Building Useful Recommender Systems for Tourists

Francesco Ricci

Information and Database Systems Engineering Free University of Bozen-Bolzano fricci@unibz.it

Content

Recommender systems – the classical view

- What makes **good** a recommendation
- How a RS can identify "good recommendations"?
- Modelling:
 - Groups of users with similar behaviours may reveal the hidden utility of choices
 - Expected utility is a function of item's features and context
- Inaccurate recommendations for single users that deviates from the predicted choice may be good recommendations.

What we like may not be what we choose

Classical Recommendation Model

Three types of entities: Users, Items and Contexts

- 1. A background knowledge:
 - A set of ratings preferences
 - *r*: Users x Items x Contexts \rightarrow {1, 2, 3, 4, 5}
 - A set of "features" of the Users, Items and Contexts
- 2. A method for **predicting** the function *r* where it is unknown:
 - r*(u, i, c) = Average ratings r(u', i, c'): users u' are similar to u and context c' is similar to c
- **3**. A method for **<u>selecting</u>** the items to recommend (choice):
 - In context c recommend to u the item i* with the largest predicted rating r*(u,i,c)

This process should identify items that the user will happily choose

Predicting Choices

- More recent models based on user action observations predict choices (e.g. sequences of movie views)
- Ironically, they claim to be able to predict user preferences
- None is able to decouple preferences from choices.
- Some models can combine actions and preferences [Lavee et al., 2019]

G. Lavee, N. Koenigstein, O. Barkan. When actions speake louder than clicks: a combined model of purchase probability and long-term customer satisfaction, RecSys 2019.

Context Aware RS Algorithms

- Reduction-based Approach, 2005
- Exact and Generalized Pre Filtering, 2009
- Item Splitting, 2009
- Tensor Factorization, 2010
- User Splitting, 2011
- Context-aware Matrix Factorization, 2011
- Factorization Machines, 2011
- Differential Context Relaxation, 2012
- Differential Context Weighting, 2013
- **u** UI splitting, 2014
- Similarity-Based Context Modelling, 2015
- Convolutional Matrix factorization, 2016
- Contextual bandit, 2018

Knowing your goals

- "what do I want?" addressed largely through internal dialogue
 - Depends on how a choice will make us feel
 - Not an easy task
- Future: what you expect an experience will make you feel is called expected utility
- **Present:** The way an item (movie, travel, etc.) makes you feel in the moment is called **experienced utility**
- Past: Once you had an experience (e.g. a movie), future choice will be based on what you remember about that: remembered utility.

Recommender Systems Limitations

- They analyse past experiences to predict the goodness of future experiences
- They can hardly predict our best choice because they do not know what options we are considering and how we feel now
- They build models collapsing all the recorded user's experiences (ratings) in a single time point
- Sequential recommenders assumes that people repeat the same sequence of choices.

Good Travel Recommendations

- When is cost effective
- When is liked by people that likes what we like
- When is good for the full family
- When we did not yet think about that
- When is not what we did last year
- When it has the features that we usually like
- When it has some impressive features
- When it is much better than other options
- □ When it is similar to what we did previous years
- When they are quite diverse
- □ When the weather will be great.

Do you still believe that by simply mining a data set of users' ratings or choices we can generate good travel recommendations?

We need to **structure** the **knowledge** that can be derived from the data!

We need to better understand the **current** user's **goal**!

Recommendation Lists

Piazzale Michelangelo

Duomo

ч

List

Museo di San Marco

Piazza S. Croce

 \sim

List

Santa Maria Novella

Recommendation Lists

Gallerie degli Uffizi

Piazzale Michelangelo

Duomo

Museo di San Marco

Piazza S. Croce

Santa Maria Novella

Points of Interest

A number of features and contextual factors influence the pre-visit evaluation of a POI – intention to visit

Traveller's knowledge of the place

- What she has already visited and when
- Pictorial representation
- Distinguished features
- Travel party
- Previous knowledge/usage of the app/recsys

 Popularity, fashionableness, trendiness, fame, prominence, prestige, reputation, visibility, rank.

Expected vs. Experienced Utility

Should the system optimize expected or experienced utility?
Should the system use behavioural data or ratings/judgements data?

- + Match the **user values** at decision time
- Match the **bias** of user's judgement
- Based on an **unbiased sample** of observations

Expected

Based on observations without meaning.

- Explicit user assessment
- Incomplete data
- + Depends on the consequence of choice (**context** is used)
 - Depends on the consequence of choices (outcome wrong but choice is right)

Good Travel Recommendations

- Criteria for establishing quality recommendations are highly subjective and contextual
- In practice is often impossible to predict what is a good recommendation for you now
- Is it better to understand and match the user heuristics or use solid data mining prediction methods?

Grouping People

- We have recently addressed some of these problems with techniques that make use of groups
- Group and model travellers with observable similar behaviour and optimize the recommendations for them – not purely individual recommendations.

D. Massimo, F. Ricci:Harnessing a generalised user behaviour model for next-POI recommendation. RecSys 2018: 402-406

Behaviour and Recommendation

Behaviour learning and recommendation should be decoupled

- The learned behavioural model, e.g., what points of interest a user is likely to visit may produce uninteresting recommendations
- Recommendation should also come from expert knowledge and the optimization of criteria the determine the behaviours (expected utility).

Behavioral Model Learning

- Learning user behaviour, but suggest to deviate from the usual behaviour
 - The user is predicted to take a coffee at 8:00 at Walter Bar
 - The system suggests to get coffee at Rosy Bar it is cheaper and better

We must understand that the user likes good Italian and cheap coffe – not that he likes to go to Walter Bar at 8:00!

Grouping Travellers

Clustering Users' Visit Trajectories

One visit to Florence:

- Pitti Palace; Boboli Garden; Uffizi Museum
- Extract important keywords and combine them into a document visit
- Cluster visit documents
- Each cluster models a group of similar behaviours

5 Clusters in Florence

#Term	Cluster A	Cluster B	Cluster C	Cluster D	Cluster E
1	morning	hot	cloudy	warm	freezing
2	cold	afternoon	cold	cloudy	cloudy
3	square	century 16	church	century 14	afternoon
4	palace	palace	square	church	century 14
5	century 15	church	century 13	square	palace
6	century 13	square	palace	building	building
7	church	century 19	rain	palace	century 13
8	night	century 13	museo	ponte	church
9	dante	museo	brunelleschi	century 13	foggini
10	century 10	brunelleschi	tadda	century 19	century 19
#Traj.	368	339	341	297	153

1663 geo-localized temporally ordered trajectories of users' POI-visits, recorded via GPS sensors in the historic centre of Florence (Italy)

Inverse Reinforcement Learning

- Assumption: the reward obtained by visiting a POI is determined by the POI's features and the visit context
- Inverse Reinforcement Learning estimates the hidden reward function (expected utility) that the users in a cluster apparently tried to maximise with the observed behaviour
- The reward is a **function** of the selected features and context
- The users choose visit actions with the largest expected reward (Q function).

Generating Recommendations

Recommend to a user what is learned to be optimal for all the users in his cluster

	Q-BASE	SKNN
Reward@1	0.073	-0.007
Precision@1	0.043	0.109
Novelty@1	0.061	0.0
Reward@5	0.032	-0.010
Precision@5	0.045	0.068
Novelty@5	0.122	0.0

Have we correctly interpreted the user behaviour?

Alternative POI sample

- POIs were identified by action observation not corresponding to renowned ones
- We repeated the test considering the subset of identified POIs present in TripAdvisor attractions more popular

	Q-BASE	SKNN		
Reward@1	0.369	0.097		Now the precision
Precision@1	0.101	0.108		
Novelty@1	0.244	0.030		very sim
Reward@5	0.037	-0.061		
Precision@5	0.056	0.062		
Novelty@5	0.629	0.307		

Why precision is a bad metric

- If we optimize for precision the system will learn to recommend the items that the user found autonomously – not «useful» recommendations
- When the precise recommendations are finished (already recommended) the system is unable to find novel recommendations
- Measured precision is typically very low (10% in our data set) so the user is mostly exposed to imprecise recommendations.

S. M. McNee, J. Riedl, and J. A. Konstan. 2006. Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI '06 Extended Abstracts on Human Factors in Computing Systems (CHI EA '06).

Advantages of the IRL method

- It is based on sequence mining but it can also generalise and suggest items never consumed before
- By grouping users it can fix the errors of models tuned individually on poorly represented users (few or erroneous data)
- Recommendations are not the predicted actions, they are optimal in some sense (which can be further tuned if we know the user values – expected utility).

Lesson Learned

- Distinction between preferences and choices
- Individual preference or behavior learning does not suffice we need choice modeling (expected utility)
- Useful recommendations may be generated by deviating from the precited behavior (imprecise)
- Individual recommendation may be generated by assuming that groups of similar user are driven by a hidden utility function.

Thanks

- In particular to my students and collaborators who contributed to develop these ideas:
 - David Massimo
 - Linas Baltrunas
 - Laura Bledaite
 - Marius Kaminskas
 - Marko Gasparic
 - Marko Tkalcic
 - Matthias Braunhofer
 - Mehdi Elahi
 - Saikishore Kalloori
 - Tural Gurbanov
 - Thuy Ngoc Nguyen

