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NOT WHAT WE NEED



Motivation
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Adapt recommendation to learnt user behavior 

Understanding User preferences in Context

Support tourists in finding points of interest (POIs)
Huge variety of different POIs

Harness human-environment interactions 
enabled sensors  (GPS, IoT)

SUNNY

AFTERNOON

MUSEUM
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G. Shani, D. Heckerman, and R. I. Brafman, “An mdp-based recommender system“ (2005)

SEQUENTIAL RECOMMENDATIONS

OBSERVATION MODEL PATTERNS

Related Works

O. Moling, L. Baltrunas, and F. Ricci,  “Optimal radio channel recommendations with explicit and implicit feedback” (2012)

Pattern-discovery (B. Mobasher et al., D. Jannach)

Reinforcement Learning (G. Shani et al., O. Moling et al.)

ACTIONS
SEQUENCES

DM POLICIES ADAPTED
CONTENT

B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. “Using Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks” (2002)
D. Jannach, I. Kamehkhosh, and L. Lerche. “Leveraging multi-dimensional user models for personalized next-track music recommendation” (2017)
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WHAT A USER WILL DO 
ANYWAY
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Recommendation 
Model

Behaviour Model
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THE APPROACH
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STRATEGIES

Actions

POI Features

Context
BEHAVIOURAL

MODEL
RECOMMENDATIONS

CASE STUDY

Context POI Features

Geolocalized

Temporally ordered

Weather summary

Temperature

Daytime

Category

Historic period

Historic related person

C. I. Muntean, F. M. Nardini, F. Silvestri, and R. Baraglia. 2015. On Learning Prediction Models forTourists Paths. (2015)

User POI-visit trajectories
1668

(Muntean et al.)

Complete Picture
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USER BEHAVIOUR 
LEARNING
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PROBLEM SETUP
Markov Decision Process (MDP)

S State space

A Action space

T Transition model

Z Users observations

r Reward

𝛄 Discount factor

s

a

T(s’ | s, a)

s1

s2+50
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POLICY  

Technical Approach

Reward and Action-selection policy are learnt via
Inverse Reinforcement Learning
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Often there is not enough user 
specific behavioural data
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DOC-Like representation

POI-visit trajectory

TOPICS
Documents 
all the POI-Visit trajectories

NMF

Clustering
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Term Cluster A Cluster B Cluster C Cluster D Cluster E

1 morning hot cloudy warm freezing

2 cold afternoon cold cloudy cloudy

3 square 16th century church 14th century afternoon

4 palace palace square church 14th century

5 15th century church 13th century square palace

6 13th century square palace building building

7 church 19th century rain palace 13th century

8 night 13th century museum bridge church

9 Dante museum Brunelleschi 13th century Foggini

10 10th century Brunelleschi Tadda 19th century 19th century
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INTERESTING
RECOMMENDATION 
GENERATION
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Recommendations 
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POLICY

VALUE OF TAKING AN ACTION

 
 

 

 

s

a

T(s’ | s, a)

s1

s2

Technical Approach
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RECOMMENDATION
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Q-BASE - Cluster Behaviour Based Recommendations1

When only few observation of a user are available the general user 
behaviour of the cluster the user belong to is used to suggest 
optimal actions.

  optimal action 
 

Optimizing for a Segment of Users

D. Massimo, F. Ricci. “Harnessing a generalised user behaviour model for next-POI recommendation” (2018)

Cluster state-action values

Previous offline Experiment

Reward Precision Novelty

Q-BASE

SKNN
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Hybrid Optimization: Q-BASE & Popularity Bias
Q-POP PUSH - Varying biasA

Harmonic mean of Q(s,a) and pop(a)

Count of action a in the dataCluster state-action values

min-max scaled

RECOMMENDATION
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HOW USERS 
EVALUATE Q-BASE, 
Q-POP PUSH AND 
SKNN?

David Massimo @RecTour2019



Interactive system

795 POIs in Florence

1668 POI-visit trajectories

Q-BASE, Q-POP PUSH AND SKNN
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1

Landing Preference elicitation

2

Evaluation phase

3

INTERACTION
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Landing phase
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1

Language selection

I’ve been in Florence

Post survey contact
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Preference elicitation phase2

POIs selection

Search

Popular

POI description and 
media
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Evaluation phase3

Itinerary
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Evaluation phase3

Recommendation list

Q-BASE Q-POP PUSH SKNN

Q-BASEQ-POP PUSH SKNN
Item selection order

> >

David Massimo @RecTour2019



24

Evaluation phase3

Itinerary

Evaluate recommendations

Visited the POI

Likes the recommendation

Didn’t know the POI
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Results
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Results
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Results
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Porta della Mandorla
Q-BASE

Duomo di Firenze
Q-POP PUSH and SKNN

Di I, Sailko, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=20440316
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Wrap Up

Accomplish the most important task of a tourism RS
Suggest POIs that are unknown and relevant

IRL based approach

Q-BASE + Pop. bias performs substantially equal to SKNN 

Q-POP PUSH and Q-POP COMBINED

Offline and Online evaluation

David Massimo @RecTour2019



Wondervalley is a project of the Faculty of Computer Science and the 
Faculty of Economics and Management at the Free University of Bolzano. 

Discover Plan

Get personalized tips and discover 
hidden gems in South Tyrol!

Evaluate the places you visited.

Plan the activities you would like 
to do.

Evaluate

Discover what surrounds you!

http://wondervalley.unibz.it


