
Author's personal copy

Future Generation Computer Systems 29 (2013) 1000–1011

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Creating standardized products for electronic markets
Ivan Breskovic a,∗, Jörn Altmann b, Ivona Brandic a

a Vienna University of Technology, Austria
b TEMEP, Seoul National University, South Korea

a r t i c l e i n f o

Article history:
Received 2 February 2012
Received in revised form
25 May 2012
Accepted 11 June 2012
Available online 18 June 2012

Keywords:
Service level agreement
SLA management
SLA matching
Electronic markets
Cloud economics
Autonomic computing
Standardized goods
Commodity goods
Market modeling
Market liquidity

a b s t r a c t

Cloud computing is supposed to offer resources (i.e., data, software, and hardware services) in a manner
similar to traditional utilities such as water, electricity, gas, and telephony. However, the current Cloud
market is fragmented and static, preventing the successful implementation of ubiquitous computing
on demand. In order to address the issue of fragmentation, commodity Cloud marketplaces have been
suggested. However, as thosemarketplaces still suffer from being static (i.e., not being capable to adapt to
changing market conditions and to the dynamics of user requirements for services), they do not operate
at the optimal point. In this paper, we address this issue by channeling demand and supply into a few
standardized services that are automatically adapted to user requirements in regular time intervals. For
this, we utilize clustering algorithms and monitor the requirements of users. In order to avoid any cost
to the user through these adaptations, we automatically adapt service level specifications of users to
newly defined standardized goods. Using a simulation framework, we evaluate our approach and show
its benefits to end users.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many large IT companies, such as eBay, Amazon, and Yahoo
offer electronic marketplaces attracting millions of customers
worldwide to buy and sell a broad variety of goods and services.
This on-line trading model has many advantages over traditional
marketplaces. Besides being fast, simple, and inexpensive, it allows
users to place their bids anytime and from any geographical
location that has Internet access.

Today, the Cloud computing paradigm (and utility computing in
general) offers resources (i.e., software services, platform services,
and hardware services) without regard to where the services
are hosted or how they are delivered [1]. Following this idea,
computing resources are supposed to be traded and delivered in
a manner similar to utilities such as water, electricity, gas, and
telephony [2]. However, the current Cloud market is fragmented
and static, hindering the paradigm’s ability to fulfill its promise of
ubiquitous computing on demand.

Furthermore, very little research exists on the development
of appropriate Cloud market platforms that are similar to

∗ Corresponding author.
E-mail addresses: breskovic@infosys.tuwien.ac.at (I. Breskovic),

jorn.altmann@acm.org (J. Altmann), ivona@infosys.tuwien.ac.at (I. Brandic).

marketplaces for electricity, water, and stocks [3–8]. Due to the
large variability in services and still low number of traders, they
often suffer from low liquidity (i.e., the ability to easily and quickly
sell or purchase a service at a certain price), repelling potential
consumers and disadvantaging new providers [9].

In order to create Cloud markets with sufficient stability and
sustainability, the number of different types of Cloud comput-
ing resources needs to be low [9]. Some electronic Cloud mar-
ketplaces achieve this by offering a centralized place for search
and by trading standardized Cloud services offered by various
providers [7,10]. Standardization is achieved by creating a small
number of services (products) derived from user requirements for
services. However, even in this commodity resource Cloud mar-
ket, themarket is static, i.e., it cannot adapt seamlessly to changing
market conditions, fluctuating trader base, or natural evolution of
products.

In our approach, the method to address this issue is to channel
the demand and supply into standardized Cloud products. We
apply clustering algorithms to group similar user requirements
for goods and apply adaptation methods for analyzing these
requirements and for deciding whether to adapt the existing
standardized products. By ensuring that standardized products are
as close to user preferences as possible, the cost of searching for
goods is reduced while the level of users’ utility is at the highest
level. This finally leads to an improved market liquidity, making
the market more attractive to its users.

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.06.007



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1001

Besides, by considering the changes in user requirements
(i.e., the constant changes in user base and actions users performon
the market), standardized products can be continuously updated.
This way, the current market trend is always reflected without
incurring any additional cost to users. Users trading old services
are automatically switched to the new standardized product by
the system. There is no need for users’ manual adaptation of their
services.

The main contributions of the paper can be summarized to:
(1) the introduction of an approach for adaptation of standardized
goods in Cloud markets; (2) an approach for automatic switching
of user specifications for goods to newly created standardized
products; (3) the formalization of a measure that is used for
evaluating our approach and is based on determining the utility
and the cost to users; and (4) a simulation of the proposed
approach using an experimental testbed.

The remainder of the paper is organized as follows: Section 2
discusses related work. Section 3 provides a detailed explanation
of our approach for automatic specification and adaptation of stan-
dardized goods in electronic Cloud markets. The implementation
details are discussed in Section 4. Section 5 provides a descrip-
tion of the simulation testbed and presents the evaluation results.
Finally, Section 6 concludes the paper.

2. Electronic markets in research

For positioning our work within the state-of-the-art, we briefly
describe existing research on electronic markets. We classify the
related work that is related to our work into three categories:
(1) implementations of electronic markets for Grid and Cloud
computing, (2) principles of autonomic computing to achieve
sustainability in electronic markets, and (3) approaches for SLA
matching.

2.1. Electronic markets for grid and cloud computing

Several research projects have discussed the implementation of
system resourcemarkets [3–5,7,8,11]. GRACE [3] developed amar-
ket architecture for Grid markets and outlined a market mecha-
nism, while the good itself (i.e., computing resource) has not been
defined. Moreover, the process of creating agreements between
consumers and providers has not been addressed. The SORMA
project also considered open Grid markets [4,5]. They identified
several market requirements, such as allocative efficiency, budget-
balance, truthfulness, and individual rationality [5]. However, they
have not considered that a market can only function efficiently
with a sufficiently large liquidity. InMACE [6], an abstract comput-
ing resource was defined that can be traded. However, a detailed
specification of a good has not been given. GridEcon proposed a
commodity market for Cloud computing services [7,8]. Although
an explicit service level agreement for standardized Cloud ser-
vices [10], the Cloud service requirements, and the requirements
for trading have been defined and specified, the issue of adapta-
tion of standardized goods has not been addressed. In the work on
Cloud computing value chains [11], many important issues of elec-
tronic markets (e.g., improved Cloud pricing and licensing models)
are discussed.However,while the diversity of virtualized resources
was mentioned implicitly, the effect this diversity can have on the
market has not been addressed.

2.2. Autonomic computing principles in electronic markets

As reported by Kephart and Chess [12], the scientific commu-
nity has focused in recent years on making distributed systems

adaptive and sustainable, referring to the principles of autonomic
computing. However, most of the scientific work addresses tech-
nical issues to make systems autonomic, such as the development
of negotiation protocols to make Cloud services self-adaptive [13],
or considers using autonomic service management frameworks
[14–16]. As a shortcoming of these works, they do not take eco-
nomic methodologies into account. Research on autonomic sys-
tems focusing on economic methods and considerations is in its
early stage [17]. For example, [18] propose mechanisms that are
able to adaptively adjust their parameters based on the past behav-
ior of participants. Another example is the self-organizing resource
allocationmechanism for dynamic application layer networks [19].
However, they do not consider issues such as the adaptation of
goods depending on the resources demanded or supplied in the
market, which is a crucial element for autonomic marketplaces.

2.3. SLA matching

Specifications of user requirements in Clouds and Grids have
been discussed by several research projects [20–22]. As reported
in [23], most projects use SLA specifications based on Web
service level agreement (WSLA) and WS-Agreement, which lack
support for economic attributes and negotiation protocols, as
well as some non-functional properties, such as security. To
compensate for these shortcomings, extensions to WS-Agreement
has been proposed [10]. Oldham and Verma introduce the use
of semantic Web technologies based on Web service description
language (WSDL-S) and Web ontology language (OWL) for
enhancingWS-Agreement specifications to achieve autonomic SLA
matching [20]. Similar to that, Green introduces an ontology-based
SLA formalization where OWL and semantic web rule language
(SWRL) are chosen to express the ontologies [22]. Dobson and
Sanchez-Macian suggest producing a unified quality of service
(QoS) ontology, applicable to themain scenarios such as QoS-based
Web services selection, QoS monitoring, and QoS adaptation [21].
Another approach, which has been presented in [24], introduces
an autonomic Grid architecture with mechanisms for dynamically
reconfiguring service center infrastructures. It can be used to
fulfill varying QoS requirements. Koller and Schubert discuss an
autonomous QoS management, using a proxy-like approach for
defining QoS parameters that a service has to maintain during
its interaction with a specific customer [25]. Yarmolenko et al.
make a case for increasing the expressiveness of SLAs [26].
This can possibly also increases market liquidity, if it comes to
matching asks and bids and a common understanding of the SLA
parameters has already been established. Our approach could be
seen as complimentary in the sense that it makes sure that their
precondition holds.

3. Adaptive standardized products for cloud markets

3.1. Specification of goods and requirements for goods

In our vision of Cloud markets, traders express their require-
ments and offers in formof SLA templates. A service level agreement
(SLA) is a collection of service level requirements that have been
negotiated and mutually agreed upon by a service provider and a
service consumer. SLAs (aswell as SLA templates) comprise SLApa-
rameters where each parameter is defined through its description
(i.e., its basic parameter properties (e.g., parameter name)), ametric
that represents a method for calculating the parameter value, and
the service level objective (SLO). The SLO specifies the contractual
specified and agreed value of the parameter. Unlike SLA templates,
SLAs are final documents signed between two trading parties. In
order to create an SLA from an SLA template, the traders should



Author's personal copy

1002 I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011

Fig. 1. The SLA mapping approach.

enter their legally required information, agree upon the final val-
ues of service objectives, and finally sign the contract.

Currently, SLAs are typically used for describing infrastructure
services, i.e., in the infrastructure-as-a-service (IaaS) model, while
for the other service models such as platform-as-a-service (PaaS)
and software-as-a-service (SaaS) they are still not utilized. In this
paper, we consider SLA parameters commonly used to describe
infrastructure services [10].

We differentiate between two types of SLA templates in
this context. On the one hand, user specifications of service
requirements (i.e., consumer requests and provider offers) are
expressed by means of private SLA templates. On the other hand,
public SLA templates, which are stored in publicly available,
searchable SLA registries, represent products that are traded on the
market. Although these two SLA templates differ in their purposes,
the only difference between their specifications are related to
the SLO values. Namely, in private SLA templates, service level
objectives are defined as ranges of acceptable values. For example,
a private SLA template might state that any value between 80
and 100 for a parameter CPUCores, representing the number
of processor cores, is acceptable for the user. This provides an
additional level of flexibility, improving the probability of finding a
match between a consumer’s request and a provider’s offer. Public
SLA templates, on the other hand, specify exact values of SLOs
(e.g., CPUCores = 90).

3.2. The SLA mapping approach

Fig. 1 depicts the process of trading on the Cloud market as
assumed in this paper. In order to increase the market liquidity,
the Cloud market only allows trading products that are described
by public SLA templates (i.e., the standardized products). When
entering themarket to offer a service (in case of a service provider)
or to request a service (in case of a service consumer), users
must associate their services (as described by their private SLA
templates) to the so-called index SLA template, which will be
described later in this section. As SLA templates must be exactly
the same in their structures for a successful trading between two
parties, the SLA templates must be understood by both sides. This
implies that users’ private SLA templates must be equal to the
public SLA templates and to the index SLA template, which is
almost always not the case. To counteract this problem, we utilize
the SLA mapping technique as a matching approach [27]. This is
indicated as step 1 in Fig. 1.

SLA mappings are documents used to map the differences
between two SLA templates by defining translations between
differing properties of SLA parameters. Property translations can
range from very simple, such as incompatible parameter names
(e.g., different names used for the same SLA parameter) to complex
translations, such as methods for calculating parameter values
with differentmetrics (e.g., different units used to express the same
parameter value).

SLA mappings are important, due to the lack of semantic
descriptions of SLA parameters. Finding equivalent parameters in
SLA templates is impossible unless a user has created a mapping
to define this equality. Since standardized products (i.e., public
SLA templates) are derived from users’ service requirements
(i.e., private SLA templates), understanding users’ private SLA
templates is crucial. Therefore, when entering the market, users
are asked to create SLA mappings for their SLA templates (step 1
in Fig. 1).

For the purpose of creating SLA mappings, the service directory
contains a specially formatted index SLA template, which is a
public SLA template used as a registry rather than a trading
product. The index template contains SLA parameters from all
public SLA templates. When joining the market, users fetch the
index template, check whether each of the SLA parameters of their
private SLA templates exists, and if a parameter differs in the two
templates, create an SLAmapping. In order to reduce the cost of this
process, the service directory contains a collection of previously
created SLAmappings, which can be reused by the users. If a user’s
private SLA template contains an SLA parameter that does not exist
in the index template, the user can add it.

3.3. Automatic creation and adaptation of standardized products

Standardized Cloud products are created and later modified
based on the requirements of the market participants (step 3
in Fig. 1). This process is executed automatically in certain time
intervals and is achieved through the application of: (1) clustering
algorithms to group similar user requirements (i.e., users’ private
SLA templates), and (2) adaptationmethods to analyze the changes
in user requirements.

The adaptation process is executed in three steps, as depicted in
Fig. 2. First, clustering algorithms are applied to group structurally
similar private SLA templates. Two SLA templates are similar by
their structures, if parameter definitions and metrics of these
templates are similar with respect to the distance function



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1003

Fig. 2. Adaptation of SLA templates.

defined in Section 4.1.2. Often, these groups are subgroups of
existing templates (i.e., branches of new products). For example,
considering medical applications, one group of requirements
might be for surgical applications, while an another one might be
for services in oncology.

In the second step of the adaptation process, for each generated
cluster, clustering algorithms are applied to create subgroups of
requirements according to the SLO values expressed in users’
private SLA templates. For example, in the group for surgical
applications, a clustering algorithm might recognize a subgroup
for data-intensive surgical applications (e.g., for big city hospitals),
and another for simple surgical applications (e.g., for small
ambulances).

For each of the subgroups of user requirements created by
the second iteration of clustering, a new public SLA template is
created. This is performed by applying an adaptationmethod (step
3 in Fig. 2)(step 2 in Fig. 1). The adaptation method determines for
each SLA parameter from the current public SLA template whether
its properties should be changed, a new parameter should be
introduced, or an existing parameter should be deleted. After the
new public SLA templates have been created, SLA mappings to the
private SLA templates are created (step 3 in Fig. 1), the new public
SLA templates published in the directory (step 3 in Fig. 1), the new
public SLA templates are assigned to the user (step 4 in Fig. 1), and
the old ones are deleted.

3.4. Adapting SLA mappings to the new public SLA templates

Although new public SLA templates reflect users’ needs more
precisely, users might prefer keeping the old public templates
instead of using the newones. This is because of the cost of creating
new SLA mappings to the adapted public SLA templates, while the
usage of the existing templates does not incur any additional cost.
However, allowing users to utilize outdated templates results in
a constant increase of the number of public SLA templates in the
service directory. Consequentially, due to the increase in number
of goods, this action increases the costs of searching for trading
partner and implicitly has a negative impact onmarket liquidity. To
prevent this, the market should enable users to utilize new public
SLA templates without facing additional costs.

To achieve this goal, we investigate automatic modifications
and creations of SLA mappings in this paper. Namely, we update
SLA mappings for users by concatenate the existing SLA mapping
with the same SLA mapping used to transform the current public
SLA templates into the new public templates (step 4 in Fig. 1). As it
will be shown in Section 5, this approach dramatically reduces the
cost for users and enables the market to delete the old public SLA
templates from the market directory, ensuring low cost of market
maintenance.

4. Methods for automatic management of standardized prod-
ucts

In this section, we discuss the details of creating and adapting
standardized products. First, we describe the clustering algorithms
to group similar requirements of users (Section 4.1.1). Second,
based on the requirements that define a cluster, we compute a
new standardized product (i.e., a public SLA template) that will be
the closest to the needs of the group of users. For this purpose, we
utilize the adaptation methods (Section 4.2). Finally, after the new
public SLA templates have been created, we apply an algorithm
to automatically modify or create new SLA mappings to the new
public templates so as to reduce the cost to users (Section 4.3).

4.1. Grouping private SLA templates

4.1.1. Application of clustering algorithms
For the purpose of grouping similar private SLA templates, we

apply two clustering algorithms: DBSCAN and k-means. Note that
user requirements, represented by their private SLA templates, are
not stored in the market directory. Therefore, the algorithm for
clustering user requirements must first reconstruct users’ private
SLA templates from the public SLA templates they utilize and the
SLA mappings they submitted to the market.

DBSCAN is a data clustering algorithm that is based on the
density distribution of nodes and finds an appropriate number of
clusters [28]. The ϵ-neighborhood of a point p is defined as a set of
points that are not farther away from p than a given distance ϵ. A
point q is directly density-reachable from the point p if q is in the ϵ-
neighborhood of p and the number of points in the ϵ-neighborhood
of q is bigger than MinPts. A cluster satisfies two properties:
(1) each two points are mutually density-reachable, and (2) if a
point is mutually density-reachable to any point of the cluster, it
is part of the cluster as well.

k-means is a clustering method that partitions N data points
into k disjoint subsets Sj containing Nj data points so as to mini-
mize the sum-of-square criterion

k
j=1


n∈Sj

d(xn, µj)
2, where xn

is the nth data point, µj the geometric centroid of the data points
in Sj, and d a distance function calculating the similarity of the two
elements [29]. The algorithm, given an initial set of k means, as-
signs each data point to a cluster with the closest mean. It then
calculates new means to be centroids of observations in the clus-
ters and stops when the assignments no longer change the means.
In our context, a data point is a user’s private SLA template, and a
cluster centroid is a newpublic SLA template for the group of users.
A frequent problem in k-means algorithm is the estimation of the
number k. Within this paper, we implement two approaches:



Author's personal copy

1004 I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011

1. Rule-of-Thumb is a simple but very effective method for
estimation the number k. The variable k is set to

√
N/2, where

N is the number of entities [30].
2. Hartigan’s Index is an internal index for scoring the number

of clusters introduced in [31]. Let W (k) represent the sum of
squared distances between cluster members and their cluster
centroid for k clusters. When grouping n items, the optimal
number k is chosen so that the relative change of W (k)
multiplied with the correction index γ (k) = n − k − 1 does
not significantly change for k + 1, i.e.,

H(k) = γ (k)
W (k) − W (k + 1)

W (k + 1)
< 10.

The threshold 10 shown in Hartigan’s index is also used in
our simulations. It is ‘‘a crude rule of thumb’’ suggested by
Hartigan [31].

4.1.2. Computing distance between SLA templates
For determining the ϵ-neighborhood of a clustering point in

case of DBSCAN and for computing the sum-of-square criterion
in case of the k-means algorithm, we must define a function
measuring distance (i.e., similarity) of two clustering elements
(i.e., two SLA templates). Since clustering algorithms are applied for
two different purposes, namely for grouping SLA templates based
on their structures and based on their SLO values, we define two
methods for computing the distance between two SLA templates.
The first method is used with respect to the structure of SLA
templates and the secondone is usedwith respect to the SLOvalues
of SLA templates.

The distance between the structures of SLA templates is ex-
pressed as a number of differences between parameter properties
of two SLA templates. This value is calculated by iterating through
each SLA parameter contained by at least one of the SLA templates
and determining the distance for this SLA parameter. For two SLA
templates T1 and T2, the distance between their structures S with
respect to an SLA parameter p (i.e., its parameter description and
metric) is defined as:

dS,p(T1, T2) =


0, if properties of p are same in T1 and T2
1, if T1 or T2 does not contain p or if only

one property of p differs in T1 and T2
2, if both properties of p differ in T1 and T2.

Total distance between the two SLA templateswith respect to their
structures, noted dS(T1, T2), is calculated as the sum of distances
between all SLA parameters contained in at least one of the
templates.

When calculating the distance between two SLA templateswith
respect to their SLO values, wemust consider that the SLO values in
private SLA templates are represented by ranges of real numbers,
as explained in Section 3.1. In order to compute the distance
between such ranges, we utilize the Hausdorff metric [32], which
defines this value as a maximum distance of one range to the
nearest point in the other range. In detail, the Hausdorff distance
dh(X, Y ) between twonon-empty subsetsX and Y of ametric space
M (in our case, two intervals in R) is defined as:

dh(X, Y ) = max

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)


(1)

where sup represents the supremum, inf the infimum, and d(x, y)
any metric between points x and y. The Hausdorff distance is
calculated by considering a point x ∈ X and finding the least
distance to a point y ∈ Y . This calculation is repeated for all x ∈ X
to find the maximum value. In the next step, the same process is
performed with the roles of X and Y reversed. Finally, the largest
of these two values is taken as the result.

Table 1
Sample SLA templates.

SLA template SLA parameters

Tinit π : (ResponseTime, second, ⟨1, 3⟩)
µ : (ErrorRate, percentage, ⟨0, 1⟩)

T1 π : (RespTime, second, ⟨1, 4⟩)
µ : (ErrRate, percentage, ⟨0, 2⟩)

T2 π : (ResponseTime,millisecond, ⟨800, 3300⟩)
µ : (ErrorRate, percentage, ⟨1, 3⟩)

T3 π : (RespTime,millisecond, ⟨1100, 4500⟩)
µ : (Error, percentage, ⟨0, 1⟩)

In our case, X and Y are values of service level objectives of
an SLA parameter π from private SLA templates T1 and T2, noted
SLO(π)T1 and SLO(π)T2 . Since SLO values are unbounded sets of real
numbers, d(x, y) is the Euclidean distance between points x and y.
Having said that, considering Eq. (1), for any two bounded ranges
SLO(π)T1 = [x1, x2] and SLO(π)T2 = [y1, y2], it is simple to show
that their Hausdorff distance is

dh(SLO(π)T1 , SLO(π)T2) = max(|x1 − y1|, |x2 − y2|). (2)

The total distance between two SLA templates with respect to
their SLO values is calculated by computing distances between
each SLO value defined in at least one of the templates and
adding them up. Since SLO values of different SLA parameters
are usually expressed in different measurement units, the values
are not mutually comparable. Therefore, in order to compute the
overall distance, SLO values are fitted into the range [0, 1] before
summing. This is done by applying the following equation:

dn(SLO(π)T1 , SLO(π)T2)

=
dh(SLO(π)T1 , SLO(π)T2) − min(dh(SLO(π)))

max(dh(SLO(π))) − min(dh(SLO(π)))
(3)

where dh(SLO(π)) is the set of all distances between all SLA
templates with respect to the SLO value of the SLA parameter π . If
a value is contained by only one of the two templates, the distance
is maximum, i.e., equal to 1. In case the SLO values are expressed in
a unit different from the SLO unit defined by the initial public SLA
template, the value is being converted into the unit of the public
template before computing the distance.

To demonstrate the methods for computing the distance
between SLA templates, we use the following example. Table 1
depicts three private SLA templates T1, T2, and T3 and an initial
public SLA template Tinit to which private templates are associated.
Parameter definitions are given as tuples (Name,Unit, SLO), in
which the elements represent the parameter name, the metric
used, and the SLO value.

With respect to the SLA parameter π , private SLA templates
T1 and T2 differ in both the parameter name and the parameter
unit. Therefore, the distance between the template structures
dS,π (T1, T2) is equal to 2. Since the specification of the parameter
µ differs only in its name, the distance dS,µ(T1, T2) is equal to 1.
In total, the distance between structures of T1 and T2 is equal to
dS(T1, T2) = dS,π (T1, T2) + dS,µ(T1, T2) = 3. Similarly, we get the
distances dS(T1, T3) = 2 and dS(T2, T3) = 2.

Before computing the distances between the SLO values,
they must be converted to the unit stated in the initial public
SLA template. This is performed by applying the SLA mappings
submitted by the users. Then, the distance between SLO values
between T1 and T2 with respect to the SLA parameter π is
calculated as:

dh(SLO(π)T1 , SLO(π)T2) = max(|1 − 0.8|, |4 − 3.3|) = 0.7.



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1005

Similarly, the distances for the other SLA parameters and SLA
templates can be calculated:

dh(SLO(π)T1 , SLO(π)T3) = 0.5
dh(SLO(π)T2 , SLO(π)T3) = 1.2
dh(SLO(µ)T1 , SLO(µ)T2) = 1
dh(SLO(µ)T1 , SLO(µ)T3) = 1
dh(SLO(µ)T2 , SLO(µ)T3) = 2.

After all Hausdorff distances have been calculated, they can be
normalized using the Eq. (3):

dn(SLO(π)T1 , SLO(π)T2)

=
dh(SLO(π)T1 , SLO(π)T2) − min(dh(SLO(π)))

max(dh(SLO(π))) − min(dh(SLO(π)))

=
0.7 − 0.5
1.2 − 0.5

= 0.285

dn(SLO(µ)T1 , SLO(µ)T2) =
1 − 1
2 − 1

= 0.

Finally, the total distance between SLA templates T1 and T2 with
respect to the SLO values is

dSLO(T1, T2) = dn(SLO(π)T1 , SLO(π)T2)

+ dn(SLO(µ)T1 , SLO(µ)T2) = 0.285.

4.2. Adaptation methods for the evolution of public SLA templates

For adapting the standardized products (i.e., the public SLA
templates), so that they optimally reflect user requirements, we
utilize three adaptation methods. For each public SLA template
(in this process called initial public SLA template) and for each
SLA parameter contained in the initial public SLA template, these
methods determine whether the current parameter name and
metric should be changed, a new parameter should be added,
or an existing one deleted. This is performed by analyzing the
distribution of parameter preferences of the users, who use the
public SLA template. This analysis comprises sorting, classification,
and counting of SLA mappings that users created for an SLA
parameter. In particular, the adaptation methods apply selection
criteria (which are specific to each of themethods), in order to find
the SLA parameter value of each SLA parameter that are preferred
by users. These values are then used to define a new public SLA
template and replace the initial public SLA template.

To demonstrate the workings of these methods, we use the
following example.We consider the evolution of an SLA parameter
π occurring in an initial public SLA template Tinit , when adapting
the template based on SLA mappings of 100 users. The name and
metric of the parameter π in the initial template is (Price, EUR). It
is assumed that 20% of all users do not use the parameterπ in their
private SLA templates, and the rest of them define SLA mappings
according to the distribution presented in Table 2. Note, the last
column of the Table 2 represents the number of non-mapped
values, i.e., the number of private SLA templates containing the
same value as in the initial public SLA template. Table 3 represents
the distribution of an SLAparameterµ, which exists in 75%of users’
private SLA templates and does not exist in the initial public SLA
template.

The maximum method selects the option that has the highest
number of SLA mappings. This option is called the maximum
candidate. The maximum candidate is then used in the new SLA
template. If there is more than one maximum candidate with the
same number of SLA mappings, one of them is chosen randomly.
With respect to the given example, since the majority of users
utilize the parameter π , it stays in the template. Rate becomes the

Table 2
Distribution of mappings for the SLA parameter π .

(a) Name of the SLA parameter π

Name used: Cost Charge Rate (Price)
Number of mappings: (%) 15 15 40 (30)

(b) Metric of the SLA parameter π

Metric used: USD GBP YPI (EUR)
Number of mappings: (%) 38 2 40 (20)

Table 3
Distribution of mappings for the SLA parameter µ.

(a) Name of the SLA parameter µ

Name used: MemoryConsumption Consumption
Number of mappings: (%) 70 30

(b) Metric of the SLA parameter µ

Metric used: Mbit Gbit Tbit
Number of mappings: (%) 5 55 40

new parameter name because of the highest number of mappings
(40% in comparison to 30%, who want to keep the name Price)
(i.e., who did not create mappings). The price will be expressed
in Japanese Yens due to the highest number of mappings. The
parameterµwill also be in the new template, sincemore than 50%
of the users utilize it in their private SLA templates, and parameter
properties will be (MemoryConsumption,Gbit).

In order to increase the requirements for selecting the max-
imum candidate, the threshold method introduces a threshold
value. In this method, the property is chosen, if its property value
is used more than the given threshold and has the highest count. If
more than one parameter property value satisfies the two condi-
tions, one of them is chosen randomly. Throughout the evaluation
in this paper, we fix the threshold to be 60%. In the given example,
neither the mappings for the name nor for the metric of the pa-
rameter π exceeds the threshold value. As for the new parameter
µ, it will be represented in the updated public template according
to the properties chosen by the maximummethod.

The significant-change method changes an SLA parameter
property value, only if the percentage difference between the
maximum candidate and the current public SLA template value
exceeds a given threshold, which we assume to be significant at
σT > 15%. In the given example, 40% of users have the name Rate
for the parameter Price, while 30% of users use the same name as in
the public SLA template. Since the percentage difference of 33% is
higher than the given threshold, Rate will be chosen as the new
name for the parameter. As the new metric, YPI will be chosen.
As the parameter µ does not exist in the old public SLA template,
the decision about this SLA parameter is made as described for the
maximummethod.

4.3. Automatic adaptation of SLA mappings to new public SLA
templates

In order to reduce the cost of creating new SLA mappings
for users and, therefore, make the market more attractive, users’
SLA mappings are automatically redefined once a new public
SLA template has been introduced. This way, users’ existing SLA
mappings can always be used for newly created public SLA
templates.

For our discussion of the algorithm for autonomic SLAmapping,
we consider the index public SLA template Tindex, a user’s private
SLA template Tuser , an initial public SLA template Tinit , and a newly
generated public SLA template Tnew . An SLA parameter α of an SLA
template T is defined by its descriptionDT (α), itsmetric FT (α), and
its SLO value SLOT (α). It is denoted as [DT (α), FT (α), SLOT (α)]. An



Author's personal copy

1006 I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011

Fig. 3. Algorithm for autonomic SLA mapping modifications.

Fig. 4. Building an SLA mapping as a combination of two mappings.

SLA mapping between descriptions of an SLA parameter α in SLA
templates T1 and T2 is denoted as DT1(α) ↔ DT2(α). Additionally,
we define a function χ to determine whether an SLA template T
contains an SLA parameter α:

χT (α) =


false, if T does not contain α
true , if T contains α.

(4)

The algorithm iterates through all SLA mappings applied to
transform Tinit into Tnew , and, for each mapping, it executes one
of the possible transformation actions (Fig. 3). As a first step, the
algorithm checks whether α exists in at least Tinit or Tnew and that
its properties differ in those templates. In case that this does not
hold, the existing user’s SLA mappings for this parameter are kept
identical (lines 1–2).

In case α exists in all observed SLA templates (line 3), one of the
following actions is executed:

1. If a parameter property did not differ in Tinit and Tuser , but it
changed in Tnew , a newSLAmapping is created tomap the newly
created difference (lines 4–5).

2. If a parameter property differs in all three templates, a
new SLA mapping is created (lines 6–7). It is a combination
(concatenation) of two existing mappings so that the output of
one becomes the input for the secondmapping, as illustrated in
Fig. 4.

3. If a parameter property does not differ in Tuser and Tnew , the
existing SLA mapping is deleted (lines 8–9).

In case α was deleted from Tinit but needed by the user, the
algorithm informs the user about this action as the user will
not be able to utilize the parameter anymore (lines 11–12). The

algorithm also deletes a possibly existing SLA mapping for the
deleted parameter (lines 13–14).

If the parameter was removed from the public SLA template,
but the user does not need it, there is nothing to be executed (lines
16–17).

If a new parameter is introduced in Tnew (line 18) and if the
user’s private SLA template contains that parameter (line 19), a
new SLA mapping is created, which is a combination of two SLA
mappings: (1) the SLAmapping between theproperty values stated
in the user’s private SLA template and the index template, and
(2) the SLA mapping between the values stated in the new public
SLA template and the index template (line 20). Besides creating a
new SLA mapping, the algorithm also informs the user about the
possibility of using an additional SLA parameter in the the market
(line 21). Note, the SLA mapping to the parameter of the index
SLA template exists, since the index template contains parameters
from all public and private SLA templates and since all users create
mappings to those parameters when entering the market. If a new
SLA parameter is introduced in Tnew , but the user does not have it
in the private SLA template, the algorithm only informs the user
about the possibility of using a new SLA parameter as soon as the
user manually created an SLA mapping (lines 22–23).

Finally, if the parameter properties changed in Tinit and Tnew , but
the user does not utilize the parameter, there is no need to perform
any action as the changes in the parameter properties are not of the
user’s concern (lines 25–26).

Note, Fig. 3 deals with parameter descriptions only, while our
implementation also considers their metrics. Our implementation
simply achieves that by replacing DT with FT in the algorithm
presented.

5. Evaluation

In this section, we present our simulation-based evaluation of
the SLAmapping approach. In particular,we assess the benefits and
the cost of creating adaptive standardized products. Moreover, we
evaluate the algorithm for automated SLA mapping management
and show its impact on users and the Cloudmarketplace in general.

5.1. Simulation environment and testbed

For the simulation, we designed a framework for automated
management of SLA mappings and generation of SLA tem-
plates. Fig. 5 depicts our simulation framework. The simulation
framework comprises an electronic market (i.e., Cloud market)
with a service directory that stores information about resources
available on the market (i.e., public SLA templates), the index tem-
plate, as well as the SLA mappings submitted by the users. The
market is accessed using the frontend services for administration
(e.g., creation of SLA templates), accounting (e.g., creation of user
accounts), querying (e.g., search for an appropriate SLA template),
andmanagement of SLAmappings (e.g., definition of mappings for
a user). Users (i.e., service consumers and providers) utilize the
SLA mapping middleware to create and manage their SLA map-
pings to the index SLA template. The market self-adaptation cy-
cle constantly performs monitoring of market performance (from
both the economical and infrastructural perspectives) and modi-
fies standardized products or derives new standardized products.

The simulation process is conducted in several steps, as
depicted in Fig. 6. First, an initial public SLA template is created
by the administrator. It could be based on a randomly created SLA
template or a randomly picked private SLA template of a user. In
the second step, a fixed number of service users fetch the index
SLA template. Using this index SLA template, the users create
SLA mappings to bridge the differences between their private SLA
templates and the index SLA template (step 3). After all users have



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1007

Fig. 5. Simulation environment.

submitted their SLA mappings, the adaptation process is started.
Based on the result of the clustering algorithms and adaptation
methods, the new public SLA templates are created (step 4). In
the next steps, users’ SLA mappings are modified (step 5) and new
public SLA templates are assigned to the users (step 6), replacing
the initial (i.e., currently existing) public SLA templates.

In our simulation, the initial public SLA template contains 8 SLA
parameters. Users’ private SLA templates are generated randomly
at the beginning of the evaluation process and can contain up to
11 SLA parameters, where users can choose between 5 predefined
parameter names and 4 metrics for each SLA parameter. Table 4
summarize the simulation settings.

For the sake of simplicity, the number of SLA parameters
and variety of parameter definitions (i.e., parameter names and
metrics) used in our simulations is relatively low compared to
the SLAs commonly used to describe IaaS services in the real
world applications. However, the motivation for our approach of
standardizing Cloud services rises with the additional complexity
of users’ SLAs. Therefore, it is reasonable to expect that the
approach presented in this paper would demonstrate even better
results with the production SLAs. This will be examined in detail in
our future work.

After new public SLA templates have been derived and users’
SLA mappings adapted, the net utility is measured to evaluate
not the entire SLA mapping process but rather the effects of
the clustering and adaptation approach on the SLA mapping
approach.

5.2. Formalization of the utility and cost model

For the evaluation of our clustering and adaptation approach,
we define the cost and the benefits. Using the notation defined
in Section 4.3, we define the utility function u+ of a user user

with respect to the difference of the properties of SLA parameter
α of the public SLA templates and the users’ private templates.
The definition of the utility function follows the distance idea
introduced in Section 4.1.2:

u+

user(α) =



0, χTuser (α) ≠ χTnew (α) ∨ χTuser (α) = χTnew (α)

= false
A, χTuser (α) = χTnew (α) = true∧
DTuser (α) ≠ DTnew (α) ∧ FTuser (α) ≠ FTnew (α)

B, χTuser (α) = χTnew (α) = true∧
((DTuser (α) = DTnew (α) ∧ FTuser (α) ≠ FTnew (α))

∨(DTuser (α) ≠ NTnew (α) ∧ FTuser (α) = FTnew (α)))

C, χTuser (α) = χTnew (α) = true∧
DTuser (α) = DTnew (α) ∧ FTuser (α) = FTnew (α).

(5)

As stated in the definition of the utility function, the user gains
utility for an SLA parameter, only if it can be utilized, i.e., if it
exists in both their private SLA template and in the new public SLA
template. The utility depends on the similarity of the specification
of the SLA parameters in the two SLA templates: it is assumed
to be A, if both the description and the metric of α differ in the
user’s private SLA template and the public SLA template; B, if
only one of the parameter properties (i.e., either description or
metric) differs; and C , if SLA templates do not differ with respect to
the parameter.

Although the SLA mapping approach brings many benefits to
the market participants, it also incurs cost. The cost is incurred
when a public SLA template has been adapted and the user has to
define and submit new SLA mappings for the changed parameter
properties. The cost function u− for a user user with respect to an



Author's personal copy

1008 I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011

Fig. 6. Simulation testbed.

SLA parameter α is defined as follows:

u−

user(α) =



0, χTnew (α) = χTinit (α) = false ∨ χTuser (α)
= false

0, χTnew (α) = χTinit (α) = χTuser (α) = true∧
(DTuser (α) = DTnew (α) ∨ DTuser (α)
= DTinit (α))∧
(FTuser (α) = FTnew (α) ∨ FTuser (α)
= FTinit (α))

0, χTnew (α) = χTuser (α) = true ∧ χTinit (α)
= false∧
DTuser (α) = DTnew (α) ∧ FTuser (α)
= FTnew (α)

D, χTnew (α) = χTinit (α) = χTuser (α) = true∧
((DTuser (α) ≠ DTnew (α) ∧ DTuser (α)
≠ DTinit (α))∨
(FTuser (α) ≠ FTnew (α) ∧ FTuser (α)
≠ FTinit (α)))

D, χTnew (α) = χTuser (α) = true ∧ χTinit (α)
= false∧
(DTuser (α) ≠ DTnew (α) ∨ FTuser (α)
≠ FTnew (α)).

(6)

The cost function specifies the cost incurred by the necessity
of creating new SLA mappings. A user has no cost for an SLA
parameter, if: (1) the parameter does not exist in the private SLA
template or in neither the initial (current) SLA public template
nor the new public SLA template; (2) the parameter properties of
the user’s private SLA template are the same as in the new public
SLA template or as in the initial (current) public SLA template.
In both cases, the SLA mappings have already been created;
(3) the parameter was added to the new SLA template (i.e., the
SLA parameter did not exist in the initial public SLA template), but
its properties are the same as in the user’s private SLA template.
The user faces the cost D, if he must create SLA mappings for the
parameter. This is the case if: (1) the parameter properties are
different in the user’s private SLA template and in the public SLA
template; or (2) the parameter was added in the new public SLA
template, but with the properties differing from those of the user’s
private SLA template.

Note, with the support of automated mapping, the cost of
adaptation for the user would become quite low (Section 4.3).
The user would only face cost when joining the system and when

Table 4
Simulation settings.

Parameter Value

Number of service users (consumers and providers) 100 ≤ n ≤ 10000
Number of initial (currently existing) SLA templates 1
Number of parameters in initial SLA template 8
Number of parameters in private SLA templates ≤11
Number of different parameters considered at most 11
Size of the set of possible parameter names per SLA
parameter

5

Size of the set of possible metrics per SLA parameter 4

the mapping directory does not contain the mapping needed.
However, independently of whether the cost is carried by the
user or by the marketplace, the cost needs to be considered for
objectively evaluating the clustering and adaptation approach.

We define the overall utility U+ and the overall cost U− for all
users C as:

U+
=


user∈C


α∈P

u+

user(α), U−
=


user∈C


α∈P

u−

user(α)

where P is the set of all SLA parameters occurring in Tuser , Tinit or
Tnew . The overall net utility UO is then calculated as

UO
= U+

− U−. (7)

The return values of the utility function and the cost function
are not strictly defined. However, considering the type of efforts
and benefits, it should hold that 0 ≤ A ≤ B ≤ C and 0 ≤ D. For
our simulations, we fix these return values at A = 1, B = 2, C = 3
and D = 1.

5.3. Evaluation results

5.3.1. Creation and management of adaptive virtual products
For the cost-benefit evaluation of our approach, we use the

overall net utility as defined with Eq. (7). For the first evaluation,
we compare the net utility of our proposed approach (for applying
clustering algorithms to group user requirements for the creation
of new standardized products) with the net utility of the basic SLA
mapping as described in [27]. In [27], only the adaptation methods
were applied to create a single new public SLA template for all
market participants. The comparison is shown in Fig. 7.



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1009

Fig. 7. Overall net utility (without automatically modifying users’ SLA mappings).

Table 5
Number of generated clusters per algorithm and per number of users.

Users DBSCAN k-means (RoT) k-means (H)

100 5 7 3
200 5 10 3
300 6 12 3
500 6 15 5

1,000 7 22 6
2,000 7 31 6
5,000 8 50 6

10,000 10 69 10

The first bar of each of the three sets of bars of Fig. 7 represents
the overall net utility achieved for the case that only a single
new public template using the basic SLA mapping has been used.
The other three bars represent the overall net utility achieved by
utilizing the three clustering algorithms (i.e., DBSCAN, k-means
with rule-of-thumb, and k-means with Hartigan’s index). As the
comparison shows, the overall net utility, which is obtained by
generating only one public SLA template for all market users with
the basicmapping, is significantly lower than the overall net utility
obtained with the clustering algorithms. This is due to the fact that
manynewpublic SLA templates are created that differ less from the
users’ private templates, reflecting users’ needs more precisely.

When comparing the overall net utility gained by utilizing
different adaptation methods, we can conclude that the best
results are achieved by using the maximummethod. Although the
threshold method causes significantly lower number of changes
(due to the high threshold) and, therefore, very low cost, the
maximum method adapts the public templates more frequently
and, therefore, achieves a high utility. The highest overall net utility
is achieved by the k-means clustering algorithm with the rule-
of-thumb method, due to the creation of a large number of very
specific clusters.

Concluding, the utility rate highly depends on the number of
generated clusters. The more clusters are created, the higher the
utility will be. This relation can also be seen when comparing
the net utility shown in Fig. 7 with the actual number of
clusters. Table 5 shows the number of clusters per clustering
algorithm, depending on the number of users creating SLA
mappings. The maximum rate of overall net utility for n users can
be achieved by creating n clusters, i.e., by generating one public SLA
template per user. In this case, the public SLA templates would be
equal to the users’ private templates. The utility rate would in this
case be maximum and the cost would be equal to 0. However, by
raising the number of products on the market, i.e., the number of
new public SLA templates, market liquidity is at the lowest point.
Therefore, it is necessary to find a balance between keeping low
cost of creating new SLA mappings and ensuring high liquidity of
market goods. The problem of finding the optimal number of new

Fig. 8. Isolation of the new public SLA templates.

public SLA templates to be introduced to the market is not in the
scope of this paper and will be addressed in our future work.

In order to show that the clusters generated are significantly
different, we use the distance measure of Section 4.1.2 for
calculating the isolation between clusters. Isolation specifies the
average difference between newly generated public SLA templates.
The larger the value of the isolation measure, the more distinct the
SLA templates are. We imply that a high isolation of public SLA
templates ensures more distinct products and, therefore, provides
better chances for creating product niches.

To introduce the measures of isolation, we define the following
variables: C represents a set of clusters, where Cj ∈ C is a cluster
and Cjc is its centroid (i.e., the public SLA template).Ri is a clustering
item and D(Ri, Rk) is the distance between two clustering items.
|C | represents the total number of clusters and |Ci| represents a
number of items in a cluster Ci.

1
|C |(|C | − 1)


Ci∈C


Ck∈C

D(Cic, Ckc). (8)

Using this definition and the distance measure of Section 4.1.2,
the following isolation rates are obtained for the clusters (Fig. 8).
We have simulated SLA mappings specified by a varying number
of users, ranging from 100 to 10,000 users. The adaptation method
used for the evaluation is the maximummethod.

A high isolation can be achieved by creating a small number
of very distinct clusters. However, by doing so, the utility is
reduced (Fig. 7). The clusters contain a larger number of items
with a broader variety of preferences. Therefore, it is necessary to
find a balance between creating more general clusters with high
isolation (i.e., distinct market products) and well-formed clusters
with respect to their utility.

As it can be seen in Fig. 8, the k-means algorithm with the
Hartigan’s index and the DBSCAN algorithm achieve a high rate of
isolation. This result is not surprising, since both algorithms create
a small number of clusters and, as presented in Fig. 7, achieve a
lower overall net utility than the k-means algorithm with rule-
of-thumb. Finally, the k-means with the rule-of-thumb creates
clusters with low isolation, due to creating a large number of
clusters.

To conclude, considering the overall net utility and the isolation,
the best results are achieved by the k-means clustering algorithm
with the rule-of-thumb method for determining the number
of clusters. As depicted in Fig. 7, this algorithm achieves the
highest net utility for all adaptation methods. This means that
the newly created standardized products are created with the
highest similarity to the user requirements. However, this comes
with the cost of creating a large number of public SLA templates,
which results in lower market liquidity. When compared with
the k-means clustering algorithm with the Hartigan’s index, it is
more cost efficient, since it’s computing complexity is significantly
lower. In particular, unlikeHartigan’s index,which requires several



Author's personal copy

1010 I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011

Fig. 9. Comparison of the overall net utility of the k-means Rule-of-Thumb
clustering algorithm with and without automatic modification of users’ SLA
mappings.

Fig. 10. Comparison of the overall cost of the k-means Rule-of-Thumb clustering
algorithm with and without automatic modification of users’ SLA mappings.

iterations of the k-means algorithm before finding the optimal
number k, the rule-of-thumb method determines the number
of clusters a priori. When compared to DBSCAN, it achieves
significantly higher rate of the overall net utility. Having said that,
we conclude that the k-means algorithm with the rule-of-thumb
is the most appropriate method for creating standardized virtual
products.

5.3.2. Automatic management of SLA mappings
By not considering the cost of creating and adapting SLA

mappings for the users, the cost of the basic SLAmapping approach
is strongly reduced. In this section, in particular, we assess the
benefits of the automation and compare it with the results
presented in the previous section.

Fig. 9 illustrates the overall net utility achieved by each of the
adaptation methods with and without applying the algorithm for
the automatic management of SLA mappings. For this purpose,
we utilize only the k-means clustering algorithm with the rule-
of-thumb, due to the best performance when compared to other
clustering algorithms (Section 5.3.1). As also depicted, by applying
the automation algorithm, the overall net utility is significantly
higher than the overall net utility for the case when users must
manually create new SLA mappings. Note, the overall utility does
not differ for the two approaches, as the newly created public SLA
templates are equal. The difference in the overall net utility comes
from the reduction of the cost for creating SLA mappings.

The difference between the cost is depicted in Fig. 10. Since
the users are not required to create any new SLA mappings when
applying the algorithm for automatic SLA mapping management,
the overall cost for users is reduced to 0.

It is important to note that the cost for creating SLA mappings
has not vanished but carried by the marketplace instead of the
users. However, through this approach, the human interaction
is significantly reduced and, therefore, the cost for creating
SLA mappings becomes negligible. Moreover, the computing
complexity of the algorithm for automated management of SLA
mappings is very low.

Concluding, the simulation results show the clustering ap-
proach for defining several public SLA templates is superior to

a single adaptive public SLA template. In combination with the
adaptationmethods, it could be shown that themaximummethod
together with k-means algorithm with rule-of-thumb is the best
combination. The overall net utility is the highest compared to
other combinations. The cost can be reduced even further through
the use of automated management of SLA mappings.

6. Conclusion

A large body of research into the Cloud paradigm yielded
the technological development of Cloud infrastructures, such as
development of the appropriate resource management models
[33,34,8], solutions for the energy efficient management of
Clouds [35], as well as security and privacy solutions [36]. Yet,
very little research exists on the development of appropriate mar-
ketplaces in a similar way to commodities like energy, water, and
gold [7]. In this paper, we have demonstrated means to make the
computing resource market adaptable to changes in market de-
mand and supply. Such a flexible commoditymarket is necessary in
the high-tech industry environment, as the technological develop-
ment of computing resources has a significant impact on the goods
being available in the market.

In particular, in this paper, we have presented our idea of
standardizing virtual services in electronic markets. We applied
clustering algorithms to group similar user requirements for
services and to create a limited number of adaptive standardized
products with the goal of increasing the market liquidity.

In order to avoid cost for adapting existing SLA matchings with
the SLA mapping approach, we have presented a cost-efficient
method for automatically modifying users’ SLA mappings needed
for trading. Using the automated management of SLA mappings,
public SLA templates can be deleted and replaced by the newly
created public SLA templates without any problems. It reduces
cost for maintenance and storage of public SLA templates. This is
not possible with the manual approach, as it is necessity to create
newSLAmappings before utilizing newly created public templates.
This, in turn, is hard to achieve, as users prefer to keep their old
public SLA templates to avoid additional cost of creating new SLA
mappings.

Our evaluation based on a simulation framework showed that
our clustering approach with different adaptation methods in-
creases the overall net utility of traders. The k-means clustering
algorithm with the rule-of-thumb has been identified as the best
choice.

In our future work, we will explore methods for measuring
market liquidity andwill adapt the number of public SLA templates
such that it increases the liquidity of the market to its maximum
point.

Acknowledgments

The authors would like to thank Michael Maurer and Vincent
C. Emeakaroha for their contribution. The work described in this
paper has been funded by the Vienna Science and Technology Fund
(WWTF) through project ICT08-018 and by the National Research
Foundation of the Ministry of Education, Science and Technology
of Korea under the grant K21001001625-10B1300-03310.

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the clouds: a Berkeley
viewof cloud computing, Tech. rep., EECSDepartment, University of California,
Berkeley, February 2009.

[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (2009) 599–616.



Author's personal copy

I. Breskovic et al. / Future Generation Computer Systems 29 (2013) 1000–1011 1011

[3] R. Buyya, D. Abramson, J. Giddy, A case for economy grid architecture
for service oriented grid computing, Parallel and Distributed Processing
Symposium 2.

[4] J. Nimis, A. Anandasivam, N. Borissov, G. Smith, D. Neumann, N. Wirstrm, E.
Rosenberg, M. Villa, SORMA: business cases for an open grid market: concept
and implementation, in: Grid Economics and Business Models, in: Lecture
Notes in Computer Science, vol. 5206, Springer, Berlin, Heidelberg, 2008,
pp. 173–184.

[5] D. Neumann, J. Stösser, C. Weinhardt, Bridging the adoption gap-developing a
roadmap for trading in grids, Electronic Markets 18 (2008) 65–74.

[6] B. Schnizler, D. Neumann, D. Veit, C. Weinhardt, Trading grid services —
a multi-attribute combinatorial approach, European Journal of Operational
Research 187 (3) (2008) 943–961.

[7] J. Altmann, C. Courcoubetis, M. Risch, A marketplace and its market
mechanism for trading commoditized computing resources, Annals of
Telecommunications 65 (2010) 653–667.

[8] M. Risch, J. Altmann, L. Guo, A. Fleming, C. Courcoubetis, The gridecon
platform: a business scenario testbed for commercial cloud services,
in: Proceedings of the 6th International Workshop on Grid Economics and
Business Models, GECON ’09, Springer-Verlag, 2009, pp. 46–59.

[9] M. Risch, I. Brandic, J. Altmann, Using SLA mapping to increase market liq-
uidity, in: Service-Oriented Computing. ICSOC/ServiceWave 2009Workshops,
in: Lecture Notes in Computer Science, vol. 6275, Springer, 2010, pp. 238–247.

[10] M. Risch, J. Altmann, Enabling open cloud markets through WS-agreement
extensions, in: P. Wieder, R. Yahyapour, W. Ziegler (Eds.), Grids and Service-
Oriented Architectures for Service Level Agreements, Springer, US, 2010,
pp. 105–117.

[11] A.B. Mohammed, J. Altmann, J. Hwang, Cloud computing value chains:
Understanding businesses and value creation in the cloud, in: D. Neumann,
M. Baker, J. Altmann, O. Rana (Eds.), Economic Models and Algorithms
for Distributed Systems, Autonomic Systems, Birkhäuser, Basel, 2010,
pp. 187–208.

[12] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36
(2003) 41–50.

[13] I. Brandic, D. Music, S. Dustdar, Service mediation and negotiation bootstrap-
ping as first achievements towards self-adaptable grid and cloud services, in:
Grids meet Autonomic Computing Workshop 2009. In conjunction with the
6th International Conference on Autonomic Computing and Communications,
ACM, Barcelona, Spain, 2009, pp. 1–8.

[14] Y. Cheng, A. Leon-Garcia, I. Foster, Toward an autonomic service management
framework: a holistic vision of SOA, AON, and autonomic computing,
Communications Magazine, IEEE 46 (5) (2008) 138–146. http://dx.doi.org/10.
1109/MCOM.2008.4511662.

[15] W.H. Oyenan, S.A. Deloach, Towards a systematic approach for designing
autonomic systems, Web Intelligence and Agent Systems 8 (2010) 79–97.

[16] C. Lee, J. Suzuki, An autonomic adaptation mechanism for decentralized grid
applications, in: Consumer Communications and Networking Conference,
2006. CCNC 2006. 3rd IEEE, vol. 1, 2006, pp. 583–589. http://dx.doi.org/10.
1109/CCNC.2006.1593091.

[17] G. Cheliotis, C. Kenyon, Autonomic economics, in: E-Commerce, 2003. CEC
2003. IEEE International Conference on, 2003, pp. 120–127. http://dx.doi.org/
10.1109/COEC.2003.1210241.

[18] D. Pardoe, P. Stone, M. Saar-Tsechansky, K. Tomak, Adaptive mechanism
design: a metalearning approach, in: Proceedings of the 8th International
Conference on Electronic Commerce, ICEC ’06, ACM, 2006, pp. 92–102.

[19] W. Streitberger, T. Eymann, A simulation of an economic, self-organising
resource allocation approach for application layer networks, Computer
Networks 53 (2009) 1760–1770.

[20] N. Oldham, K. Verma, Semantic WS-agreement partner selection, in: 15th
International Conference on World Wide Web. WWW ’06, ACM Press, 2006,
pp. 697–706.

[21] G. Dobson, A. Sanchez-Macian, Towards unified QoS/SLA ontologies, in: Ser-
vices Computing Workshops, 2006. SCW ’06, IEEE, 2006, pp. 169–174.

[22] L. Green, Service level agreements: an ontological approach, in: 8th
International Conference on Electronic Commerce, ICEC ’06, ACM, 2006,
pp. 185–194.

[23] P. Karänke, S. Kirn, Service level agreements: an evaluation from a
business application perspective, in: eChallenges e-2007, IEEE-CS Press, 2007,
pp. 104–111.

[24] D. Ardagna, G. Giunta, N. Ingraffia, R. Mir, B. Pernici, Qos-driven web services
selection in autonomic grid environments, in: In OTM Conferences, 2, 2006,
pp. 1273–1289.

[25] B. Koller, L. Schubert, Towards autonomous SLA management using a proxy-
like approach, Multiagent Grid Syst. 3 (2007) 313–325.

[26] V. Yarmolenko, R. Sakellariou, Towards increased expressiveness in service
level agreements: Research articles, Concurrency and Computation: Practice
and Experience 19 (2007) 1975–1990. http://dx.doi.org/10.1002/cpe.v19:14.

[27] M. Maurer, V.C. Emeakaroha, I. Brandic, J. Altmann, Cost-benefit analysis of
an SLA mapping approach for defining standardized cloud computing goods,
Future Generation Computing Systems 28 (1) (2012) 39–47.

[28] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise, AAAI Press, 1996,
pp. 226–231.

[29] J.B. MacQueen, Some methods for classification and analysis of multivariate
observations, in: 5th Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, University of California Press, 1967, pp. 281–297.

[30] K.V. Mardia, J.T. Kent, Multivariate Analysis, Academic Press, 1980.
[31] J.A. Hartigan, Clustering Algorithms, John Wiley & Sons Inc, 1975.
[32] G. Rote, Computing the minimum Hausdorff distance between two point sets

on a line under translation, Information Processing Letters 38 (1991) 123–127.
[33] R. Buyya, A. Sulistio, Service and utility oriented computing systems:

Challenges and opportunities for modeling and simulation communities, in:
Annual Simulation Symposium, 2008, pp. 68 –81. http://dx.doi.org/10.1109/
ANSS-41.2008.35.

[34] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, Cloudsim:
a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms, Software — Practice and
Experience http://dx.doi.org/10.1002/spe.995.

[35] O. A, L. Lefevre,When clouds become green: the green open cloud architecture,
in: ParCo 2009, International Conference on Parallel Computing, 2009,
pp. 228–237.

[36] I. Brandic, T. Anstett, D. Schumm, F. Leymann, S. Dustdar, R. Konrad, Compliant
cloud computing (c3): Architecture and language support for user-driven
compliance management in clouds, in: IEEE Cloud, 2010.

Ivan Breskovic is a Ph.D. student and research assistant
at the Distributed Systems Group, Institute of Informa-
tion Systems, Vienna University of Technology. He did his
bachelor study in Software Engineering at theUniversity of
Zagreb, Faculty of Electrical Engineering and Computing in
Zagreb, Croatia and master’s study in Software Engineer-
ing and Information Systems at the same faculty. He is cur-
rently involved in the Austrian national FoSII (Foundations
of Self-governing ICT Infrastructures) project funded by
the Vienna Science and Technology Fund (WWTF). His ar-
eas of interest include cloud computing, cloud economics,

autonomic computing, service level agreements and quality of service manage-
ment.

Jörn Altmann is Associate Professor for Technology
Management, Economics, and Policy at the College of
Engineering of Seoul National University. Prior to this, he
taught computer networks at the University of California
at Berkeley, worked as a Senior Scientist at Hewlett-
Packard Labs, and has been a postdoc at EECS and
ICSI of UC Berkeley. During that time he worked on
international research projects about pricing of network
services. Dr. Altmann received his B.Sc. degree, his M.Sc.
degree (1993), and his Ph.D. (1996) from the University
of Erlangen-Nürnberg, Germany. Dr. Altmann’s current

research centers on the economics of Internet services and Internet infrastructures,
integrating economic models into distributed systems. On these topics of research,
he has major publications in conferences and journals, serves on editorial bodies of
journals, is involved in many conference program committees on cloud computing,
and has been an invited speaker to several workshops. He also served on several
European, US American (National Science Foundation), and different national
panels for evaluating research proposals onnext generation networks and emerging
technologies.

Ivona Brandic is Assistant Professor at the Distributed
Systems Group, Information Systems Institute, Vienna
University of Technology. Prior to that, she was Assis-
tant Professor at the Department of Scientific Comput-
ing, Vienna University. She received her Ph.D. degree
from Vienna University of Technology in 2007. From 2003
to 2007 she participated in the special research project
AURORA (Advanced Models, Applications and Software
Systems for High Performance Computing) and the Eu-
ropean Union’s GEMSS (Grid-Enabled Medical Simulation
Services) project. She is involved in the European Union’s

SCube project and she is leading the Austrian national FoSII (Foundations of
Self-governing ICT Infrastructures) project funded by the Vienna Science and Tech-
nology Fund (WWTF). She is a Management Committee member of the European
Commission’s COST Action on Energy Efficient Large Scale Distributed Systems.
From June–August 2008 shewas visiting researcher at the University of Melbourne.
Her interests comprise SLA and QoS management, Service-oriented architectures,
autonomic computing, workflowmanagement, and large scale distributed systems
(Cloud, Grid, Cluster, etc.).




