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ABSTRACT

Data analysis systems require range-aggregate query answering of large multidimensional
datasets. We provide the necessary framework to build a retrieval system capable of providing
fast answers with progressively increasing accuracy in support of range-aggregate queries. In
addition, with error forecasting, we provide estimations on the accuracy of the generated
approximate results. Our framework utilizes the wavelet transformation of query and data
hypercubes. While prior work focused on the ordering of either the query or the data coefficients,
we propose a class of hybrid ordering techniques that exploits both query and data wavelets in
answering queries progressively. This work effectively subsumes and extends most of the current
work where wavelets are used as a tool for approximate or progressive query evaluation. The
results of our experimental studies show that independent of the characteristics of the dataset,
the data coefficient ordering, contrary to the common belief, is the inferior approach. Hybrid
ordering, on the other hand, performs best for scientific datasets that are inter-correlated. For
an entirely random dataset with no inter-correlation, query ordering is the superior approach.

Keywords: approximate query; multidimensional dataset; OLAP; progressive query; range-
aggregate query; wavelet transformation

INTRODUCTION

Modern data analysis systems need
to perform complex statistical queries on
very large multidimensional datasets; thus,
a number of multivariate statistical meth-
ods (e.g., calculation of covariance or kur-
tosis) must be supported. On top of that,
the desired accuracy varies per applica-

tion, user, and/or dataset, and it can well be
traded off for faster response time. Fur-
thermore, with progressive queries—a.k.a.,
anytime algorithms (Grass & Zilberstein,
1995; Bradley, Fayyad, & Reina, 1998) or
online algorithms (Hellerstein, Haas, &
Wang, 1997)—during the query run time, a
measure of the quality of the running an-
swer, such as error forecasting, is required.
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We believe that our methodologies de-
scribed in this article can contribute towards
this end.

We propose a general framework
that utilizes the wavelet decomposition of
multidimensional data, and we explore pro-
gressiveness by selecting data values to
retrieve based on some ordering function.
The use of the wavelet decomposition is
justified by the well-known fact that the
query cost is reduced from query size to
the logarithm of the data size, which is a
major benefit especially for large-range
queries. The main motivation for choosing
ordering functions to produce different
evaluation plans lies in the observation that
the order in which data is retrieved from
the database has an impact on the accu-
racy of the intermediate results (see Ex-
perimental Results). Our work, as described
in this article, effectively extends and gen-
eralizes most of the related work where
wavelets are used as a tool for approxi-
mate or progressive query evaluation
(Vitter, Wang, & Iyer, 1998; Vitter & Wang,
1999; Lemire, 2002; Wu, Agrawal, &
Abbadi, 2000; Schmidt & Shahabi, 2002;
Garofalakis & Gibbons, 2002).

Our general query formulation can
support any high-order polynomial range-
aggregate query (e.g., variance, covari-
ance, kurtosis, etc.) using the joint data fre-
quency distribution similar to Schmidt and
Shahabi (2002). However, we fix the query
type at range-sum queries to simplify our
discussion. Furthermore, the main distinc-
tion between this article and the work in
Schmidt and Shahabi (2002) is that they
only studied the ordering of query  wave-
lets, while in this article we discuss a gen-
eral framework that includes the ordering
of not only query  and data  wavelets, but
also the hybrid of the two.

Let us note that our work is not a
simple application of wavelets to scientific
datasets. Traditionally, data transformation
techniques such as wavelets have been
used to compress data. The idea is to trans-
form the raw data set to an alternative
form, in which many data points (termed
coefficients) become zero or small enough
to be negligible, exploiting the inherent cor-
relation in the raw data set. Consequently,
the negligible coefficients can be dropped
and the rest would be sufficient to recon-
struct the data later with minimum error
and hence the compression of data.

However, there is a major difference
between the main objective of compres-
sion applications using wavelets and that
of database applications. With compression
applications, the main objective is to com-
press data in such a way that one can re-
construct the data set in its entirety with
as minimal error as possible. Consequently,
at the data-generation time, one can de-
cide which wavelets to keep and which to
drop. Instead, with database queries, each
range-sum query is interested in some
bounded area (i.e., subset) of the data. The
reconstruction of the entire signal is only
one of the many possible queries.

Hence, for the database applications,
at the data generation or population time,
one cannot optimally sort the coefficients
and specify which coefficients to keep or
drop. Even at query time, we need to re-
trieve all required data coefficients to plan
the optimal order. Thus, we study alterna-
tive ways of ordering both the query and
data coefficients to achieve optimal pro-
gressive (or approximate) answers to poly-
nomial queries. The major observation from
our experiments is that no matter whether
the data is compressible or not, ordering
data coefficients alone is the inferior ap-
proach.
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CONTRIBUTIONS

The main contributions of this article
are as follows:

• Introduction of Ordering Functions that
measure the significance of wavelet
coefficients and form the basis of our
framework. Ordering functions formal-
ize and generalize the methodologies
commonly used for wavelet approxima-
tion; however, following our definition,
they can be used to provide either ex-
act, approximate, or progressive views
of a dataset. In addition, depending on
the function used, ordering functions can
provide deterministic bounds on the ac-
curacy of the dataset view.

• Incorporation of existing wavelet ap-
proximation techniques (first-B, highest-
B) to our framework. To our knowledge,
the only other work that takes under con-
sideration the significance of a wavelet
coefficient in answering arbitrary range
queries is that of Garofalakis and Gib-
bons (2002). We have modified their
Low-Bias Probabilistic Wavelet Synop-
ses technique to produce the MEOW
ordering function, which measures sig-
nificance with respect to a predefined
set of queries (workload).

• Definition of the query vector, the data
vector, and the answer vector
(hypercubes in the multidimensional
case). By ordering any of these vectors,
we construct different progressive
evaluation plans for query answering.
One can either apply an ordering func-
tion for the query or answer vector online
as a new query arrives, or can apply an
ordering function to the data vector off-
line as a preprocessing step. We prove
that online ordering of the answer vec-

tor results in the ideal, yet not feasible,
progressive evaluation plan.

• Proposition of Hybrid Ordering, which
uses a highly compact representation of
the dataset to produce an evaluation plan
that is very close to the ideal one. Care-
ful utilization of this compact represen-
tation leads to our Hybrid* Ordering Al-
gorithm.

• Conducting several experiments with
large real-world and synthetic datasets
(of over 100 million values) to compare
the effectiveness of our various pro-
posed ordering techniques under differ-
ent conditions.

The remainder of the article is orga-
nized as follows. In next section we present
previous work on selected OLAP topics
that are closely related to our work. Next,
we introduce the ordering functions that our
framework is built upon and the ability to
forecast some error metrics. Later, we
present our framework for providing pro-
gressive answers to Range-Sum queries,
and we prescribe a number of different
techniques. We examine all the different
approaches of our framework on very large
and real multidimensional datasets, and
draw useful conclusions for the applicabil-
ity of each approach in the experimental
results section. Finally in the last section,
we conclude and sketch our future work
on this topic.

RELATED WORK

Gray, Bosworth, Layman, and
Pirahesh (1996) demonstrated the fact that
analysis of multidimensional data was in-
adequately supported by traditional rela-
tional databases. They proposed a new re-
lational aggregation operator, the data cube,
that accommodates aggregation of multi-
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dimensional data. The relational model,
however, is inadequate to describe such
data, and an inherent multidimensional ap-
proach using sparse arrays was suggested
in Zhao, Deshpande, and Naughton (1997)
to compute the data cube. Since the main
use of a data cube is to support aggregate
queries over ranges on the domains of the
dimensions, a large amount of work has
been focused on providing faster answers
to such queries at the expense of higher
update and maintenance cost. To this end,
a number of pre-aggregation techniques
were proposed. Ho, Agrawal, Megiddo, and
Srikant (1997) proposed a data cube (Pre-
fix Sum) in which each cell stored the sum-
mation of the values in all previous cells, so
that it can answer a range-sum query in
constant time (more precisely, in time
O(2d)). The update cost, however, can be
as large as the size of the cube. Various
techniques (Geffner, Agrawal, Abbadi, &
Smith, 1999; Chan & Ionnidis, 1999) have
been proposed that balance the cost of que-
ries and updates.

For applications where quick approxi-
mate answers are needed, a number of dif-
ferent approaches have been taken. His-
tograms (Poosala & Ganti, 1999; Gilbert,
Kotidis, Muthukrishnan, & Strauss, 2001;
Gunopulos, Kollios, Tsotras, & Domeniconi,
2000) have been widely used to approxi-
mate the joint data distribution and there-
fore provide approximate answers in ag-
gregate queries. Random sampling (Haas
& Swami, 1995; Gibbons & Matias, 1998;
Garofalakis & Gibbons, 2002) has also been
used to calculate synopses of the data cube.
Vitter and colleagues have used the wave-
let transformation to compress the prefix
sum data cube (Vitter et al., 1998) or the
original data cube (Vitter & Wang, 1999),
constructing compact data cubes. Such ap-
proximations share the disadvantage of

being highly data dependent and as a result
can lead to bad performance in some cases.

The notion of progressiveness in query
answering with feedback, using running
confidence intervals, was introduced in
Hellerstein et al. (1997) and further exam-
ined in Lazaridis and Mehrotra (2001) and
Riedewald, Agrawal, and Abbadi (2000).
Wavelets and their inherent multi-resolu-
tion property have been exploited in pro-
viding answers that progressively get bet-
ter. In Lemire (2002) the relative prefix sum
cube is transformed to support progressive
answering, whereas in Wu et al. (2000) the
data cube is directly transformed. Let us
note that the type of queries supported in a
typical OLAP system is quite limited. One
exception is the work of Schmidt and
Shahabi (2002), where general polynomial
range-sum queries are supported using the
transformation of the joint data distribution
into the wavelet domain.

Ordering Wavelet Coefficients

The purpose of this section is to de-
fine ordering functions for wavelet
datasets which form the foundation for the
proposed framework.

Ordering Functions and Significance

In this section, we order wavelet co-
efficients based on the notion of “signifi-
cance.” Such an ordering can be utilized
for either approximating or getting progres-
sively better views of a dataset.

A Data Vector of size N will be de-
noted as d = (d

1
d

2
...d

N
), whereas a Wave-

let Vector of size N is w = (w
1
w

2
...w

N
).

These two vectors are associated with each
other through the Discrete Wavelet Trans-
form: DWT(d) = w ⇔ DWT-1(w) = d.
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Given a wavelet vector w =
(w

1
w

2
...w

N
) of size N, we can define a to-

tal order ≥ on the set of wavelet coeffi-
cients W = (w

1
,w

2
, ..., w

n
). The totally or-

dered set {wσ1
, wσ2

, ..., wσN
} has the prop-

erty ∀σi
 ≤ σ

j
, wσi 

≥ wσj
. The indexes σ

i

define a permutation σ of the wavelet co-
efficients that can be expressed through
the Mapping Vector m = (σ

1
, σ

2
, ..., σ

N
).

A function f : W → R that obeys the
property w

i
 ≥ w

j 
⇔ f(w

i
) ≥ f(w

j
) is called

an Ordering Function. This definition sug-
gests that the sets (W, ≥) and (f(W), ≥) are
order isomorphic—that is, they result in the
same permutation of wavelet coefficients.
With the use of ordering function, the se-
mantic of the ≥ operator and its effect is
more clearly portrayed. Ordering functions
assign a real value to a wavelet coefficient
which is called Significance.

At this point we should note that for
each total order ≥, there is a corresponding
class of ordering functions. However, any
representative of this class is sufficient to
characterize the ordering of the wavelet
coefficients.

Common Ordering Functions

In the database community wavelets
have been commonly used as a tool for
approximating a dataset (Vitter et al., 1998;
Vitter & Wang, 1999). Wavelets indeed
possess some nice properties that serve the
purpose of compressing the stored data.
This process of compression involves drop-
ping some “less” significant coefficients.
Such coefficients carry little information,
and thus setting them to zero should have
little effect on the reconstruction of the
dataset. This is the intuition used for ap-
proximating a dataset.

The common question that a database
administrator may face is: Given a storage

capacity that allows storing only B<<W
coefficients of the wavelet vector W, what
is the best possible B-length subset of W?
We shall answer this question in different
ways, with respect to the semantics of the
phrase best possible subset.

We can now restate two widely used
methods using the notion of ordering func-
tions.

FIRST-B: The most significant coef-
ficients are the lowest frequency ones. The
intuition of this approach is that high-fre-
quency coefficients can be seen as noise
and thus they should be dropped. One simple
ordering function for this method could be
f
FB

(w
i
) = -i, which leads to a linear com-

pression rule. The First-B ordering func-
tion has the useful property that it is de-
pendant on the indices of the coefficients.

HIGHEST-B: The most significant co-
efficients are those that have the most en-
ergy. The energy of a coefficient w

i
 is de-

fined as E(w
i
) = w

i
2. The intuition comes

from signal processing: the highest pow-
ered coefficients are the most important
ones for the reconstruction of the trans-
formed signal which leads to the common
non-linear “hard thresholding” compression
rule. One ordering function therefore is
f

HB
(w

i
) = w

i
2.

Extension to
Multidimensional Hypercubes

Up to now, we were constricting our-
selves to the one-dimensional case, where
the data is stored in a vector. In the gen-
eral case the data is of a multidimensional
nature and can be viewed as a multidimen-
sional hypercube (Gray et al., 1996). Each
cell in such an n-dimensional (hyper-)cube
contains a single data value and is indexed
by n numbers, each number acting as an
index in a single dimension. Without loss of
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generality, each of the n dimensions of the
cube d have S distinct values and are in-
dexed by the integers 0,1, ..., S – 1 so that
the size of the cube is d = Sn. The de-
composition of the data cube into the wave-
let domain is done by the application of the
one-dimensional DWT on the cube for one
dimension, then applying DWT on the re-
sulting cube for the next dimension and con-

tinuing for all dimensions. We will use �d  to
denote the transformed data cube:

�
1 1( )n nDWT DWT DWT−= ⋅d d�

Applying an ordering to a multidimen-
sional cube is no longer a permutation on
the domain of the indices, but it is rather a
multidimensional index on the cube. The
result of ordering a hypercube is essentially
a one-dimensional structure, a vector. Each
element of the mapping vector m is a set
of n indices, instead of a single index in the
one dimensional case. To summarize, the
ordered vector together with the mapping
vector is just a different way to describe
the elements in the cube, with the advan-
tage that a measure of significance is taken
under consideration. One last issue that we
would like to discuss is the definition of the
First-B ordering of the previous section. It
is not exactly clear what the First-B order-
ing in higher dimensions should be, but we
clarify this while staying in accordance with
our definition. We would like the lower fre-
quency coefficients to be the most signifi-
cant ones. Due to the way we have ap-
plied DWT on the cube, the lower fre-
quency coefficients are placed along the
lower sides of the cube. So, for an n-di-
mensional cube of size S, at each dimen-
sion we define a First-B ordering function
for the element at cell (i

0
, i

1
, ..., i

n–1
) as:

1 0 1 1
( )

nFB i i …if d
−, , , =

0 1 1 0 1 1[ min( ) ( )]n nS i i … i i i … i− −− ⋅ , , , + + + +

However, one could choose a slightly
different ordering function that starts at the
lowest-indexed corner and visits all nodes
in a diagonal fashion until it reaches the
highest-indexed one:

2 0 1 1 0 1 1( ) ( )
nFB i i …i nf d i i … i

−, , , −= − + + +

Minimum Error Ordering in the
Wavelet Domain (MEOW)

Formerly, we redefined the two most
widely used ordering functions for wavelet
vectors. These methods however can pro-
duce approximations that, in some cases,
are very inaccurate, as illustrated in
Garofalakis and Gibbons (2002). The au-
thors show that for some queries the ap-
proximate answer can vary significantly
compared to the actual answer, and they
propose a probabilistic approach to dynami-
cally select the most “significant” coeffi-
cients. In this section, we construct an or-
dering function termed MEOW based on
these observations such that it fits into our
general framework. We assume that a
query workload has been provided in the
form of a set of queries, and we try to find
the ordering that minimizes some error
metric when queries similar to the workload
are submitted. We refer to the workload,
that is a set of queries, using the notation .
This set contains an arbitrary number of
point-queries and range-queries.

In real-world scenarios, such a
workload can be captured by having the
system run for a while, so that queries can
be profiled, similar to a typical database
system profiling for future optimization de-
cision. A query on the data cube d will be
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denoted by q. The answer to this query is
D{q}. Answering this query with a lossless
wavelet transformation of the data cube
yields the result W

N
{q} = D{q}, where

N=d is the size of the cube. Answering
the query with a B-approximation (B coef-
ficients retained) of the wavelet transfor-
mation yields the result W

B
{q}. We use the

notation  err(org, rec) to refer to the error
introduced by approximating the original
(org) value by the reconstructed approxi-
mate (rec) value. For example the relative
error metric would be:

( )rel

org rec
err org rec

org

| − |, =

MEOW assigns significance to a co-
efficient with respect to how bad a set of
queries would be answered if this coeffi-
cient was dropped; in other words, the most
significant coefficient is the one in which
the highest aggregated error occurs across
all queries. Towards this end, a list of can-
didate coefficients is initialized with all the
wavelet coefficients. At each iteration the
most significant coefficient is selected to
be maintained and hence removed from the
list of candidates, so that the next-best co-
efficient is always selected in a greedy
manner. Note that removing the most sig-
nificant coefficient from the candidate list
is equivalent to maintaining that coefficient
as part of the B-approximation. More for-
mally:

( )MEOW if w a=

( ( { } ( { }){ }))N M i

q QS

err D q W w qagg −
∀ ∈

, �

where N=d is the size of the cube; W
N–M

is the (N-M)-coefficient wavelet approxi-

mation of the data vector (running candi-
date list), which is the result of selecting
the M most significant coefficients seen so

far;  { }N M iW w− �  is the (N-M-1)-coeffi-
cient wavelet approximation, which is the
result of additionally selecting the coeffi-
cient under consideration. The function  is
used for aggregating the error values oc-
curred for the set of queries; any Lp norm
can be used if the error values are consid-
ered as a vector.

Ordering Functions and
Error Forecasting

We have seen that obtaining an or-
dering on the wavelet coefficients can be
useful when we have to decide the best-B
approximation of a dataset. Having an or-
dering also helps us answer a query in a
progressive manner, from the most signifi-
cant to the least significant coefficient. The
reason behind this observation is the fact
that the ordering function assigns a value
to each coefficient, namely its significance.
If the ordering function is related to some
error metric that we wish to minimize, the
significance can be further used for error
forecasting. That is, we can foretell the
value of an error metric by providing a strict
upper bound to it. In this section, we shall
see why such a claim is plausible.

HIGHEST-B: The ordering obtained
for Highest-B minimizes the L2 error be-
tween the original vector and its B-length
approximation. Let w be a vector in the
wavelet domain and wB its highest B ap-
proximation. Then the L2 error is given by
the summation of the power of the coeffi-
cients not included in the B approximation.

2 2

1
i

i B

w
| |

= +

| − | = ∑
w

Bw w
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This implies that including the highest
B coefficients in the approximation mini-
mizes the L2 error for the reconstruction of
the original wavelet vector. In progressive
query evaluation we can forecast an error
metric as follows. Suppose we have just
retrieved the k-th coefficient w whose sig-

nificance is 2
kw| | . The L2 error is strictly

less than the significance of this coefficient
multiplied by the number of the remaining
coefficients:

2 ( ) ( )B HB kW k f w| − | ≤ | | − ⋅w w

Notice that in this case the forecasted
error is calculated on the fly. We simply
need to keep track of the number of coef-
ficients we have retrieved so far.

MEOW: The ordering function used
in MEOW is directly associated with an
error metric that provides guarantees on
the error occurred in answering a set of
queries. Thus we can immediately report
the significance of the last coefficient re-
trieved as the error value that we forecast.
There are several issues that arise from
this method, the most important being the
space issue of storing the significance of
coefficients. For the time being, we shall
ignore these issues and assume that for any
coefficient we can also look up its signifi-
cance. Consequently, we can say that if
the submitted query q is included in the
query set q ∈ QS  and the L∞ norm is used
for aggregation, then the error for answer-
ing this query is not more than the signifi-
cance of the current coefficient w

k 
re-

trieved.

( { } { }) ( )k MEOW kerr D q W q f w, ≤

ANSWERING
RANGE-SUM QUERIES
WITH WAVELETS

In this section, we provide a defini-
tion for the range-sum query, as well as a
general framework for answering queries
in a progressive manner where results get
better as more data is retrieved from the
database.

Range-Sum Queries and
Evaluation Plans

Let us assume that the data we will
deal with is stored in an n-dimensional
hypercube d. We are interested in answer-
ing queries that are defined on an n-dimen-
sional hyper-rectangle R. We define the
general type of queries that we would like
to be capable of answering.

Definition 1: A range-sum query Q(R,d)
of range R on the cube d is the summa-
tion of the values of the cube that are
contained in the range. Such a query can
be expressed by a cube of the same size
as the data cube that has the value of
one in all cells within the range R and
zero in all cells outside that range. We
will call this cube the query cube q.

The answer to such a query is given
by the summation of the values of the data
cube d for each cell ξ contained in the
range:

( )
R

a
ξ

ξ
∈

= ∑ d .

We can rewrite this summation as the mul-
tiplication of a cell in the query cube q with
a corresponding cell in the data cube d.
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( ) ( )a
ξ

ξ ξ
∈

= ⋅∑
d

q d (1)

As shown in Schmidt and Shahabi
(2002), Equation 1 is a powerful formaliza-
tion that can realize not only SUM,
COUNT, and AVG, but also any polyno-
mial up to a specific degree on a combina-
tion of attributes (e.g., VARIANCE and
COVARIANCE).

Let us provide a very useful lemma
that applies not only for the Discrete Wave-
let Transform, but also for any transforma-
tion that preserves the Euclidean norm.

Lemma 1: If a�  is the DWT of a vector a

and �b  is the DWT of a vector b then

� �[ ] [ ] [ ] [ ]
i j

i i j j< , >=< , >⇔ ⋅ = ⋅∑ ∑a b a b a b a b� �

We borrowed the following theorem
from Schmidt and Shahabi (2002) to justify
the use of wavelets in answering range-
sum queries.

Theorem 1: The n-dimensional query cube
q of size S in each dimension defined
for a range R can be transformed into
the wavelet domain in time O(2nlognS),
and the number of non-zero coefficients

in �q  is less than O(2nlognS). This theo-
rem results in the following useful cor-
ollary.

Corollary 1: The answer to a range-sum
query Q(R,d) is given by the following
summation:

�

� �( ) ( )a
ξ

ξ ξ
∈

= ⋅∑
d

q d

and can be computed in O(2nlognS) re-
trieves from the database.

This corollary suggests that an exact
answer can be given in O(2nlognS) steps.
We can exploit this observation to answer
a query in a progressive manner, so that
each step produces a more precise evalu-
ation of the actual answer.

Definition 2: A progressive evaluation
plan for a range-sum query

� �( ) ( ) ( )Q R
ξ

ξ ξ
∈

, = ⋅∑
d

d q d
�

is an n-dimensional index σ of the space

defined by the cube �d . The sum at the j-th
progressive step

� � � �

0

( ) ( ) ( ) ( )
j

j Q Ra
σ

σ σσ
ξ

ξ ξ
=

≡ , = ∑d q d

is called the approximate answer at itera-
tion j.

It should be clear that if the multidi-
mensional index visits only the non-zero
query coefficients then approximate answer
converges to the actual answer as j reaches
O(2nlognS). We would like to find an evalu-
ation plan that causes the approximate an-
swer to converge fast to the actual value.
Towards this end, we will use an error
metric to measure the quality of the ap-
proximate answer.

Definition 3: Given a range-sum query,
an optimal progressive evaluation
plan σ

0
 is a plan that at each iteration

produces an approximate answer ã that
is closest to the actual answer a, based
on some error metric, when compared
to any other evaluation plan σ

i
 at the

same iteration.
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One important observation is that the
n-dimensional index σ of a progressive
evaluation plan defines three single-dimen-
sional vectors—the query vector, the data
vector, and another vector that we call the
answer vector. The answer vector is
formed by the multiplication of a query with
a corresponding data coefficient.

Definition 4: The multiplication of a query
coefficient with a data coefficient yields
an answer coefficient. These answer
coefficients form the answer vector a:

� �[ ] [ ] [ ]i i i= ⋅a q d

Note that the answer vector is not a
wavelet vector. In order to answer a query,
we must sum across the coefficients of the
answer vector.

Definition 5: Given the permutation σ of
a progressive evaluation plan, we can
redefine the approximate answer ã as
the summation of a number of answer
coefficients.

�

0

( ) [ ]
j

i

j iaσ
=

= ∑ a

Similarly, the actual answer is given
by the following equation.

0

[ ]
i

a i
| |

=

= ∑
a

a

To summarize up to this point, we have
defined the data cube, the query cube, and
their wavelet transformations, and have
seen that by choosing a multidimensional

index, these cubes can be viewed as single-
dimensional vectors. Finally we have de-
fined the answer vector for a given range-
sum query. In the next section we will ex-
plore different progressive evaluation plans
to answer a query. By choosing an order-
ing for one of the three vectors described
above—the query vector, the data vector,
and the answer vector—we can come up
with different evaluation plans for answer-
ing a query. Furthermore, we have a choice
of different ordering functions for the se-
lected vector.

Ordering of the Answer Vector

In this section, we will prove that a
progressive evaluation plan that is produced
by an ordering of the answer vector is the
optimal one, yet not practically applicable.
Recall that we have defined optimality in
terms of obtaining an approximate answer
as close to the actual answer as possible.
Thus, the objective of this section can be
restated as following: given an answer vec-
tor  what is the permutation of its indices
that yields the closest-to-actual approximate
answer.

The careful reader should immediately
realize that we have already answered this
question. If we use the L2 error norm to
measure the quality of an approximate an-
swer, then the ordering of choice has to be
Highest-B. Please note that although we
have defined Highest-B for a vector whose
coefficients correspond to the wavelet ba-
sis, the property of this ordering applies for
any vector defined over orthonormal ba-
sis; the standard basis is certainly orthonor-
mal.

The L2 error norm of an approximate
answer is:
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Therefore we have proven that the
Highest-B ordering of the answer vector
results in an optimal progressive evalua-
tion plan. However, there is one serious
problem with this plan. We have to first
have the answer vector to order it, which
means we have to retrieve all data coeffi-
cients from the database. This defeats our
main purpose of finding a good evaluation
plan so that we can progressively retrieve
data coefficients. Therefore, we can never
achieve the optimal progressive evalua-
tion plan, but we can try to get close to it,
and henceforth we use the Highest-B or-
dering of the answer vector as our lower
bound.

Since the answer vector will not be
available at query time, we can try to apply
an ordering on either the query or the data
cube. This is the topic of the following sec-
tions.

Ordering of the Query Cube

We will answer a range-sum query
with an evaluation plan that is produced by
ordering the query cube. Since we are not
interested in the data cube, the evaluation
plan will be generated at query time and
will depend only on the submitted query.
Below are the steps required to answer any
range-sum query.

Preprocessing Steps (Off-line)

1. Transform the data cube d in the wave-

let domain and store it in that form �d .

Answering a Range-Sum Query (Online)

1. Construct the query cube and transform
it into the wavelet domain.

� ( )DWT←q q

2. Apply an ordering function to the trans-

formed query cube �q  to obtain the map-
ping vector (m-vector).

�( )order←m q

3. Iterate over the m-vector, retrieve the
data coefficient corresponding to the in-
dex stored in the m-vector, multiply it
with the query coefficient, and add the
result to the approximate answer.

� �[ ] [ ]
i

a i i
∈

= ⋅∑
m

q d

It is important to note that the num-
ber of non-zero coefficients is O(2nlognS)
for an n-dimensional cube of size S in each
dimension which dramatically decreases the
number of retrieves from the database and
thus the cost of answering a range-sum
query. This is the main reason why we use
wavelets.

The ordering functions that we can
use are First-B (Wu et al., 2000) and High-
est-B. We cannot conclude which of the
two ordering functions would produce a
progressive evaluation plan that is closer
to the optimal one for an arbitrary data vec-
tor. The Highest-B ordering technique sug-
gested in Schmidt and Shahabi (2002) yields
overall-better results only when we aver-
age across all possible data vectors, or
equivalently when the dataset is completely
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random. In Experimental Results we will
see the results of using both methods on
different datasets.

Ordering of the Data Cube

In this section, we will answer a
range-sum query using an evaluation plan
that is produced by applying an ordering
function on the data cube. We will provide
the steps required and discuss some diffi-
culties that this technique has. First, let us
present the algorithm to answer a query in
a similar way to query ordering.

Preprocessing Steps (Off-line)

1. Transform the data cube d in the wave-

let domain and store it in that form �d .
2. Apply an ordering function on the trans-

formed data cube to obtain the mapping
vector.

�( )order←m d

Answering a Range-Sum Query (Online)

1. Construct the query cube and transform
it into the wavelet domain.

� ( )DWT←q q

2. Retrieve from database a value from the
m-vector and retrieve the data coeffi-
cient corresponding to that value. Multi-
ply it with the query coefficient and add
the result to the approximate answer.
Repeat until all values in the m-vector
have been retrieved.

� �[ ] [ ]
i

a i i
∈

= ⋅∑
m

q d

There is a serious difference between
this algorithm and the query ordering algo-
rithm; the m-vector is stored in database
and cannot be kept in memory, since it is
as big as the data cube. This means that
we can only get one value of the m-vector
at a time together with the corresponding
data coefficient. Besides the fact that we
are actually retrieving two values at each
iteration, the most important drawback is
the fact that the approximate answer con-
verges to the actual answer much slower,
as it needs all data coefficients to be re-
trieved, thus time of O(Sn) .

This problem has been addressed in
Vitter et al. (1998) and Vitter and Wang
(1999) with the Compact Data Cube ap-
proach. The main idea is to compress the
data by keeping only a sufficient number
of coefficients based on the ordering
method used. The resulting cube is so small
that it can fit in main memory and queries
can be answered quickly. This, however,
has the major drawback that the database
can support only approximate answers.

Last but not least, if the significance
of a coefficient is stored in the database,
then it can be used to provide an error es-
timation as discussed earlier. The data cube
coefficients are partitioned in disjoint sets
(levels) of decreasing significance, with one
significance value assigned to each level
(the smallest significance across all coeffi-
cients of the same level). When the last
coefficient of a level is retrieved, the sig-
nificance of that level is also retrieved and
used to estimate the associated error met-
ric. When our framework is used for pro-
gressive answering, the error metric pro-
vides an estimation of how good the an-
swer is. Furthermore, the level error metrics
can be used to calculate an estimation of
the time our methodology needs to reach a
certain level of accepted inaccuracy for a
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submitted query, before actually retrieving
data from the database.

Hybrid Ordering

We have seen that the best progres-
sive evaluation plan results from ordering
the answer cube with the Highest-B or-
dering function. This, however, is not fea-
sible since it requires that all the relevant
data coefficients are retrieved, which
comes in direct contrast with the notion of
progressiveness. Also, we have seen how
we can answer a query by applying an or-
dering to either the query or the data cube.
The performance of these methods depends
largely on the dataset and its compressibil-
ity. In this section, we will try to take this
dependence out of the loop and provide a
method that performs well in all cases.

With this observation in mind, it should
be clear that we wish to emulate the way
the best evaluation plan is created, which
is ordering the answer vector. To create
the answer vector, we need the query cube,
which is available at the query time, and
the data cube, which is stored in the data-
base. As noted earlier, we cannot have both
of these cubes in memory to do the coeffi-
cient-by-coefficient multiplication and then
order the resulting vector. However we can
use a very compact representation of the
data cube, construct an approximate an-
swer vector, and come up with an ordering
that can be used to retrieve coefficients
from the database in an optimal order. This
sentence accurately summarizes the intu-
ition behind our hybrid ordering method.

Hybrid Ordering Algorithms

For our hybrid method we need a very
compact, yet close representation of the
data cube transformed into the wavelet

domain. We will call this cube the approxi-

mate transformed data cube �d . This cube
must be small enough so that it can be
fetched from the database in only a few
retrieves. We will come back shortly to dis-
cuss the construction of such a cube; for
the time being this is all we need to know
for describing the algorithm of our hybrid
method.

Preprocessing Steps (Off-line)

1. Transform the data cube d in the wave-

let domain and store it in that form �d .

2. Create a compact representation �d  of

the data cube; ˆ≅d d� .

Answering a Range-Sum Query (Online)

1. Construct the query cube and transform
it into the wavelet domain:

� ( )DWT←q q

2. Retrieve the necessary data from the
database to construct the approximate

transformed data cube �d .
3. Create the approximate answer cube by

multiplying element by element the query
cube and the approximate data cube.

� �[ ] [ ] [ ]i i i= ⋅a q d�

4. Apply the Highest-B ordering function
to the approximate answer cube ã to ob-
tain the mapping vector m.

5. Iterate over the m-vector, retrieve the
data coefficient corresponding to the in-
dex stored in the m-vector, multiply it
with the query coefficient, and add the
result to the approximate answer.
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There is an online overhead associ-
ated with the additional retrieval cost for
constructing the approximate transformed
data cube, since data has to be retrieved
from the database. This cost however can
be amortized for a batch of queries. In ad-
dition this approximate data cube can be
used to provide an approximation of the
actual answer. The Hybrid* Ordering al-
gorithm takes advantage of this observa-
tion and consequently converges faster to
the actual answer.

The initial value of ans is no longer
zero, but is equal to an approximation of
the answer constructed from the approxi-

mate data cube � �[ ] [ ]i i⋅∑d q . Later, each

time we retrieve an actual data coefficient

�[ ]id  from the database, the value in ans is

corrected by adding the error of the ap-

proximation � � � �[ ] [ ] [ ] [ ]i i i i⋅ − ⋅d q d q .

Assuming that the approximate data
cube is memory resident (which is the case
for batched queries for example), the Hy-
brid* Algorithm can give an approximate
answer without any retrieves from the da-
tabase, while correcting the initial approxi-
mation with each retrieval. In fact, Hybrid
and Hybrid* Orderings, as we demonstrate
in the Experimental Results section, out-
perform other orderings for scientific
datasets since they approximate optimal
ordering by exploiting both query and data
information.

Approximating the
Transformed Data Cube

In this section, we will construct a
different approximate transformed data

cube to be used by our Hybrid* Algorithm;
we defer the performance comparison to
the next section. The purpose of such a
cube is not to provide approximate answers,
but rather to accurately capture the trend
of the transformed data cube, so that we
can use its approximation to produce an
evaluation plan close to optimal. The
method of constructing an approximate
data cube must also be able to easily adapt
to changes in the desired accuracy.

Equi-Sized Partitioning of the
Untransformed Data cube (EPU): The
untransformed data cube is partitioned into
kn equi-sized partitions and the average of
each partition is selected as a representa-
tive. Each partition in EPU consists of the
same value, which is the average, so that
the total different values stored are only
kn. The transformation of this cube into the
Wavelet Domain is also compact since
there are at most knlognS non-zero coeffi-
cients in the approximate transformed data
cube resulting from this partitioning
scheme.

Equi-Sized Partitioning of the
Transformed Data cube (EPT): With
EPT the transformed data cube is parti-
tioned into kn equi-sized partitions, and the
average of each partition is selected as a
representative. Again, each partition in
EPT consists of the same value, which is
the average, so that the total different val-
ues stored are only kn.

Resolution Representatives (RR):
This method differs from EPT in that the
representatives are selected per resolution
level, rather than per partition. For a one-
dimensional vector, there are logS resolu-
tion levels, and in the n-dimensional case,
there are lognS resolution levels. Thus,
picking one representative per resolution
level yields lognS distinct values. In the
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case where a less compact approximate
data cube is desired, some representatives
can be dropped; in the case where more
accuracy is required, more representatives
per resolution level can be kept.

Wavelet Approximation of the
Transformed Data cube: The Wavelet
Decomposition is used to approximate the
data cube. Given a desired storage of B
coefficients, either Highest-B (C-HB), any
of the First-B ordering functions (f

FB1
, f

FB2
)

(C-FB), or MEOW can be used to com-
press the data cube. The result consists of
B distinct values.

EXPERIMENTAL RESULTS

First, we describe our experimental
setup. Subsequently, we compare differ-
ent evaluation plans and draw our main
conclusions. Later, we compare and select
the best approximation of the data cube.
Finally we investigate how larger approxi-
mate data cubes effect the performance
of our Hybrid* algorithm.

Experimental Setup

We report results from experiments
on three datasets. TEMPERATURE and
PRECIPITATION (Widmann &
Bretherton, 1949) are real-world datasets,
and RANDOM is a synthetic dataset.
RANDOM, PRECIPITATION, and TEM-
PERATURE are incompressible, semi-
compressible, and fully compressible
datasets, respectively. Here, we use the
term compressible to describe a dataset that
has a compact, yet accurate wavelet ap-
proximation.

TEMPERATURE is a real-world
dataset that measures the temperatures at
points all over the globe at different alti-

tudes for 18 months, sampled twice every
day. We construct a four-dimensional cube
with latitude, longitude, altitude, and time
as dimension attributes, and temperature
as the measure attribute. The correspond-
ing size of the domain of these dimensions
are 64,128,16, and 1024 respectively. This
results in a dense data cube of more than
134 million cells.

RANDOM is a synthetic dataset of
the same size as TEMPERATURE where
each cell was assigned with a random num-
ber between 0 and 100. The result is a com-
pletely random dataset, which cannot be
approximated.

PRECIPITATION is a real-life
dataset that measures the daily precipita-
tion for the Pacific North West for 45 years.
We build a three-dimensional cube with lati-
tude, longitude, and time as dimensional
attributes, and precipitation as the measure
attribute. The corresponding size of these
dimensions are 8, 8, and 16,384 respec-
tively. This makes a data cube of one mil-
lion cells.

The data cubes are decomposed into
the wavelet domain using the multidimen-
sional wavelet transformation. We gener-
ated  random range-sum queries with a
uniform distribution. We measure the Mean
Relative Error across all queries to com-
pare different techniques in the following
sections.

Comparison of Evaluation Plans

Figure 1 compares the performance
of five evaluation plans. Please note that
all graphs display the progressive accuracy
of various techniques for queries on TEM-
PERATURE, RANDOM, and PRECIPI-
TATION datasets. The horizontal axis al-
ways displays the number of retrieved val-
ues, while the vertical axis of each graph
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displays the mean relative error for the set
of generated queries. Let us note that the
online overhead of Hybrid* Ordering is not
shown in the figures, as it applies only for
the first query submitted. Because of its
small size, it can be maintained in memory
for all subsequent queries. The main ob-
servations are as follows.

Answer Ordering presents the
lower bound for all evaluation plans, as it is
an optimal, yet impractical evaluation plan.
Answer ordering is used with the Highest-
B ordering function, which leads to an op-
timal plan as discussed previously. (Hybrid*
Ordering can outperform Answer Order-
ing at the beginning, because of the fact
that it has precomputed an approximate
answer.)

Data Ordering with the Highest-B
ordering function performs slightly better
than Query Ordering at the beginning, only
for a compressible dataset like TEMPERA-
TURE, but it can never answer a query

with 100% accuracy using the same num-
ber of retrieves as the other methods. (Re-
call that the total number of required re-
trieves to answer any query is O(Sn) for
Data Ordering and is O(2nlognS) for all
other techniques). The use of the Highest-
B ordering function is justified by the well-
known fact that without query knowledge,
Highest-B yields the lowest Lp error norm.
When dealing with the RANDOM dataset
or PRECIPITATION dataset, Data Order-
ing can never provide a good evaluation
plan. Although we believe MEOW data or-
dering introduces improvement for progres-
sive answering, we have not included
MEOW ordering into the experiments with
data ordering due to its large preprocess-
ing cost. However, in the next section we
use MEOW as a data cube approximation
technique.

Query Ordering with Highest-B
ordering function performs well with all
datasets. Such an evaluation plan is the ideal

Figure 1. Comparison of evaluation plans

  

a. TEMPERATURE dataset b. RANDOM dataset 

 

c. PRECIPITATION dataset 
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when dealing with datasets that are badly
compressible, but is inferior to Hybrid* for
compressible datasets. We also see that
Query Ordering with First-B, although
trivial, can still perform well, especially with
the PRECIPITATION dataset.

Hybrid* Ordering is the closest to
optimal evaluation plan with a compress-
ible dataset. In addition, this method has
the advantage that it can immediately pro-
vide an answer with a reasonable error for
a compressible dataset. However, Hybrid*
does not introduce significant improvements
over Query Ordering for an incompress-
ible dataset. At this point, let us note that
the approximate data cube was created
using the Resolution Representatives (RR)
method; the reason behind this is explained
in the following section. The size of the
approximate data cube is as small as

0.002% of the data cube size to emphasize
both the ability to maintain such a structure
in memory and the negligible retrieval cost.
Later we will allow larger approximate data
cubes. Let us indicate that Hybrid* Order-
ing subsumes and surpasses Hybrid Order-
ing; therefore, we do not report Hybrid
Ordering in our experiments.

To conclude, Hybrid* Ordering is
recommended for any real-life dataset that
is compressible. Query ordering, on the
other hand, can be the smartest choice for
a completely incompressible dataset.

Choosing an Approximate
Data Cube

In this section, we measure the per-
formance of our Hybrid* Algorithm using
our proposed techniques for creating ap-

  

a. TEMPERATURE dataset b. RANDOM dataset 

 

c. PRECIPITATION dataset 

 

Figure 2. Hybrid* ordering
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proximate data cubes. Our purpose is to
find the superior approximation of the
dataset to use with Hybrid*.

Figures 2a and 2c suggest that Reso-
lution Representatives performs better
overall. However, when retrieving only a
very small percentage of the data, the
Wavelet Approximation techniques outper-
form Resolution Representatives. In par-
ticular, Highest-B ordering outperforms
First-B ordering. As a rule of thumb, if the
user-level application mostly needs ex-
tremely fast but approximate results, Wave-
let Approximation should be used for cre-
ating an Approximate Data Cube. On the
other hand, if the user-level application can
tolerate longer answering periods, Resolu-
tion Representatives can provide more ac-
curate answers.

We used MEOW with different Lp

norm as the aggregation function among
which L1 norm (sum of errors) performs
the best. As illustrated in Figure 2a, MEOW
with the L1 norm performs badly at the be-
ginning, but soon catches up with the other
Wavelet Approximation techniques. Figure
2c clearly shows the poor performance of
EPT and MEOW for a semi-compressible
dataset.

When dealing with a complete ran-
dom dataset, Figure 2b implies that the pre-
vious observations still hold. Resolution
Representatives still produce overall bet-
ter results. Among the Wavelet Approxi-
mation techniques, the First-B ordering
methods consistently outperform Highest-
B. The reason behind this lies in the fact
that RANDOM is not compressible (all
wavelet coefficients are equally “signifi-
cant”). The previous observations also hold
for the PRECIPITATION dataset (see Fig-
ure 2c).

The most important conclusion one
can draw from these figures is that Reso-
lution Representatives is the best perform-

ing technique for constructing approximate
data cubes. Hybrid* ordering evaluation
plans that utilize Resolution Representatives
produce good overall results, even in the
worst case of a very badly compressible
dataset.

Performance of Larger
Approximate Data Cubes

In this section, we investigate the per-
formance improvement one can expect by
using Hybrid* Ordering with a larger ap-
proximate data cube. Recall that in our
experiments we used an approximate data
cube that is 50,000 times smaller than the
actual cube ( percentage of the cube). We
created the approximate data cubes using
the Resolution Representatives method, as
previously recommended.

Figure 3a illustrates that for a com-
pressible dataset, the more coefficients we
keep, the better performance the system
will have. In contrast, Figure 3b shows that
keeping more coefficients for an incom-
pressible dataset does not result in any im-
provement. This is because such a highly
random dataset cannot have a good approxi-
mation, even when a lot of space is uti-
lized. Figure 3c also shows a slight improve-
ment with larger approximate cubes.

In sum, we suggest that the size of
the approximate data cube is a factor that
should be selected with respect to the type
of the dataset. For compressible datasets,
Hybrid* Ordering is more efficient with
larger approximations.

CONCLUSION AND
FUTURE WORK

We introduced a general framework
for providing fast and progressive answers
for range-aggregate queries by utilizing the
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wavelet transformation. We conducted
extensive comparisons among different
ordering schemes and prescribed solutions
based on factors such as the compressibil-
ity of the dataset, the desired accuracy, and
the response time. In sum, our proposed
Hybrid* algorithm results in the minimal
retrieval cost for real-world datasets with
(even slight) inter-correlation. In addition,
its utilization of a small approximate data
cube as the initial step generates a good
and quick approximate answer with mini-
mum overhead. Another main contribution
of this article is the observation that data-
only ordering of wavelets results in the
worst retrieval performance, unlike the case
of the traditional usage of wavelets in sig-
nal compression applications. Our current
and future work is oriented towards inves-
tigating other factors, such as the type and
frequency of queries, and the amount of
available additional storage.
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