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Sensors: Rich User Activity Data
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Sensors: Rich User Activity Data

o Sequential nature of user activities

e Activities have associated
Features/context, e.g. location, time,
weather, etc.
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Rich User Activity Data

For Recommender Systems

Facilitates real time recommendations for a given user and context
(e.g. time, location, weather, etc.)

Previous work:

A framework for sequence- and context-based recommendation of
next activity (lifelogging/modes of transport) to perform. [Kumar
etal., 2014, 2016]

Current Research Problem:
Recommending the next sequence of activities to users.

Insight Centre for Data Analytics RecTour 2017 Slide 5



Rich User Activity Data

For Recommender Systems

Facilitates real time recommendations for a given user and context
(e.g. time, location, weather, etc.)

Previous work:

A framework for sequence- and context-based recommendation of
next activity (lifelogging/modes of transport) to perform. [Kumar
etal., 2014, 2016]

Current Research Problem:

Recommending the next sequence of activities to users.
e.g. visiting a museum, having Italian food, and going to a theatre.
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Capturing Sequence

e Hierarchical-graph-based model:
- [Lietal., 2008; Zheng et al., 2009; Yoon et al., 2010]
o All-kt"-order Markov models:

- [Bohnenberger and Jameson, 2001; Deshpande and Karypis, 2004; Shani
et al., 2005]

Capturing Context

e Tensor and matrix factorization models:

- [zheng et al., 2010, 2012; Wang et al., 2010; Symeonidis et al., 2011; ?;
Adomavicius et al., 2011; Braunhofer et al., 2013]



Capturing Both Sequence & Context

e To improve recommendations
- [Adomavicius and Tuzhilin, 2005; Zheng et al., 2012]

e Content-based Activity Recommendation Framework
- [Kumar et al., 2014, 2016]

e Stochastic Modelling
= [Sunetal., 2016]

Recommending Sequences
e Music playlists
- [Baccigalupo and Plaza, 2006; Chen et al., 2012]

e POl/Itinerary
- [Taietal., 2008; Yoon et al., 2012]



Our Contribution

e A generic activity recommendation framework to recommend
the next sequence of activities to users based on past activity
patterns and context (extending [Kumar et al., 2014, 2016]).

e Application of the proposed approach in the tourism domain.
Experiments using a location checkin dataset.
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Framework Overview

User Data Data Modelling Timelines

Similarity Assesment Timeline Matching
<l

Append top ranked activity
to timeline/RS

>

|Recommended Sequence (RS)|




Data Model

Activity Object

A single occurrence of an activity and consists of a set of features
describing the activity or the context.

Activity Timeline

A chronological sequence of n activity objects performed by the
user during a time interval 4:

T =< aoy, aoy, ..., ao, >




Recommendation Algorithm

00 hrs 00 hrs 00 hrs
I

User Timeline

Time — >
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Recommendation Algorithm

00 hrs 00 hrs 00 Jrs CHITENE Troer Activity Seq
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Recommendation Algorithm

rs j’ur.re.nt Target Activity Seq
ctivity <ao, . ao, . ao>

N

Current Timeline
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Recommendation Algorithm

00 hrs Chyiitzid Target Activity Seq

Activi
Y <ao, , ao, , ao,>

[ ] (\Wm&&

Current Timeline

Candidate Timeline #1

T T,

Candidate Timeline #2

Candidate Timeline #j
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Recommendation Algorithm

Cur.re.nt Target Activity Seq
Activity (aoc) <ao, , ao, , ao, >
4 3 2 I

Current Timeline

4 3 21

Candidate Timeline #1
4 3 2 ]

T T

Candidate Timeline #2
43 i N-count matching (N = 4)
[Kumar et al., 2016]
Matching unit

Determines the length of the subsequences to be compared.
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Similarity Assessment

Current Target Activity Seq
Activity (a00) < aqo, , ao,, , ao,>

4 3 2 ]

Current Timeline

Candidate Timeline #1
4 3 2 1

Candidate Timeline #2

:

:

4 3 21

i

Two-level Edit Distance
Candidate Timeline #j

[Kumar et al., 2014]
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4 3 21

Candidate Timeline #1
4 3 2 1

Candidate Timeline #2
4 3 2

Candidate Timeline #j
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4 3 2 1

Candidate Timeline #1
4 3 2 1

Candidate Timeline #2
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Candidate Timeline #j
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Current Target Activity Seq
Activity (aoc) <ao, , ao;>

—

Current Timeline

recy
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Current Target Activity Seq
Activity (aoc) < ao;>

4 3 2 I
I

A0
Current Timeline

y

Recommendation Algorithm
( SeqNCSegRec)
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ao ao ao

Recommegzlled ’Szlézque,;(ge
Recommendation Algorithm
( SeqNCSeqRec)

Insight Centre for Data Analytics RecTour 2017 Slide 14



e Gowalla checkins dataset [Liu et al., 2013]
e Every checkin is bound to a specific location and timestamp.

e Features: latitude, longitude, number of users checking in to it,
number of photos taken at the location, etc.

e Locations have categories assigned to them, such as, ‘Italian
Food’, ‘Museum’, ‘City Park’, etc.

Level 1 Level 2 Level 3
(7) (134) (151)

Entertainment__Italian

Food \Asian . .
\South American/Latin
Travel \Fish & Chips
Shoppin Mexican
PP 9 Coffee Shop/Starb,UCks
Community ™ Dunkin Donuts
Nightlife O o

Outdoors



e Sampled dataset: 9.2k users, 6 million checkins in total.
e median # checkins per user per day: 10-270

e median # of distinct categories per user perday:2-76
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Methodology

00 hrs 00 hrs 00 hrs Cutrent Target Activity Seq

: | Activity <ao, , ao, , ao,>

\User Timeline [ (aoc)

I | B | BN O [ [ ]

Wi !

| Time ——> i Recommendation time
(RT)

e Leave-one-out evaluation: Each user’s complete timeline is
split into training and test timelines by time.

e Agreement @ k (k = 1,2,3): % of RTs for a user where the
first k categories in the recommended sequence and the actual
sequence are an exact match.

e Recommendation algorithms:

e N-count recommendation algorithm (SegNCSegRec)

e Bi-gram-based sequence recommender (BiGramSeqRec)
e Popularity-based sequence recommender (PopSegRec)
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Recommendation Performance (Level 2)

W SeqNCSeqRec
BiGramSeqRec
HPopSeqRec

Mean agreement@k
o - N WA U1 O N o O

Sequence length (k)

Figure: Mean percentage agreements for recommended sequences for
SeqNCSeqRec (top 10% neighbours) and baseline algorithms using
timelines constructed from categories at level 2 in the hierarchy.
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Recommendation Performance

e Some level 2 activities are semantically closer than others.
e ‘true’ performance between those at level 2 and level 1.

Level 1 Level 2 Level 3
(7) (134) (151)

Entertainment__Italian
Asian

Food wSouth American/Latin|
Travel Fish & Chips
Shopping __Starbucks

. Coffee Sho
Community . PN Dunkin Donuts
Nightlife S .
Outdoors :
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Recommendation Performance

e Some level 2 activities are semantically closer than others.
e ‘true’ performance between those at level 2 and level 1.

Level 1 Level 2 Level 3
(7) (134) (151)

EntertainmentYArt Museum

S\

Theatre
Travel
Shopping Live Music
Community Ice Skating
Nightlife
Outdoors
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Recommendation Performance (Level 1)

32
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é 24 BiGramSeqRec
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£
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. ] —

1 2 3

Sequence length (k)
Figure: Mean percentage agreements for recommended sequences for
SeqNCSeqRec (top 10% neighbours) and baseline algorithms using

timelines constructed from categories at level 1 in the hierarchy.
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Conclusion

e A generic activity recommendation framework to recommend
the next sequence of activities to users based on past activity
patterns and context (extending [Kumar et al., 2014, 2016]).

e Experiments demonstrate the efficacy of our approach in
recommending sequences given a diverse variety of activities
and user activity patterns.
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Future Work

e Consider alternative approaches to suggest sequences of
activities (For example, using RNNSs).

e Introduce new evaluation metrics for evaluating sequence
recommendation.

e Investigate the recommendation of context (For example,
where, when, with whom etc.) associated with each of the
suggested sequence of activities.

e Consider socio-economic characteristics, user demographics,
and travel variables.
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Figure: MRR versus matching unit for three user groups for first
sequence index.



Two-level Distance

e Inspired by edit distance
o Adapted for sequence of objects
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Two-level Distance

e Inspired by edit distance
o Adapted for sequence of objects
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Two-level Distance

e Inspired by edit distance
o Adapted for sequence of objects

09:00 10:05  10:35 10:50  11:25 11:32
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Methodology

Learning Optimal Matching Unit range

e Wrapper attribute selection: C4.5 algorithm, greedy
backward search and area under ROC curve as evaluation
measure.

e Classification: pruned attribute vectors for each user fed into
a C4.5 induction algorithm to predict optimal matching unit
range.
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Attribute Extraction: Timeline Decomposition

e Each user represented by an attribute vector.

e For attribute extraction:
timelines are decomposed into features-sequence :

User Timeline
00 hrs 00 hrs 00 hrs
|
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Time —> }
|




Attribute Extraction: Timeline Decomposition

e Each user represented by an attribute vector.

e For attribute extraction:
timelines are decomposed into features-sequence :
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Attribute Extraction: Timeline Decomposition

e Each user represented by an attribute vector.

e For attribute extraction:
timelines are decomposed into features-sequence :

User Timeline

00 /]/‘\ 00 /]/‘\' 00 /1/‘,\' ﬁstart_time
! O dist-travel

v‘ % % \/ ﬁ&ﬁ A start-geo

Time —>
|
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Timeline Attributes

Regularity
Timeline Attributes <
Repetition



Timeline Attributes

Regularity Attributes: Sample Entropy

1. SampEnP: sample entropy of a feature sequence S, for epoch
length p,

2. pSampEn: mean sample entropy over all feature sequences
S,,z=1,2,....,moftimeline 7 for epoch length p,

3. oSampEn’.: standard deviation of sample entropy over all
feature sequences S,, z=1,2, ..., m of timeline 7 for epoch
length p.
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Timeline Attributes

Repetition Attributes: k-gram attributes

Previously used for sequence classification, biological sequence
analysis and text classification [Xing et al.,, 2010; Dong and Pei, 2007].

1. nk: total number of distinct k-grams in feature sequence S,,
normalised by total number of k-grams occurring in S,

2. ufk: mean frequency of occurrence of distinct k-grams in
feature sequence S,, normalised by total number of k-grams
occurringin S,

3. of): standard deviation of frequency of occurrence of distinct
k-grams in feature sequence S,, normalised by length of S,.
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