted by a small subset of users is visualised in Fig. 9 (a). While some
users submit jobs over a wide period (user109), others only submit jobs in small bursts
(user1, user107), but the load is not nearly as constant as the web requests from the
Wikipedia trace. To model HPC users’ availability requirements, where jobs have vari-
able duration as well as rate (unlike web requests, which typically have a very short
duration), we use another heuristic. Every user’s availability requirement is mapped



between a constant minimum availability (we assume 0.5) and full availability using
mean_duration ·mean_rate, which stands for mean job duration and mean job submis-
sion rate per user. Using this heuristic, we built a dataset of availability requirements
for the HPC user type from jobs submitted over 2.5 years by 481 G5k users. The re-
sulting availability requirement distribution (normalised such that the area is 1) can be
seen in Fig. 9 (b). The distribution marked red again follows an exponential distribution
(the first bin, cut off due to the zoom level, shows a density of 100), but with the tail
facing the opposite direction than the web requirements. HPC users submit smaller and
less frequent jobs most of the time, with a long tail of longer and/or more frequent jobs
(from 0.5 to 0.75).
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Fig. 9: HPC user modelling

Every user’s willingness to pay (WTP) is derived by multiplying his/her availability
requirement with the base VM price and adding Gaussian noise N (0, 0.052) to express
subjective value perception. We selected the noise standard deviation to get positive
WTP values considering the availability model. The resulting WTP histogram is shown
in Fig. 10. It can be seen that HPC users have lower WTP values, but there is also an
overlap area with web users who have similar requirements.

5.2 Utility Model

The utility-based model is used to simulate how users select services based on their re-
quirements. We use a quasi-linear utility function adopted from multi-attribute auction
theory [10] to quantify the user’s preference for a provided SLA. The utility is calcu-
lated by multiplying the user’s SLA satisfaction score with WTP and subtracting the
VM cost charged by the provider. The utility for user i from selecting a VM instance
type t with availability Avt is calculated as:

Ui(V Mt) =WT Pi · fi(Avt)− cost(V Mt) (5)
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Fig. 10: WTP histogram
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Fig. 11: SLA satisfaction function



where fi(Avt) is the user’s satisfaction with the offered VM’s availability. We model
it using a mapping function fi : [0,1]→ [0,1], extended from [10] with variable slopes:

fi(Avt) =
γ

γ +βeAv2
o f f seti

α(Avo f f seti−Avt )
(6)

where Avo f f seti is the required availability specific to each user, which we select based
on the exponential models of Wikipedia and G5k data presented earlier. α , β and γ are
positive constants common for all users, which we set to 60, 0.01 and 0.99 respectively.
These values were chosen for a satisfaction of close to 1 for the desired availability
value and a steep descent towards 0 for lower values, similar to earlier applications
of this satisfaction function [10]. The slope of the function also depends on Avo f f seti ,
to model that users who require a lower availability have a wider range of acceptable
values. The mapping function is visualised in Fig. 11 for a small sample of two HPC
and two web users. We can see that for the two web users, the slope is almost the same
and very steep (at 0.93 their satisfaction is close to 1 and at 0.8 it is almost 0). The
HPC1 user is similar to the web users, only with lower availability requirements and a
slightly wider slope. The HPC2 user has low requirements and a wide slope from an
availability of 0.2 to 0.6. Later in our evaluation, we generate 1000 users, each with
different mapping functions, distributed according to the user requirements model.

User i chooses a VM instance type V Mselected offering the best utility value:

Ui(V Mselected) = max
∀t

Ui(V Mt) (7)

unless all types result in a negative utility, in which case the user selects none. Addi-
tionally, we model search difficulty by defining Pstop, a probability that a user will give
up the search after an SLA has been examined. We model this probability as increasing
after every new SLA check, by having Pstop j = j · check_cost, where j is the number
of checks already performed and check_cost is a constant parameter standing for the
probability of stopping after the first check. Based on every user’s requirements and
the SLA offering, min_checks is the minimum number of checks necessary to reach a
VM type that yields a positive Ui(V M). We define Pquit to be the total probability that a
user will quit the search before reaching a positive-utility SLA. By applying the chain
probability rule, we can calculate Pquit as:

Pquit =

min_checks−1

∑
j=1

Pstop j

j−1

∏
k=1

(1−Pstopk) (8)

The outer sum is the joint distribution of all possible stop events that may occur for
a user and the inner product stands for all event outcomes when searching continued
until the j-th event was realised as stopping. We use this expression in the evaluation as
a measure of difficulty for users to find a matching SLA.

6 Evaluation

In this section we describe the simulation of the proposed progressive SLA specification
using user models based on real data traces and analyse the results.



6.1 Simulation Environment

The simulation parameters are summarised in Table 3. The first step of the simulation is
to generate a population of web and HPC users based on the requirement models derived
from the Wikipedia and Grid’5000 datasets, respectively. We simulated 1000 users to
represent a population with enough variety to explore different WTP and availability
requirements. We assume the ratio between web and HPC users of 1 : 1.5, based on
an anlysis of a real system performed in [15]. We determine each user’s WTP from the
desired availability with Gaussian noise, as already explained in the previous section.
The SLA offering was derived from the migration and peak pauser scheduler using the
probabilistic modelling technique (Section 4). For the examination of SLA selection
from the user’s perspective, the eight SLAs we already defined in Section 4.4 were
used. To examine the cloud provider’s perspective, we evaluated 1–60 SLAs, doing 100
simulation runs per offering to calculate the most likely optimal number of SLAs. A
check_cost of 0.015 is selected to initially start with a low chance of the user quitting
and then subsequently increase it for every SLA check per Eq. 8. The same α, β , γ

values that we already explained in the previous section were set that result in a utility
of 1 for the required availability and a gradual decline towards a utility of 0 for lower
availabilities. The core of the simulation is to determine each user’s SLA selection (if
any) based on the utility model (Section 5).

Table 3: Simulation settings

Parameter users web : HPC #SLAs runs check_cost α β γ

Value 1000 1 : 1.5 1–60 100 0.015 60 0.01 0.99

6.2 User Benefits

Simulation results showing the distribution of users among the eight offered SLAs from
Section 4.4 are presented in Fig. 12. Different colours are used for web and HPC users
types. It can be seen that most of the users successfully found a service that matches
their requirements, with less than 5% of unmatched requests. The majority of HPC users
are distributed between SLA 7 and 8 offering 42% and 33% availability, respectively.
The majority of web users selected SLA 2, the migration scheduler TC, due to its high
availability comparable to a full availability service, but a more affordable price due to
the energy cost savings. 26% of web users opted for SLA 3, the peak pauser instance
which still offers a high availability (87.5%), but at almost half the price of SLA 2.
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The distribution of unmatched users who did not select any of the offered services
(where utility was negative for all SLAs) is shown alongside the matched users in
Fig. 13, showing their Avo f f set and WTP values. We can see that unmatched users have
low WTP values, the cause of them not being able to find a suitable service option.

6.3 Cloud Provider Benefits
Customer conversion means the number of users who looked at the SLA offering and
found an SLA that matches their needs. This metric is an indicator of the provider’s eco-
nomic success. To compare the multiple treatment category system with the traditional
way of only having a full availability option, we simulated different SLA offerings.
Fig. 14 shows customer conversion with colour indicating the selection distribution
for different offering combinations of the eight previously examined SLAs. Customer
conversion growth can be seen with more service types, due to users having a higher
chance of finding a category that matches their requirements. With SLAs 1–2 offered,
only SLA 2 was selected, as it still offers a high-enough availability to satisfy user re-
quirements and the price is lower than in SLA 1. As we widen the offering, more SLAs
get selected, but the majority of users choose among two SLAs that best suit the two
user types that we modelled. Still, a small number of users select other SLAs (SLA 3
and, if offered, SLA 8) which better suit their needs. SLA 5 is never selected due to user
requirements and in real clouds such SLAs should be removed to simplify selection.

The introduced service types can be managed in a more energy efficient manner.
The average energy savings weighted based on the lease time per VM for the SLA 1-8
offering, compared to the current 99.95% availability Amazon instances represented by
SLA 1, are 39%. Full annual lease time was assumed for web users (as web applications
are typically running all the time) and was varied based on job runtime and frequency
for HPC users (we assume that a VM is provisioned just to perform the submitted
job). This shows that more energy efficient management is possible if users declare the
QoS levels they require through SLA selection. For the SLA 1-8 scenario, where 5.89×
more users can be converted and the annual lease times explained above, a 43% revenue
increase is calculated from the service component of the selected VMs. Exact numbers
depend on the user type ratio that will vary between cloud providers.
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To find the optimal number of offered SLAs, we performed a simulation where we
explore customer conversion for a higher number of SLAs. The extra SLAs were gener-
ated for the peak pauser scheduler, which allows for arbitrary control of VM availabil-
ity and price. The peak pauser SLAs were uniformly interpolated between full and no
availability to avoid duplicates. Fig. 15 shows how the number of offered SLAs affects



the user conversion count and Pquit , the mean Pquit value over all the users (including
unmatched ones). After an initial linear growth, we can see that the number of users be-
gins to stagnate and slowly decrease. Once a sufficient offering to satisfy the majority
of users is achieved, adding extra SLA options only increases search difficulty. This is
seen from the steadily increasing Pquit , the probability that a user will quit the search
before finding a positive-utility SLA. For our scenario, the optimal number of converted
customers is achieved between 6 and 14 SLAs, depending on the Pquit random variable
realisations. By applying the bootstrap confidence interval method, we calculate the
95% confidence interval (CI) for the optimal number of SLAs to be between 8 and 10.

7 Conclusion
We presented a novel progressive SLA specification suitable for energy-aware cloud
management. We obtained cloud management traces from two schedulers optimised for
real-time electricity prices and temperature-dependent cooling efficiency. The SLAs are
derived using a method for a posteriori probabilistic modelling of cloud management
data to estimate upper bounds for VM availability, energy savings and the resulting VM
prices. The SLA specification is evaluated in a utility-based user SLA selection simula-
tion using realistic workload traces from Wikipedia and Grid’5000. Results show mean
energy savings per VM of up to 39% due to applying more aggressive energy preserva-
tion actions on users with lower QoS requirements. Furthermore, a wider spectrum of
user types with requirements not matched by the traditional high availability VMs can
be reached, increasing customer conversion.

In the future, we plan on expanding the probabilistic model with time series fore-
casting for more accurate SLA metrics. Additional TCs could be added to represent
other cloud management methods, such as the kill-and-restart pattern used on state-
less application containers in modern web application architectures. We also plan to
explore SLA violation detection and how it could be integrated into our SLA specifi-
cation. Furthermore, as predictions change based on day-night and seasonal changes,
exploring time-changing SLAs in the manner of stocks and bonds to match the volatile
geotemporal inputs would be feasible.
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