188/4 E-Commerce Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrasse 9-11/188, A-1040 Vienna, Austria

The Effect of Predicting Expertise in Open Learner Modeling

M. Hochmeister, J. Daxböck, J. Kay
Springer-Verlag Berlin Heidelberg
21st Century Learning for 21st Century Skills - 7th European Conference of Technology Enhanced Learning, EC-TEL 2012
389 - 394
Speech with proceedings
Hidden Keywords: 
Department Focus: 
Business Informatics
TU Focus: 
Information and Communication Technology
ISSN: 0302-9743
Learner´s self-awareness of the breadth and depth of their expertise is crucial for self-regulated learning. Further, of learners report self-knowledge assessments to teaching systems, this can be used to adapt teaching to them. These reasons make it valuable to enable learners to quickly and easily create such models and to improve them. Following the trend to open these models to learners, we present an interface for in- teractive open learner modeling using expertise predictions so that these assist learners in reflecting on their self-knowledge while building their models. We report study results showing that predictions (1) increase the size of learner models significantly, (2) lead to a larger spread in self-assessments and (3) influence learners´ motivation positively.
Abstract German: