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Abstract

Within forest growth modeling LOGIT models are used to predict individual tree mortality. In this paper we
present, Multi-Layer Perceptron, Learning Vector Quantization and Cascade Correlation networks as different
formalisms for mortality predictions. The data set for parameterizing the LOGIT model and training the different
neural network types comes from the Austrian National Forest Inventory. After training the different network types,
we evaluate the resulting mortality predictions using an independent data set from the Litschau forest. The results
indicate that Multi-Layer Perceptron with the learning algorithm resilient back-propagation and scaled conjugate
gradient and Cascade Correlation with learning algorithm resilient back-propagation perform the best predictions.
This suggests that neural networks are a viable alternative to the conventional LOGIT approach. � 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

European forest management has traditionally relied
on yield tables to estimate timber production for forest
management decisions. The main assumptions concern-
ing yield tables are that the forest stands they describe
are pure and even-aged. There is a strong movement
toward uneven-aged forest management based on the
general understanding that uneven-aged mixed-species
stands increase or at least maintain soil fertility, in-
crease biodiversity and improve stand resilience,
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1-47654-4242.
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thereby reducing the susceptibility to physical and�or
biotic disturbances. The shift from even-aged forest
management renders existing yield tables increasingly
unreliable. One possibility to forecast yields for un-
even-aged mixed-species stands is to develop stand

Žgrowth models that operate at the tree level Wykoff et
al., 1982; Pretzsch, 1992; Hasenauer, 1994; Sterba et

.al., 1995; Pukkala and Miina, 1997 . Such individual
tree growth models consist of diameter and height
increment functions and a mortality model. They have
been developed mainly to study stand development in
uneven-aged mixed-species stands.

The prediction of tree mortality is one of the most
difficult tasks within such growth models. In contrast to
yield tables, which simply describe the reduction of the
total stem number per unit area over time, tree growth
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models must have a mortality model to predict the
death or survival of a tree within the projection period
Ž . Ž .e.g. 5 years . Since Neter and Maynes 1970 , this
problem is solved with a LOGIT-model according to

Ž .the following formalism: 1 based on a set of stand and
site characteristics the probability of mortality within a
given growing period is calculated for every tree within
a stand. This results in probabilities for tree mortality

Ž . Ž .ranging between 1 tree is dead and 0 tree is alive ;
Ž .and 2 the final decision whether a tree is dead, and

thus has to be removed from the tree list, is done by a
random number generator.

Within forest growth modeling, it is customary to
predict the probability of mortality as a logistic func-
tion. In this work we compare different neural net-
works architectures, namely Multi-Layer Perceptrons,
Cascade Correlation networks and Learning Vector
Quantization, with the conventional LOGIT model for
Norway spruce as developed by Monserud and Sterba
Ž .1999 :

1 Ž .p� 1�Ž x .1�e

where p is the probability of mortality and x the vector
of the following set of independent variables:

x�a �a �DBH�a �CR�a �BAL0 1 2 3

2 Ž .�a �DBH�a �DBH 24 5

Where, DBH is the diameter at breast height, CR is
the crown ratio defined as the relative crown length in
relation to the total tree height, BAL is the basal area

Ž .of the larger trees according to Wykoff 1990 and
a �a , the Maximum Likelihood estimates. For further0 5
details on LOGIT models, we refer to Monserud and

Ž . Ž . Ž .Sterba 1999 , Hasenauer 1994 and Hasenauer 2000 .
In our previous work, we introduced neural networks

for mortality prediction by comparing the LOGIT
Žmodel with a self-organizing map Hasenauer and

. ŽMerkl, 1997 , Learning Vector Quantization Merkl
.and Hasenauer, 1998 and some other neural network

Ž .techniques Hasenauer and Merkl, 1999 . The second
of these studies has shown that Learning Vector Quan-
tization produces slightly better mortality prediction
than the LOGIT model as well as the self-organizing
map. The results of all studies, however, were achieved
with only a rather small data and variable set.

The objective of this paper is to extend our work on
Ž .modeling tree mortality in three dimensions: 1 using

the large data set of the Austrian National Forest
Inventory which consists of more that 18 000 individual
tree observations for Norway spruce all over Austria;
Ž .2 test different neural network architectures for their
capability to describe tree mortality vs. the classical

LOGIT approach. For this step only the input variables
Ž .given in Eq. 2 are used to train the different neural

Ž . �nets; 3 extend the set of independent variables vs.
Ž .� Ž .Eq. 2 ; and 4 evaluate and interpret all results using

an independent data set from the Litschau forest. This
step can be viewed as a typical application example for
mortality predictions within the framework of an indi-
vidual tree model.

2. Data

2.1. Austrian National Forest In�entory

The data for this study came from the Austrian
Ž .National Forest Inventory ANFI . This inventory is

based on a permanent sample plot design systemati-
cally distributed all over Austria with a distance of 3.89
km. The permanent plot centers were marked with a
hidden iron stake to eliminate research plot bias and to
ensure that the forest inventory is representative for
growth conditions and forest management throughout
Austria. In a given year, every fifth cluster is remea-
sured. Therefore, there is a representative sample of all
Austrian forests in the available data each year.

The permanent sample plots were established from
1981 to 1985. Trees with a diameter at breast height
Ž .DBH, 1.3 m less than 5 cm were not measured. Trees
with a diameter at breast height between 5 and 10.4 cm
were only measured within a circle of 2.6-m radius
from the plot center. Trees with a diameter at breast
height larger than 10.4 cm were selected by angle count
sampling using a basal area factor of 4 m2�ha. Sample
trees were recorded by their polar co-ordinates.

Every plot was assigned to one of 21 grown districts,
to one of 26 soil groups, to one of 20 vegetation types
and to one of five soil moisture classes based on the
vegetation. For details see Forstliche Bundesversuch-

Ž .sanstalt 1994 . The topography is defined by the eleva-
tion, the slope and the position of the slope, the soil by
soil depth, soil group and thickness of the humus
horizons, the vegetation by the vegetation type and the
soil moisture. The geographic variable is defined by the
growth districts. At plot establishment and plot remea-
surement the following data were recorded for every

Ž .sample tree: species; diameter at breast height DBH ;
Ž .the total height of the tree H ; and the height to the

Ž .live crown to determine the crown ratio CR . As a
measure of the social ranking of the tree within the

Ž .stand, the basal area of the larger trees BAL accord-
Ž .ing to Wykoff 1990 was calculated. Competition is

Ž .determined by the crown competition factor CCF
Ž .Krajicek et al., 1961 and was calculated for each plot.
BAL and CCF describe the competition effects.

Plot descriptors were evaluated within a circle of 300
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Table 1
aSummary statistics of the training and test data

Variable ANFI Litschau

Mean Min�Max Mean Min�Max

BAL 20.3 0.0�116.0 23.5 0.0�45.4
Ž .DBH cm 29.9 5.0�139.0 14.5 5.0�57.2

CR 0.65 0.00�1.00 0.50 0.01�0.95
n 18671 � 8010 �total
n 493 � 199 �dead

a Where BAL is the basal are of the trees larger in diame-
ter, DBH the diameter at breast height, CR the crown ratio,

Ž .n the number of trees dead or alive , n is the numbertotal dead
of dead trees in a given 5-year growth period. The training
data come from the Austrian National Forest Inventory
Ž .ANFI and the test data from an independent study at
Litschau.

m2. The elevation is measured to the nearest 100 m
and the slope is measured to the nearest 10%. The
humus conditions were defined by the thickness of the
A, F and H horizons in centimeter. Every tree on a
given plot was remeasured after 5 years, between 1986
and 1990. In this study, we will use 18 671 Norway

Ž . Ž .spruce Piciea abies L. Karst trees see Table 1 .

2.2. The Litschau forest

In 1977 the Institute of Forest Growth Research has
designed 22 permanent sample plots within the
Seilern-Aspang Forest in Litschau. Litschau is in the
northern region of the Waldviertel in Austria. The 22
plots consist of uneven-aged forest stands and have
different site conditions. Every sample plot was remea-
sured in 1982, 1987, 1992 and 1997. 1977�1982 is called
growth period 1, 1982�1987 growth period 2, 1987�1992
growth period 3 and 1992�1997 is growth period 4. For
our analysis we will use only growth period 3 and 4.

At each measurement the diameter at breast height
Ž . Ž .DBH , the tree height H and the height to the live

Ž .crown base to determine the crown ratio CR was
Ž .recorded see Table 1 . From these measurements, the

Ž .basal area of the larger trees BAL and the crown
Ž .competition factor CCF were calculated. Further-

more, according to the instruction of the Austrian
Ž . ŽNational Forest Inventory ANFI Forstliche Bun-

.desversuchsanstalt, 1994 each of the 22 permanent
sample plots was assigned to the belonging growth
district, the soil group, the vegetation type and to one
of the five soil moisture classes. Finally, the thickness
of A, F and H horizons was determined.

3. Neural networks: a short tour

The research area of neural networks is a successful

field within computer science specialized in providing
solutions in application domains that are difficult to
model with conventional statistical approaches. Such
applications are usually characterized by noisy input
data, largely unknown intrinsic structure and changing
conditions. The major difference between neural net-
works and traditional methods of computer science is
that the behavior of the former is the result of a
training process where typical situations of the applica-
tion area are presented to the neural network which
adapts its structure accordingly. Conversely, in traditio-
nal methods of computer science the behavior of the
system is predefined, e.g. in form of an algorithm.

Neural networks consist of a number of fairly simple
neural processing elements. For simplicity, we will refer
to the neural processing elements as units or neurons.
The neurons communicate with each other by means of
directed and weighted connections. Based on their
strategy of training, neural networks are usually divided

Ž . Ž .into models performing: 1 supervised; 2 reinforce-
Ž .ment; or 3 unsupervised learning. The distinguishing

feature is the amount of information concerning the
desired result that is presented to the neural network
during learning. The neural networks that are pre-
sented in this work are all models adhering to the
supervised learning paradigm. In this paradigm, every
input data is associated a desired result, i.e. target data.
During training, the neural network seeks to adjust its
structure in a way that the correct target is produced
for each input data.

In the remainder of this section, we provide a brief
description of the neural network models that are used
during the experiments. For further details, we refer to

Žtextbooks on neural network technology Bishop, 1995;
Kohonen, 1995; Muller and Reinhardt, 1991; Zell,¨

.1994 .

3.1. Multi-Layer Perceptron

A Multi-Layer Perceptron consists of units and di-
Ž .rected, weighted links connections between them. In

analogy to activation passing in biological neurons,
each unit receives an input that is computed from the
weighted outputs of units with connections leading to
this unit. The inputs to neurons in each layer come
exclusively from the outputs of neurons in previous
layers, and outputs from these neurons pass exclusively
to neurons in following layers.

Multi-Layer Perceptrons are feed-forward networks
with one or more layers of units between the input and
output units. These additional layers contain the so-
called hidden units. These hidden units are not speci-
fied by the task and are not part of the input or output
layer. The output of each neuron in the network is a
function of that neurons input.

The aim of learning is to find a set of weights that



( )H. Hasenauer et al. � Ad�ances in En�ironmental Research 5 2001 405�414408

ensure that for each input data the output produced by
Ž .the network is the same as or sufficiently close to the

desired output. The learning involves adjusting weights,
so that errors, i.e. deviation between computed and
target output, will be minimized. The function used to
measure errors is the result of the residual sum-of-
squared errors.

Perhaps the most widely known training strategy for
feed-forward neural networks such as Multi-Layer Per-
ceptron is called back-propagation. This training strat-
egy is an iterative gradient algorithm designed to
minimize the mean square error between the actual
output of a Multi-Layer Perceptron and the desired

Ž .output Rumelhart et al., 1986 .
Ž .Resilient back-propagation Rprop is a local adap-

tive learning scheme, performing supervised batch
learning in Multi-Layer Perceptrons using an adaptive

Žversion of the Manhattan-learning rule Riedmiller and
.Braun, 1993 . The basic principle of Rprop is to elimi-

nate the harmful influence of the size of the partial
derivative on the weighting step.

The scaled conjugate gradient-training algorithm is
based upon a class of optimization techniques well
known in numerical analysis as the conjugate gradient
methods. A detailed description of the algorithm can

Ž .be found in Bishop 1995 .
One of the most important aspects of any machine

learning paradigm is how it scales according to problem
size and complexity. Neural networks like other flexible
non-linear estimation methods can suffer from either
underfitting or overfitting. A network that is not suffi-
ciently complex can fail to detect the signal in a compli-
cated data set that leads to underfitting. A network
that is too complex may fit the noise and not just the
signal, which leads to overfitting. Overfitting is critical
because it can easily lead to predictions that are far
beyond the range of the training data. The complexity
of a network is related to both the number of weights
and the size of the weights.

The most popular method of regularizing neural
networks is called early stopping. A part of the training

Ž .data i.e. 90% are used to train the network and the
Ž .other part i.e. 10% are used for the validation set.

The basic idea is to control the error of the validation
set, i.e. the deviation between computed and desired
output when presenting the items of the validation set.
As long as the error of the validation set is decreasing,
training continues with the data from the training set.
If the error of the validation set starts to increase,
training is stopped and the neural network configura-
tion yielding the best error on the validation set is
used.

The most well known regularize is called weight
decay. The basic principle is to minimize the sum of
squared weights with the error, thus preventing them

from growing too large and encouraging redundancy of
hidden units.

3.2. Cascade Correlation algorithms

A well-known growing feed-forward network is
ŽFahlman’s Cascade Correlation architecture Fahlman

.and Lebiere, 1990 . This network architecture gener-
ates a solution to the given problem by adding hidden
nodes one at a time to create a minimal network,
minimizing the residual error at each building step.
Hence, the Cascade Correlation architecture repre-
sents a kind of meta-algorithm, in which classical learn-
ing algorithms like back-propagation or Rprop are em-
bedded. Cascade Correlation is characterized as a con-
structive learning rule. The number of inputs and out-
puts is defined by the problem.

3.3. Learning Vector Quantization

Ž .Learning Vector Quantization LVQ represents a
family of single-layer neural networks. It consists of a
pre-determined number of processing units. Each unit
has a d-element reference vector and each unit is
associated with one of the classes of the input samples.
These units are called codebook vectors. Therefore
each class of vector input samples is represented by its
own set of codebook vectors. This method is apparently
a nearest neighbor method, because the smallest dis-
tance of the unknown vector from a set of codebook
vectors is sought. The Euclidean distance is used as
distance metric.

There are many different learning procedures avail-
Ž .able for LVQ networks cf. Kohonen et al., 1995 . Each

of the procedure moves codebook vectors to try to
achieve better classification on the training set by the
one-nearest-neighbor rule on the codebook. All train-
ing procedures are online algorithms. This means that
the examples from the training set are presented in
random order, one at a time, and the codebook is
updated after each presentation. For our experiments,
we relied on the so-called OLVQ1 learning procedure

Ž .as recommended by Kohonen et al. 1995 .

4. Experimental setup

The data from the Austrian National Forest Inven-
Ž .tory ANFI are used to train the neural networks and

for model selection. Every tree in the data set is
described by using three features, namely diameter at

Ž . Ž .breast height DBH , crown ratio CR and basal area
Ž .in larger trees BAL . The data are linearly trans-

� �formed to the interval 0, 1 to achieve comparable
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values concerning their respective order of magnitude.
This kind of data pre-processing is standard for neural
network applications.

Our data for training, the ANFI, were randomly split
in a training data set and a test data set. These two
data sets are used to find a good model complexity.
Each method is trained with different model complex-
ity, i.e. number of hidden units or number of codebook
vectors, to select the best model complexity. The best
model is then trained with the whole ANFI data.

Finally, the trained networks are tested and evalu-
ated with the independent data set from the Litschau
forest. This step of our work can be considered as a

Žtypical application of mortality models LOGIT as well
.as neural networks within tree modeling.

( )4.1. Multi-Layer Perceptron MLP

In this study, we construct the multi-layer network
with one hidden layer. The hidden layer is fully con-
nected to the input and output layers but there is no
direct connection between the input and output layers.
At the output layer one unit is used. The output 0
means that the tree is alive and 1 that the tree is dead.

The number of hidden units is chosen with model
selection. Eighteen thousand six hundred and seventy-
one sample trees of the ANFI are used to train the

Žnetworks, and 8010 observations measured on 3147
.Norway spruce trees from two 5-year growth periods

Ž .in Litschau see Table 1 for testing. The number of
hidden units varies between 1 and 30. The network
with the best values that minimize the sum-of-squared
errors on the test set is chosen. The network is then
constructed on all the records in the training set using
the chosen number of hidden units. The freely avail-

Žable Neural Network program package SNNS Zell et
. 1al., 1998 is used for training. The following different

learning algorithms are used:

( )� Back-propagation MLP�BP : for the learning
parameter � the value 0.2 was used and early
stopping. We achieved the best result with one
hidden unit.

( )� The resilient back-propagation MLP�Rprop : we
used 0.1 for the initial value � and 50 for the0
upper limit � . Weight decay was used, 4 for themax
weight decay parameter � and early stopping. The
best results were achieved with 28 hidden units.

� The scaled conjugate gradient training algorithm
( )MLP�SCG : The non-critical default values were

Žchosen as suggested in the SNNS manual Zell et

1 The SNNS program package is available via http:��www.
informatik.uni-stuttgart.de�ipvr�bv�projekte�snns�snns.html.

.al., 1998 . The network was trained until a local
minimum. We achieved the best result with four
hidden units.

( )4.2. The Cascade Correlation algorithms CC

Ž .We selected the SNNS Zell et al., 1998 implemen-
tation of the Cascade Correlation algorithm. No model
selection was necessary and a variation of different
early stoppings were used. With 90% of the ANFI data
the network was trained, and with 10% the validation
runs were performed. After adding a new hidden unit
and training this new hidden unit, the error of the
validation network was recorded. If the new error was
higher than the previous one, the training was stopped.
Again, the network with the best validation error was
selected. Cascade Correlation is defined with CC. The
following learning algorithms for Cascade Correlation
were performed:

( )� Back-propagation CC�BP : the learning parame-
ter � selected was 0.2. The number of epochs were
200.

( )� Resilient back-propagation CC�Rprop : the de-
creasing factor �� was 0.5 and the increasing factor
�� 1.2. The number of epochs were 200.

( )4.3. Learning Vector Quantization LVQ

For our analyses the Learning Vector Quantization
Ž . ŽLVQ program package LVQ�PAK Kohonen et al.,

. 21995 was selected. To initialize the algorithm, the
same number of codebook vector was allocated to each
class. Training was carried out with the optimized

Ž .learning rate function OLVQ 1 , a fast and robust
LVQ algorithm. The number of iterations was set to 40
times, the number of codebook vectors in OLVQ 1.
The number of codebook vectors was chosen during
model selection. The number of codebook vectors var-
ied between 10 and 200 units. We achieved the best
results with a network setup of 100 units. The overall
prediction quality was determined as the ratio between
the difference of predicted and observed number of
dead trees vs. observed number of living trees. The
network was then constructed on all the records in the
training set using the chosen number of codebook
vectors.

2 The LVQ � PAK program package is available via
http:��www.cis.hut.fi�research�som lvq pak.shtml.� �



( )H. Hasenauer et al. � Ad�ances in En�ironmental Research 5 2001 405�414410

5. Experimental results

5.1. Using three input �ariables

As discussed, the first step of our research was to
compare the conventional LOGIT approach with the
different neural network models using only the limited

Ž . Žset of independent variables given by Eq. 2 see
.Monserud and Sterba, 1999 . The ANFI data were used

for calibration.
Next we applied LOGIT model as well as the trained

different neural network types to the Litschau data. In
Table 2 we provide the mean mortality predictions of
the best neural network setups, i.e. Multi-Layer Per-

Ž .ceptron with back-propagation MLP�BP and one
hidden unit, Multi-Layer Perceptron with resilient

Ž .back-propagation MLP�Rprop and 28 hidden units,
Multi-Layer Perceptron with scaled conjugate gradient
Ž .MLP�SCG and four hidden units, Cascade Correla-

Ž .tion with back-propagation CC�BP , Cascade Corre-
Ž .lation with resilient back-propagation CC�Rprop

Ž .and Learning Vector Quantization LVQ�OLVQ1
with 100 Codebook vectors. Additionally, the table
contains mortality rates estimated with the conventio-
nal LOGIT model developed by Monserud and Sterba
Ž .1999 . The results reveal the general superiority of the
neural network models as compared to the conventio-
nal LOGIT approach.

In tree modeling, it is important to evaluate if time
trends between observed vs. predicted results exist.
Hence, we divided our 22 research plots from Litschau
in 5 age classes and calculated the mean relative dif-
ference between predicted vs. observed mortality by
age class and growth period according to the total

Ž .number of trees within each group see Fig. 1 . Positive
values indicate an overestimation in tree mortality and
negative values an underestimation.

Next we were interested, if trends in the range of the

input data exist. Such tendencies in the prediction
behavior of a model would indicate that a bias is
evident. We divided our Litschau data by different

Ž . Ž .basal area BAL , crown ratio CR and diameter at
Ž .breast height DBH classes and calculated the relative

difference in the mortality predictions vs. the observed
mortality. Fig. 2 gives the mean relative errors by
variable class. Positive values result from overestimated
mortality rates while negative values indicate an under-
estimation in the predicted number of dead trees.

5.2. Using more input �ariables

Figs. 1 and 2 suggest that Multi-Layer Perceptron
with the learning algorithm resilient back-propagation
Ž . ŽMLP�Rprop and scaled conjugate gradient MLP�

.SCG and Cascade Correlation with learning algorithm
Ž .resilient back-propagation CC�Rprop performed the

best results. Thus, we were interested, if we additio-
nally enhance the resulting neural networks predictions
of the three network types by taking advantage of the
full set of independent variables provided by the Aus-

Ž .trian National Forest Inventory ANFI . The ANFI
data consist of ordinal and nominal variables. The
ordinal input variables diameter at breast height
Ž . Ž .DBH , the total height of the tree H , the crown

Ž . Ž .ratio CR , the basal area of the larger trees BAL ,
Ž .the crown competition factor CCF , the elevation, the

slope, the thickness of the A, F and H horizons of
� �humus were linearly transformed to the interval 0, 1 .

The nominal variables are growth district, soil group,
vegetation type and soil moisture. Nominal variables
were almost always represented in a neural network by
using as many input variables as there were values that
the variable can take on. Exactly one of these input
variables was turned on according to the value of the
variable. All of the other input variables from this
nominal variable were turned off. This is called one-of-n

Table 2
ŽDifference in the 5 year mortality prediction by estimation method i.e MLP, CC, LVQ and LOGIT with different learning

a.algorithms and growth period

Total % Model Growth period 3 Growth period 4
�dead � % � %dead dead

�6 �0.19 MLP�BP �44 �2.76 38 2.44
14 0.44 MLP�Rprop �32 �2.01 46 2.96
16 0.51 MLP�SCG �33 �2.07 49 3.15
14 0.44 CC�BP �40 �2.51 54 3.47
6 0.19 CC�Rprop �38 �2.39 44 2.83

�2 �0.06 LVQ�OLVQ1 22 1.38 �24 �1.54
20 0.63 LOGIT �32 �2.01 52 3.34

a
� gives the difference between predicted and observed number of dead trees and indicates the absolute error, while thedead

� �relative error in% indicates the ratio of � vs. the observed number of trees. The statistics are based on the independent datadead
set Litschau. Negative values indicate an underestimation and positive an overestimation, respectively.
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Fig. 1. Relative difference between observed and predicted
number of dead trees using: Multi-Layer Perceptron with the

Ž .learning algorithm back propagation MLP�BP resilient
Ž .back-propagation MLP�Rprop and scaled conjugate gradi-

Ž .ent MLP�SCG ; Cascade Correlation with learning algo-
Ž .rithm back propagation CC�BP and resilient back-propa-

Ž . Ž .gation CC�Rprop ; Learning Vector Quantization LVQ ;
and the LOGIT model. The statistics show the results for the
independent data set in Litschau.

encoding. For the 21 classes of growth districts there
were 21 input variables used, for the 26 classes of soil
groups 26 variables were used, 20 variables were used
for the 20 classes of vegetation types and 5 input
variables were used for the five classes of soil moisture.
Therefore, the neural network had 82 input variables,
72 as nominal and 10 as ordinal variables, respectively.

The model selection strategy and the parameters for
training the neural networks was the same as outlined
in Section 4. Again, the independent data from Litschau
were used to evaluate the prediction errors. The results
are given in Table 3.

A more detailed view of the prediction results based
on reduced data set with only 3 independent input

variables vs. the approach which takes advantage of the
variable set with 82 input parameters is given in Fig. 3.
Similar to Fig. 1 we provide the prediction characteris-
tics by age classes and growth period to evaluate for

Fig. 2. Relative difference between observed and predicted
mortality rates across the actual range of the input values and
the different mortality predictions. Negative values indicate an
underestimation while positive values indicate an overestima-
tion of actual tree mortality. The statistics show the results for
the independent data set in Litschau.
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Table 3
Ž .Difference in the 5 year mortality predictions by model and growth period GP3 and GP4 and number of input variables. The

figures are based on the independent data set Litschau

Model 3 input variables 82 input variables

GP3 GP4 Total GP3 GP4 Total

MLP�Rprop �32 46 14 �52 39 �13
MLP�SCG �33 49 16 �37 27 �10
CC�Rprop �38 44 6 �47 42 �5

possible time trends in the tree tested neural networks
and the LOGIT model. The comparison was based on
the relative error in the mortality predictions, i.e. the
ratio of the differences between predicted and observed
number of dead trees vs. the number of observed trees.

6. Discussion

All tested neural network types performed slightly
better mean periodical mortality predictions vs. the

Ž .conventional LOGIT approach see Table 2 . During
Žour experiments we reached the best estimates see

.Fig. 1 and Fig. 2 using a Multi-Layer Perceptron with
the learning algorithm resilient back-propagation
Ž . ŽMLP�Rprop and scaled conjugate gradient MLP�

.SCG and Cascade Correlation with learning algorithm
Ž .resilient back-propagation CC�Rprop . All three-

network types performed a relative mean error rate
within the different input variable classes of less than

Ž .5% see Fig. 2 . This is an indication that the models
are stable and no bias in the resulting predictions is
evident.

Most of the models perform an underestimation in
the mortality predictions in growth period 3 vs. growth

Ž .period 4 see Table 2 . Such time pattern are typical for
tree mortality within forest stands and is one of the
difficult features in modeling because mortality is not
only driven by continuous events such as increasing
stand density. Very dense stands are labile and water
stress, insect attacks or extreme weather conditions
may result in periodically higher mortality rates fol-
lowed by periods of lower mortality.

An interesting result performs the Learning Vector
Ž .Qunantization LVQ networks. From Table 2 and Fig.

1, this network type seems to perform good results,
while Fig. 3 indicates that LVQ is more sensitive to
certain stand situations as expressed by the relatively

Ž .high error rates for situations with a basal area BAL
Ž .of �40 and a crown ratio CR of �0.2. This suggests

a certain model bias.
Using all 82 input data of the Austrian National

Ž .Forest Inventory ANFI resulted only in a slight im-
Žprovement vs. the reduced models see Table 3 and Fig.

.3 . Nevertheless, for practical applications a higher

model stability can be expected because all available
data were used for training and thus the representation
of the possible variety of stand and site conditions
within Austria is addressed more adequately.

Fig. 3. Relative difference between observed and predicted
number of dead trees using: Multi-Layer Perceptron with the

Ž .learning algorithm resilient back-propagation MLP�Rprop
Ž .and scaled conjugate gradient MLP�SCG ; Cascade Corre-

Žlation with learning algorithm resilient back-propagation CC
.�Rprop ; and the LOGIT model. The results with the five

independent input variables has no extension and the results
using all 82 input variables is labeled with �A. The statistics
show the results for the independent data set in Litschau.
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An important concern in interpreting trends of over
or underestimated mortality rates is that trees which
were accidentally considered as dead tress will be
eliminated from the tree list while dead trees which
were considered as living individuals may have the
chance to die during the next growing period. This
suggests that the random components whether a tree is
dead or alive have a different meaning in a simulation

Ž .run Monserud, 1976 because dead trees have no
change to become alive in one of the next simulation
periods. Thus, tree growth model are usually not that
sensitive to a slight underestimation of tree mortality.

7. Conclusion

In our study, we evaluated different types of neural
networks to predict tree mortality and compared the
results with the conventional LOGIT approach. We

Ž .used the following neural network architectures: 1
Ž .Multi-Layer Perceptron; 2 Cascade Correlation; and

Ž .3 Learning Vector Quantization. We were especially
interested to determine an optimal network setup in
terms of hidden units for the feed-forward network and
in terms of codebook vectors for the LVQ network. We
divided the data set from the Austrian National Forest

Ž .Inventory ANFI in a learning and a test set, and we
used these two data sets to define the complexity of the
models. Then we used the whole Austrian National
Forest Inventory data for learning.

Our criterion for evaluating the different mortality
models was the difference between predicted vs.
observed number of dead trees using an independent
data set from the Litschau forest. The results indicate
that all neural network models perform lower relative
mean errors vs. the LOGIT model, an indication that
neural network technology may be a viable alternative
to the classical LOGIT approach. Additionally, we were
able to show that further improvements can be achieved
by using more input variables.

For future applications we suggest to investigate
other machine learning approaches. Regarding our ex-
periments with more input variables, it is important to
note that the effect of using more information to
determine the probability of tree mortality has to be
investigated in more detail by using other independent
data sets similar to the Litschau forest. This would lead
to a more thorough understanding of individual tree
mortality in uneven-aged, mixed species stands.
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