Predicting your Next Stop-Over from Location-Based Social Network Data with Recurrent Neural Networks

RecTour workshop 2017 RecSys 2017, Como, Italy

Enrico Palumbo, ISMB, Italy, Turin Giuseppe Rizzo, ISMB, Italy, Turin Raphaël Troncy, EURECOM, France, Sophia Antipolis Elena Baralis, Politecnico di Torino, Italy, Turin

Location-Based Social Network Data

- Allow users to *check-in* in a **venue** and share information about their whereabouts
- Venues are categorized according to consistent taxonomies
- User profiles allow to group
 users according to demographic information

o vodafone IT. 🗢 16:37. 🥣 🤉 35% 💼	•••• vodafone IT 🗢 16:39 -	1 🗿 34% 🔲
Politecnico di Torino Cambia località -	🗙 Scegli un luogo	Q
	Politecnico di Torino Corso Duca degli Abruzzi 24 400 m	
ey there!	Cenisia Curtiere	í
	∄ Posti all'interno Politecnico di Torino	
	Aula 7I	i
	Aula 31 Politecnico di Torino (Via Boggio) 25 m	i
Annulla Check in	Mensa EDISU Piemonte - Ristorante Universitario Castelfidardo Politecnico di Torino (Corso Castelfidardo 30/A) 100 m	i
2 3 4 5 6 7 8 9 0	 Ingegneria del Cinema e dei Mezzi di Comunicazione Politecnico di Torino (Via Boggio) 50 m 	i
· , ? ! ' 🗵	y aula 101 15 m	i
space return	Aula 9T	i

Next-POI prediction problem

- Predict where a user will go next depending on past check-ins and profile
- Modeling sequential information: where is a user likely to go after an Art Museum and a Sushi Restaurant?
- Modeling user profile

 information (e.g. Vegetarian
 Restaurant and Steakhouse do not
 go together)

Next-POI category prediction

Frédéric, **French man** in his **40**'s, is going to visit **Tate Modern** in **London** this afternoon

path, ie sequence, of categories of Points of Interest that Frédéric can be interested to go after having seen the Tate Modern gallery

Data Collection and Enrichment

1.5M check-ins from **235.6K Swarmapp users** worldwide in a week via Twitter API Collect **venue category**, user **gender** and **language** with Foursquare API

Data cleansing and path extraction

- At least 10 check-ins: prefiltering, select active users who are likely to generate paths
- **Bot removal:** if more than twice two check-ins in a minute, it is a bot (p~1 on a sample of 50 examples)
- **Segmentation:** split a stream of checkins for a user $(c_1, \tau_1), ..., (c_n, \tau_n)$ when the temporal interval is more than 8 hours: $\tau_{i+1} - \tau_i > 8$. 'Isolated' check-ins, $\tau_{i+1} - \tau_i > 8$, $\tau_i - \tau_{i-1} > 8$, are removed from the data.
- Example: (Art_Museum, 8), (Café, 10), (French_Restaurant, 12), (Rock_Club, 22), (Cocktail_Bar, 23)
 τ_{i+1} - τ_i = 10h

Stats

	Users	Check-ins
Collection	235.6 K	1.5 M
At least 10 check-ins	19.5 K	400 K
Without Bots	12.4 K	184 K
Segmentation	12 K	123 K

29.5K paths, with a max length of 50 and an avg length of 4.2

Path: Cafeteria, Vegetarian Restaurant, Café, Shopping Mall, Smoothie Shop, Spa, Wine Bar, Opera House, EOP

Recurrent Neural Networks

- Model sequences
- Output layer: o_t = f_o(x_t, h_t)
- Hidden layer: $\mathbf{h}_{t} = \mathbf{f}_{h}(\mathbf{x}_{t}, \mathbf{h}_{t-1})$
- No Markov assumption of fixed memory window
- Very popular in NLP, language modeling, speech processing, semantic image analysis

RNN application: next character prediction

- Train the network to predict the next character in a sentence
- Feed one character at the time into the network
- 'hello': 'h'-> 'e', 'e' -> 'l', 'l'
 -> 'o'
- Use the trained model to generate new text

PASTIME

Next POI category prediction

Input Target Café, Art Museum, Monument, Italian Restaurant, Irish Pub, Night Club, EOP

Chinese Restaurant, Pub, Wine Bar, Karaoke Bar, Rock Club, EOP

Beach, Gym, Cocktail Bar, EOP

Cafeteria, Vegetarian Restaurant, Café, Shopping Mall, Smoothie Shop, Spa, Wine Bar, Opera House, EOP

Architecture

One-hot encoding

- **Encoding:** a strategy to turn categories **c** into vectors **x**
- One-hot encoding:
 - assign to each category c
 a unique index α = α (c).
 - \circ x_i(c) = 1 if i == **a** else 0
 - $|x_i(c)| = |C|$ where $c \in C$
- Simple and intuitive

Shortcomings

- Independence: all
 categories are considered
 as orthogonal and
 equidistant
- Size: the size of the input vector depends on the size of the 'vocabulary', i.e. the set of categories

Art Museum

Café

History Museum

node2vec

- Feature learning from networks
- Adaptation of word2vec on graph structures using random walks
- Maps nodes in a graph into an euclidean space preserving the graph structure

node2vec workflow

Graph

Text file with 'sentences'

node2vec on Foursquare taxonomy

- Foursquare taxonomy is a graph that models dependencies among venue categories
- Using node2vec we obtain category vectors that models dependencies

http://projector.tensorflow.org/?config=https://gist.githubusercontent. com/enricopal/9a2683de61f5fb16c4f59ae295e3fef7/raw/159df72f47e88 1d0f314096fcc8ea561fb7132b9/projector_config.json

GRU units

- Hidden layer with Gated
 Recurrent Units (GRU)
- $h_{t+1} = GRU(x_t, h_t)$
- Able to effectively model
 long-term dependencies
- Recently they have proven to be easier to train w.r.t. to Long Short-Term Memory Networks (LSTM)

img source:

http://www.wildml.com/2015/10/recurrent-neural-network-tutorial -part-4-implementing-a-grulstm-rnn-with-python-and-theano/

Dropout

k = 0.2

- **Regularization** by randomly switching off neurons at training time
- Prevent neurons from co-adapting and overfitting
- Can be seen as an ensemble of slightly different networks

Softmax

- Output layer has length equal to |C|
- Turn activation values
 into a **probability distribution** over the
 categories

$$softmax(o_t^{\alpha}) = \frac{e^{o_t^{\alpha}}}{\sum_{k=1}^{|C|} e^{o_t^k}}$$

Loss function

- Cross entropy between the model probability distribution and the observed distribution
- One-hot encoding for target vectors
- Target -> α
- $L = -\log(softmax(o^{\alpha}))$

Evaluation

- Train, validation and test set split
- Accuracy weights error in the same way (e.g. predicting 'Art Museum' when the true category is 'History Museum' counts the same as predicting 'Karaoke Bar')
- Perplexity (ppl): borrowed from neural language modeling, measures how much the model is 'surprised' in observing the test set, the lower the better: ppl = 2^L = 2^{H(p,q)} where p is the model distribution and q is the category distribution in the test set
- A random uniform model has ppl = |C|
- ppl can be interpreted as the number of categories among which a random uniform model would have to choose

Hyper parameters optimization

rank	n_hidden	l_r	epochs	n_layers	ppl
1	64	10 ⁻⁴	5	3	71.333
2	64	10 ⁻⁴	5	2	71.609
3	64	10 ⁻⁴	2	3	71.630
4	128	10 ⁻⁴	2	2	71.645
5	128	10 ⁻⁴	5	2	72.048
range	[64, 128]	[10 ⁻⁴ , 5*10 ⁻⁴ , 10 ⁻³]	[1, 2, 5]	[2, 3]	-

Grid-search of hyper-parameters and perplexity on the validation set, top 5 configurations

Results

RNN with node2vec encoding, one-hot encoding vs bigram and random model.

User clustering results

- Paths depend on user preferences
- Not enough data to learn a personalized model
- **Groups of users** according to user profile (no cold start)
- **Gender, language** extracted from Twitter and Foursquare

Gender	Language	Paths	ppl
М	All	18718	75.478
F	All	8741	73.024
All	En	8955	71.343
All	Ar	439	100.772
F	En	2636	74.999
М	En	5771	69.481
F	Th	234	83.601
М	Th	524	94.132
All	All	29465	75.271

Correlation with training set size

- Perplexity vs
 number of paths
 in the user cluster
 training set
- Spearmann correlation = -0.48
- p value = 0.02

Conclusions

- Novel approach to next POI prediction passing through POI categories
- **Recurrent Neural Network** to model sequences of POI categories for next POI prediction
- Category encoding with node2vec vs one-hot encoding
- **Perplexity** as an evaluation metric
- User clustering based on demographics
- Will be integrated with entity2rec and user context to provide next POI instance from the POI category

Thank you!

- Enrico Palumbo, Data Scientist, ISMB, PhD Student, Eurecom PoliTo
- Mail: <u>palumbo@ismb.it</u>, <u>enrico.palumbo@eurecom.fr</u>
- Personal page: <u>www.enricopal.github.io</u>
- Slides: <u>http://www.slideshare.net/EnricoPalumbo2</u>
- Github: <u>www.github.com/enricopal</u>, <u>www.github.com/MultimediaSemantics</u>
- Twitter: https://twitter.com/enricopalumbo91

Istituto Superiore Mario Boella

Turin, Italy, <u>www.ismb.it</u>

Sophia Antipolis, France, www.eurecom.fr

Turin, Italy, <u>www.polito.it</u>

Outline

- Next-POI prediction problem
- Location-Based Social Network (LBSN) Data
- Recurrent Neural Networks
- Model
- User groups
- Data collection
- Category encoding
- Evaluation
- Results

Architecture

GRU equations

$$r_{t} = sigmoid(W_{r}h_{t-1} + W_{r}x_{t} + b_{r})$$
$$h'_{t} = tanh(W_{i}(r_{t} \otimes h_{t-1}) + W_{i}x_{t} + b_{i})$$
$$z_{t} = sigmoid(W_{z}h_{t-1} + W_{z}x_{t} + b_{z})$$
$$h_{t} = z_{t} \otimes h' + (1 - z_{t}) \otimes h_{t-1}$$

Optimizer

 Adam Optimizer: adaptive per neuron learning rate (neurons that are frequently active have small learning rate, neurons that are not frequently active have large learning rate) + momentum (add part of previous weight change to current weight change)

Objective

- Understanding temporal correlations among venue categories in check-ins
- Next POI category prediction
- More general and more easily portable results
- **Path =** sequences of venue categories
- Category can then be turned into a specific venue by querying a database with a variety of parameters (e.g. user location, time, user preferences, weather...)