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Amadeus and global distribution system
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What makes a Hotel desirable?

Q0 PP,

Price
Room
Location
Ratings
Reviews
Services
Amenities

Different
travellers will
have different
preferences
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How to construct a hotel recommender system?

Construct a detailed
profile of the traveller O

based on historical
bookings of the
traveller. @/

Use this information in °
a normal content based
or collaborative filtering

recommender
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However, in this context we do not have any
historical data about individual travellers.
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Estimating hotel conversion from flight booking information

N * Price
* Origin * Room
° ,(A:‘?b'm class om0 e Location
e Airline | '
000 * Ratings
« Advance | H=H ) * Reviews
booking #} ¢ Cgﬁ o i
| @%Q p %fa Services

e Amenities

In the absence of traveller history, we can build a machine
learning model based on historical data to model the conversion
probability of a hotel based on its attributes and the context of a
flight booking.
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Estimating hotel conversion from flight booking information
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* Origin

e Cabin class

* Airline

e Advance booking
* Price

* Room

* Location

* Ratings

* Reviews

* Services

\} ﬁ(@%@)@ « Amenities
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Hotel model

A machine learning model based on historical data to model the conversion
probability (click through rate in this study) of a hotel based on its attributes and the

context of a flight booking.
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Hotel conversion model

10 1

Individual hotel dataset: -
e 715,952 elements. -

* 3,588 clicks i+
* 0.5% conversion rate i

0.0 1

tpr

Due to low conversion rate, PR
AUC is a more representative
metric. We note that features
from the flight context improve
this metric from 0.18 to 0.25.

ROC curves
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Precision-Recall curves
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Figure 4.3: Representation of ROC and APR curves for two Random Forest models

with and without the PNR data.

Table 1: Summary of AUC, AP, F; and Fjy 5 metrics for the

hotel model.

Model AUC | AP F1 F0.5
GLM 0.625 | 0.128 | 0.247 | 0.274
NBC 0.819 | 0.058 | 0.175 | 0.159

RF 0.966 | 0.249 | 0.320 | 0.334

GBM 0.953 | 0.210 | 0.294 | 0.288

NN 0.965 | 0.165 | 0.245 | 0.219

STK (all) 0.924 | 0.182 | 0.271 | 0.288
STK (RF + NN) | 0.969 | 0.242 | 0.314 | 0.284
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How to estimate the desirability of a list of hotels?

w \ * Aggregates: (min, max, mean, std)
* Price
A 5P * Ratings
* Origin 3 |8 RRNIS
e Cabin class 10 — * Room - @ |-
e Airline = * Location - j% =
e Advance * Reviews B -
booking * Services o
il 7 « Amenities

In a click through rate (CTR) based revenue model, the important metric is
the CTR of the list of hotels presented, rather than that of the individual
hotel. We refer to an algorithm which estimates this probability as the

session model. aMaDEUs



Cascaded generalisation

We propose to use cascaded generalisation, using the probabilities of the

hotel model as features to the session model.

Thus, the session model features are the flight details, aggregates of the hotel
features and aggregates of the individual hotel conversion probabilities.
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Session model performance:

Session based dataset:
e 200285 elements.
e 1061 clicks

* 0.5% conversion rate

Defining the best algorithm is more
complicated in this case than for the hotel
model. A Stacking model made up of RF

and 2 linear methods leads to the best
AUC, AP and F1, but GBM achieves the

highest FO.5 value.

&

Table 2: Summary of AUC, AP, F; and Fy 5 metrics for the
session model.

Model AUC | AP F1 Fo0.5

GLM 0.822 | 0.395 | 0.520 | 0.538

NBC 0,933 | 0.342 | 0.467 | 0.408

RF 0.971 | 0.446 | 0.529 | 0.508

GBM 0.958 | 0.383 | 0.531 | 0.542

NN 0.967 | 0.433 | 0.483 | 0.467

STK (RF + GLM + NBC) | 0.972 | 0.453 | 0.539 | 0.529

ROC curves Precision-Recall curves
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= rf-auc: 0.97123
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Figure 4.4: Representation of ROC and APR curves for the different techniques in
the session model. The best score for the APR is for the Stacked Ensemble.
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Creating an optimal list of hotels

The session model allows us to rate a
list of hotels, but can we use the
model to generate better candidate
lists of hotels?

Typically, we can achieve this by
analysing the model to determine
the features that influence the
model most. This is quite simple for
linear models, but more difficult
from non-linear models.
Furthermore, in highly imbalanced
problems, the dominant class may
bias the feature importance
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Interpretable Al

Local Interpretable Model-Agnostic Explanations (LIME)

_What? Explains in an interpretable way the predictions of individual observations of any

classifier.

_How? By learning an interpretable model locally around the prediction.
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Text with highlighted words

From: johnchad@triton unm JJi (jchadwic)

Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

SR N B ricon uom
Hello Gang,

I B been some notes recently asking where to obtain the
DARWIN fish.

This is the same question | [l and | Il not seen an answer on
the

net. If anyone has a contact please post on the net or email me.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should | trust you?: Explaining the predictions of any classifier. SIGKDD (2016)
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Feature importance and explainable Al

e Feature importance methods allow for understanding of the features that most impact the decision.

However in non-linear models it is difficult to use this ranking of features directly, and in highly
imbalanced problems (such as CTR problems), the unclicked samples might bias the feature

importance.

* Explainable Al models however, allow us to determine the feature importance for a specific instance.
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Session builder concept

The aim of the session builder is to increase the conversion probability by

proposing optimal lists of hotels.

Original set of hotels.
Features represent
aggregation of individual
hotel features and
conversion probabilities,

Bk

Session

model

Session
Builder

sis and flight context
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tad | =
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Hotel 2 Hotel 2 0.02
e Hotel
Jgﬁ: Hotel 3 Hotel 3 0.01
jii: Model
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Original set of hotels.

Features represent each
individual hotel and flight
context

N\

Session conversion
probability for original list

iy 0.15

New hotel list created by
replacing a single hotel
according to LIME feature

importance
Hotel 1 0.2
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LIME feature
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Session conversion
probability for new list of
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Session builder in practice

* |n practice, the session builder was implemented using an aggregated LIME feature
importance over the positive sessions (sessions with clicks).
 The LIME feature importance rates aggregates from the hotel model most highly.
* The following heuristic was used to construct new hotel lists:
1. Remove the hotel with the closest conversion probability to the mean (to
influence the standard deviation)
2. Replace with a new hotel with the highest conversion probability (to influence
the average, max and standard deviation of the list)
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g 0.012 Base Conversion 0.0019 0 0.0005
£ 0.010 Conversion LIME 0.0207 0.0089 0.0019
2 0.008 Conversion brute 0.0338 0.0125 0.0026
‘3 0.006 Processing time LIME 23s 23s 4h48m
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Thank you

Eoin Thomas eoin.thomas@amadeus.com
https://www.linkedin.com/in/eoin-thomas-647015108/

Antonio Javier Gonzalez Ferrer:
https://www.linkedin.com/in/jgonzalezferrer/
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