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Abstract— Based on the principles of the self-
organizing map, we have designed a novel neural net-
work model with a highly adaptive hierarchically struc-
tured architecture, the adaptive hierarchical incremen-
tal grid growing. This feature allows it to capture the
unknown data topology in terms of hierarchical rela-
tionships and cluster structures in a highly accurate
way. In particular, unevenly distributed real-world
data is represented in a suitable network structure ac-
cording to its specific requirements during the unsuper-
vised training process. The resulting three-dimensional
arrangement of mutually independent maps reveals a
precise view of the inherent topology of the data set.

1 Introduction

The self-organizing map (SOM) [9] is an artificial neu-
ral network model that proved to be exceptionally suc-
cessful for data visualization applications where the
mapping from an usually very high-dimensional data
space into a two-dimensional representation space is
required. The remarkable benefit of SOMs in this kind
of applications is that the similarity between the in-
put data as measured in the input data space is pre-
served as faithfully as possible within the representa-
tion space. Thus, the similarity of the input data is
mirrored to a very large extend in terms of geographi-
cal vicinity within the representation space.

However, some difficulties in SOM utilization re-
mained largely untouched despite the huge number of
research reports on applications of the SOM. First,
the SOM uses a fixed network architecture in terms of
number and arrangement of neural processing elements
which has to be defined prior to training. Obviously,
in case of largely unknown input data characteristics
it remains far from trivial to determine the network
architecture that allows for satisfying results. Thus, it
certainly is worth considering neural network models
that determine the number and arrangement of units
during their unsupervised training process. We refer

to [1, 2, 7, 8] for recently proposed models that are
based on the SOM, yet allow for adaptation of the
network architecture during training. Second, hierar-
chical relations between the input data are not mir-
rored in a straight-forward manner. Such relations are
rather shown in the same representation space and are
thus hard to identify. Hierarchical relations, however,
may be observed in a wide spectrum of application do-
mains, thus their proper identification remains a highly
important data mining task that cannot be addressed
conveniently within the framework of the SOM. The
hierarchical feature map (HFM) as proposed in [13],
i.e. a neural network model with hierarchical structure
composed from independent SOMs, is capable of rep-
resenting the hierarchical relations between the input
data. In this model, however, the sizes of the various
SOMs that build the hierarchy as well as the depth
of the hierarchy have to be defined prior to training.
Thus, considerable insight into the structure of the in-
put data is necessary to obtain satisfying results.

Only recently, we have proposed the growing hier-
archical self-organizing map (GHSOM) as an artificial
neural network architecture designed to address both
limitations within a uniform framework [4, 5, 6]. Sim-
ilar to the HFM, a hierarchical layout of the architec-
ture is chosen. In case of the GHSOM, however, this
hierarchical layout is determined during the unsuper-
vised training process guided by the peculiarities of the
input data.

In this work, we describe an alternative model,
the adaptive hierarchical incremental grid growing
(AHIGG), where the individual layers of the hierar-
chical architecture are variants of the incemental grid
growing (IGG) network as originally proposed in [2, 3].
The major difference of the AHIGG as compared to the
GHSOM is that maps on individual layers may grow
irregularly in shape and may remove connections be-
tween neighboring units. In this way a better under-
standing of the underlying input data can be gained
which lends itself for easy visual exploration.

The remainder of this paper is organized as follows.



Section 2 contains a brief review of the incremental
grid growing neural network, an adapted version of
which will be used as building blocks for the AHIGG.
In Section 3 we provide an outline of architecture and
training process of the AHIGG. Section 4 contains the
description of an application scenario for the AHIGG,
namely the organization of document archives. Finally,
we present our conclusions in Section 5.

2 A quick review of Incremental
Grid Growing

The incremental grid growing (IGG) model as pro-
posed in [2, 3] combines the topology preserving na-
ture of SOMs with a flexible and adaptive architecture
that represents cluster structures during an unsuper-
vised training process. Initially, the IGG network con-
sists of four connected units, each of which is assigned
an initially random weight vector of the same feature
space as the training data. During the training pro-
cess, the network is dynamically changing its structure
and its connectivity to resemble the topology of the
input data.

The training process consists of a sequence of iter-
ations where each cycle consists of the following three
phases:

(1) The SOM training phase: The SOM algorithm is
applied to train the current map. The weight
vectors of the units are adapted to the high-
dimensional relations in the input data.

(2) The expansion phase: New units are added to that
region at the perimeter of the current map that are
responsible for the largest quantization error.

(3) The adaptation of connections phase: Connections
between neighboring units are added or removed
from the network depending on the metric dis-
tance between the units’ weight vectors. Thus,
cluster boundaries and discontinuities in the in-
put data become explicitly visible.

A note on the three phases is in order. During the
SOM training phase the quantization error of the var-
ious units is cumulated as detailed in Eq. (1) with i
being the index of the unit in question, mi that unit’s
weight vector, x an input vector, and t referring to the
current SOM training iteration.

Ei(t + 1) = Ei(t) +
∑

k

(xk −mik)2 (1)

After a fixed number of SOM training iterations the
unit with the largest cumulated quantization error is
selected as the error unit, as symbolized in Figures
1(a) and 1(c). When given a rectangular network lay-
out, each unit may have four neighbors. During the

node
error

(a)

new2

new1

(b)

node
error

(c)

new3

new2

new1

(d)

Figure 1: IGG–Expansion phase

expansion phase new units are generated at the unoc-
cupied neighboring grid positions of the error node, as
symbolized in Figures 1(b) and 1(d).

Finally, during the adaptation of connections phase
the metric distance of weight vectors at neighboring
grid positions are analyzed. A connection between
the respective units is established if the distance of
their weight vectors is below a particular treshold value
τconnect, as symbolized in Figures 2(a) and 2(b). How-
ever, if this distance is larger than a second threshold
parameter τdisconnect then a possible existing connec-
tion between the units is removed, as symbolized in
Figures 2(c) and 2(d). The thus established connec-
tions play a critical role during the then following next
SOM training phase because only connected nodes in
the neighborhood of the winner are adapted.
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Figure 2: IGG–Adaptation of connections phase



3 A hierarchically growing IGG
network

Basically, the AHIGG is composed of a hierarchical ar-
rangement of independent IGG networks on each of its
layers. Each layer is resposible for input data represen-
tation at a specific level of granularity. Pragmatically
speaking, a rough idea of the similarities in the input
data is represented in the first layer of the AHIGG.
Each unit of this first layer map may be expanded to
an individual map on the second layer of the hierarchy
if the desired level of granularity in data representa-
tion is not reached yet. Thus, the layers further down
the hierarchy give a more detailed picture of subsets of
the input data. Consider Figure 3 as a simple pictorial
representation of an AHIGG consisting of three layers.
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layer 1

Figure 3: Architecture of the AHIGG

At the beginning of training the weight vector of a
single unit map at layer 0 is initialized as the statis-
tical mean of the input data. The mean quantization
error of this unit as given in Eq. (2) will play a crucial
role during the training process of the AHIGG. In this
formula, I refers to the set of input data, n is the car-
dinal number of I, x is an input data, and m0 is the
weight vector of the single unit at layer 0.

mqe0 =
1
n

∑
x∈I

||m0 − x|| (2)

In the next step of training, a map at layer 1 is cre-
ated that consists of a small number of units, e.g. four
units arranged in a square. The weight vectors of these
units are initialized randomly but taking into account
the weight vector of its ‘parent’ unit in the preced-
ing layer (mparent) together with the mean quantiza-
tion error of that unit (mqeparent). The initialization
scheme is given in Eq. (3), with vrand denoting a ran-
dom vector of length 1.

mi = mparent + mqeparent · vrand (3)

Please note this initialization scheme is different to
the one proposed originally for the IGG network in
[2]. We have chosen this scheme because it allows for
weight vectors being roughly aligned within the input
data space.

After initialization, the network is training according
the the SOM algorithm for a fixed number λ of input
vector presentations. Then, the border unit with the
largest mean quantization error is selected and new
neighboring units are added to the network. Finally,
the weight vectors of neighboring units are checked for
possible adaptation of connections. This training pro-
cess follows the description as given in Section 2. This
training process is repeated until the mean quantiza-
tion error of the map falls below a certain fraction τ1,
0 < τ1 < 1, of the mean quantization error of it’s par-
ent unit. A fine-tuning phase is then performed where
only the winner is adapted and no further units are
added to the network. After this fine-tuning phase,
each unit is checked for possible hierarchical expan-
sion. More precisely, the mean quantization error of
each unit is computed and units with too high a mean
quantization error are expanded on the next layer of
the hierarchy, i.e. for those units a new map on the
next layer of the hierarchy is established. The mean
quantization error of a units is compared to the mean
quantization error of the unit at layer 0 and a simple
threshold logic is used for the decision of hierarchical
expansion. Each unit for which Eq. (4) holds true is
further expanded. In this formular, τ2 represents the
threshold, 0 < τ2 < 1.

mqei > τ2 ·mqe0 (4)

A difference to the original IGG model can be found
in the initialization of weight vectors of newly added
units. In [2] an intialization strategy is proposed the
preserves the local topology by taking into account sta-
tistical means. More precisely, the new weight vectors
are initialized such that the error node’s weight vector
is the statistical mean of its neighbors. Apart from the
fact that in some cases the new weight vectors may
lie beyond the data space, this scheme may produce
isolated units at the perimeter of the map. The rea-
son for this phenomenon is explained by the location
of the growth process. We believe that a topology pre-
serving initialization works well in the interior of the
map where the extent of the interpolation is given by
the enclosure. Such a strategy can be found for exam-
ple in the growing grid network [8]. However, steady
continuation into the open area at the perimeter of
the IGG may be fatal. In the most pathological case,
the connections to the new units are immediately re-
moved after each growing step. They thus become iso-
lated and are not likely to contribute to the share of
input patterns. We therefore suggest to initialize the
new weight vectors randomly with a vector from the
ε-environment of the error node, as given in Eq. (5).



In this formular, mnew refers to the weight vector of
a newly added unit, merror is the weight vector of the
error unit, vrand is a random vector of length 1, and ε
is a small constant, i.e. 0 < ε << 1.

mnew = merror + ε · vrand (5)

Due to the fact that neighboring units are not nec-
essarily connected, we slightly adapted the notion of
neighborhood range in the SOM algorithm for training.
Instead of measuring the distance between two units in
Euclidean map space, we rather take their connectiv-
ity into account for determining those units that are
subject to adaptation apart from the winner. Simply
the length of the shortest path between two units is
determining the strength of adaptation. Please note
that adaptation is thus no longer symmetrical around
the position of the winner. Figure 4 gives a simple
graphical representation of neighborhood adaptation
in AHIGG; the darker the shading of a node in this
Figure, the stronger is it’s adaptation.

Figure 4: Neighborhood adaptation in the AHIGG

4 The TIME Collection

In the experiments presented hereafter we use the
TIME Magazine article collection as a reference docu-
ment archive. The collection comprises 420 documents
from the TIME Magazine of the early 1960’s. The doc-
uments can be thought of as forming topical clusters
in the high-dimensional feature space spanned by the
words contained in the documents. The articles cover
the typical range of subject matters in a news maga-
zine, i.e. ranging from foreign politics and world eco-
nomics to fashion and gossip. The goal is to map and
identify the topical clusters on the 2-dimensional map
display. Thus, we use full-text indexing to represent
the various documents according to the vector space
model of information retrieval. The indexing process
identified 5,923 content terms, i.e. terms used for docu-
ment representation, by omitting words that appear in
more than 90% or less than 1% of the documents. The
terms are roughly stemmed and weighted according to
a tf × idf , i.e. term frequency times inverse document
frequency, weighting scheme [14], which assigns high
values to terms that are considered important in de-
scribing the contents of a document. Following the
feature extraction process we end up with 420 vec-
tors describing the documents in the 5,923-dimensional

document space, which are further used for neural net-
work training.

To get a better understanding of the results of the
training process, we performed an automatic unit la-
beling technique after training has completed. The
goal of this labeling technique is to make those features
of the input data explicit that have high impact on the
clustering result. In case of our application, obviously,
the features are terms extracted from the various docu-
ments. The idea behind the labeling technique is to se-
lect those terms that are highly important for the doc-
uments represented by a particular unit of the AHIGG
network, i.e. terms with high average tf × idf values
yet low standard deviation. More formally, we describe
the importance of a particular feature, i.e. impi, for the
labeling process as given in Eq. (6). In this formula, ξi

refers to the i-th feature, ξi is its statistical mean and
σi its statistical standard deviation.

impi =
ξi√

1 + σi
(6)

Please note this labeling strategy is comparable to
our LabelSOM method, descibed in [12]. The major
difference is that we reduced the originally proposed
feature selection function such that only one parameter
remains instead of two in the LabelSOM method.

The resulting AHIGG represents a quite intuitively
interpretable representation of the subjects in the news
articles. Due to space restrictions we cannot present
the complete topic hierarchy of the TIME Magazine,
we will rather focus on a few sample maps. The top-
layer map is depicted in Figure 5.

At first glance, we can instantly detect an isolated
cluster in the lower left corner of the map which refers
to articles about Vietnam. Please note that discon-
nected units are visualized by means of a black bar
in between them. This might be regarded as a rather
clumsy visualization technique but at least it works
with most web browsers. Documents related to China,
the Kashmir conflict between India and Pakistan or the
Malaysian independence are located to the left on unit
(2/1)1 and (2/2). These two together with unit (3/1)
form more or less the Asia cluster of the TIME Mag-
azine. Various European topics are concentrated in
the middle of the map on the units (3/2), (3/3), (2/3)
and (1/3). The range of subjects goes from articles
about the Cold War and the NATO to documents con-
cerning the French-German relationship and the polit-
ical situation in Great Britain. Relevant names of in-
volved politicians such as Nikita Khrushchev, Charles
de Gaulle, Konrad Adenauer or Harold Wilson have
been extracted as labels of these units. The remaining

1We will use the notation (x/y) to refer to the unit located at
row x and column y, starting with (1/1) in the upper left corner
of the table, i.e. the grey colored cells, which do not represent
any units of the map, also get a two-dimensional location vector
for the sake of simplicity.



Figure 5: TIME Magazine: Top-layer map

four units on the right-hand side of the map mainly
deal with Middle East affairs and African related sub-
jects. For example, we find articles about the Congo
conflict in the province Katanga on unit (1/4) or the
situation in Algeria after the independence war on
(2/4).

If we take a closer look at the Vietnam cluster in the
second layer of the hierarchy as shown in Figure 6, we
can identify three units on the lower left corner onto
which documents about the religious problems in Viet-
nam have been mapped. The labels buddhist and diem
refer to the crackdown on the buddhist population and
monks by the regime of the roman catholic president
Ngo Dinh Diem. The other units represent the Viet-
nam War cluster. The isolated unit (1/2) is a kind
of ‘technical report’ covering the rocket carrying chop-
per Huey of US Airforce. Unit (1/4) contains articles
about the US helicopter attacks against the viet cong
guerillas. The neighboring units (2/3) and (2/4) are
all concerned with peace conferences and meetings of
vietnamese officials with US representatives.

5 Conclusions

In this paper we have presented a novel neural net-
work model, i.e. the adaptive hierarchical incremental
grid growing (AHIGG). The distinctive features of this

model are its hierarchical architecture, where the depth
of the hierarchy is determined during the unsupervised
training process. Each layer in the hierarchy consists of
a number of independently developing maps which de-
termine their size and arrangement of units also during
the unsupervised training process. Thus, this model is
especially well suited for applications which require hi-
erarchical clustering of the input data space.

We have shown the usefulness of this model by using
an application scenario from the information retrieval
area, namely the organization of document archives.
Such an application scenario is especially well suited
to demonstrate the capabilities of an artificial neural
network because, first, the documents are represented
in a very high dimensional feature space by nature,
and, second, document archives are inherently struc-
tured hierarchically according to the different subject
matters dealt with in the documents.

In summary, we can state that the adaptive hierar-
chical incremental grid growing has successfully proven
its applicability in data mining problems which require
an accurate representation of hierarchical relations and
cluster structures in high-dimensional data. The in-
tuitively interpretable hierarchical organization built
during the unsupervised training process offers the user
a convenient interface for interactive data analysis of
large amounts of complex data.



Figure 6: TIME Magazine: Vietnam map
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