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ABSTRACT

In many settings it is required that items are recommended to a
group of users instead of a single user. Conventionally, the objec-
tive is to maximize the overall satisfaction among group members.
Recently, however, attention has shifted to ensuring that recom-
mendations are fair in that they should minimize the feeling of
dissatisfaction among members. In this work, we explore a sim-
ple but intuitive notion of fairness: the minimum utility a group
member receives. We propose a technique that seeks to rank the
Pareto, or unanimously, optimal items by considering all admissible
ways in which a group might reach a decision. As our detailed
experimental study shows, this results in top-N recommendations
that not only achieve a high minimum utility compared to other
fairness-aware techniques, but also a high average utility across all
group members beating standard aggregation strategies.
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1 INTRODUCTION

The typical role of a recommender system is to suggest items to
individual users for consumption based on their preferences. In
many settings however, a recommendation to a group of people
rather than to a single user is required, e.g., to friends planning
their summer vacation destination [1], or to a family deciding on
a TV program to watch [32]. The added difficulty here is that rec-
ommendations should satisfy all group members, which can have
diverse or even conflicting preferences. The absence of (or difficulty
of obtaining) any information about the group’s decision process
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and dynamics, which is often the case with ad hoc, or ephemeral,
groups, further complicates the job of the recommender. Therefore,
one of the primary challenges for group recommenders is to decide
what the group preferences are, or more precisely how to derive
them from individual preferences.

We discern two basic paradigms for providing group recommen-
dations. The first is to aggregate profiles of individual members, e.g.,
their rating history in a pure collaborative filtering setting, so as to
construct a group profile. In this way, the group can be treated as a
virtual user, and standard techniques to provide recommendations
can be employed. The second paradigm is to aggregate recommen-
dations compiled for each member separately. Inspired by social
choice theory, numerous aggregation strategies for profiles and
recommendations have been used [14]. For example, the average
strategy assigns to an item a group rating calculated as the average
of (predicted) member ratings, whereas the least-misery strategy
assigns the lowest member rating. In this work, we focus on this
latter paradigm.

In the vast majority of work on group recommenders, the canoni-
cal objective is to maximize the group’s overall satisfaction with the
recommended list. However, more recently, there has been great
interest in making recommendations that are fair to each group
member [11, 21, 29]. In this context, fairness attempts to minimize
the feeling of dissatisfaction within group members. In this work,
we propose a simple but intuitive definition of fairness. Suppose that
we have a measure of quantifying the satisfaction, or utility, that a
group member receives from a list of recommendations. Then, for a
specific list of recommendations, we can define the group utility to
be the average member utility (e.g., the social welfare according to
[11]), and fairness to be the minimum member utility. Intuitively, a
list that minimizes the dissatisfaction of any group member should
be regarded as the most fair. In this sense, fairness enforces the
least misery principle among member utilities [11].

The aforementioned notions of group utility and fairness crit-
ically depend on how a member’s individual utility is quantified.
Intuitively, we want to assign a high utility whenever a list of group
recommendations satisfies, i.e., closely matches, the member’s indi-
vidual preferences. Assume that the system can extract the top-N
items to individually recommend to this member; e.g., using any
collaborative filtering technique for top-N recommendations. This
top-N list is considered the ground truth for this member, achieving
the highest possible utility (to the best of the system’s knowledge of
the user’s preferences). Then, the utility of any other list should be
computed relative to this ground truth. Therefore, for a particular
group member we define her utility of a list of group recommenda-
tions as the similarity between the list and the member’s personal
ground truth. We note that as there exist several natural measures
that quantify similarity between two lists, including symmetrical
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ones, e.g., Spearman’s footrule or rho, Kendall’s tau, and unsym-
metrical ones, e.g., precision, recall, average precision, normalized
discounted cumulative gain (ndcg), any among them could be used
to define a member’s utility.

We remark that our definition of utility differs from that in
[11], where the member’s utility to a list of recommendations is
equal to the sum of relevances (e.g., explicit ratings) of each item
in the list. This implies that each item has the same contribution
to the member’s utility irrespectively of its position in the list.
As a result, a list and its reverse are considered to have the same
utility. This makes sense when recommending packages to groups
(e.g., [21, 29]), but is counterintuitive for top-N recommendations.
More interestingly, however, our definition of utility essentially
generalizes an implicit definition made in [2]. There, the quality of a
group recommender is quantified in terms of the average ndcg that
the list achieves for each member. In other words, each member
has a ground truth list compiled from her ratings, and the utility of
a list to a member is given by the ndcg with respect to her ground
truth.

Our approach for making fair top-N group recommendations is
based on the notion of Pareto optimality. An item is Pareto optimal
for a group if there exists no other item that ranks higher according
to all group members. In other words, there exists no item that is
considered by the group unanimously better than a Pareto optimal
item. The set of Pareto optimal items is inherently fair in the sense
that it includes the top choice for each group member. In addition,
it includes other items, besides the top-1’s, that represent different
trade-offs among members; e.g., an item that is the second best for
all members might be a better option than an item ranking first for
just one member. The set of Pareto optimal items is also complete in
the sense that it contains only those items that can be the top choice
of any rational (monotonic with respect to member’s preferences)
group decision.

To compile a list of top-N recommendations, we consider among
items in the set of N-level Pareto optimal items, a notion that ex-
tends the aforementioned properties for the top-1 choice to the case
of top-N choices. This ensures that no member is treated unfairly,
as each has an equal chance to contribute to the group recommen-
dations. However, we also need to ensure that we select N items
so that they represent good choices for each member. Thus, we
propose a simple method that assigns to each item in the Pareto
optimal set a score proportional to its probability of being within
the top-N choices among all possible rational group decisions. In-
tuitively, we seek items that represent good compromises among
the group members, and the higher this probability is for an item,
the better its compromise is expected to be. The list of top-N group
recommendations consists of the N items that have the highest
such score.

We propose two variants on this basic idea. The first makes N
recommendations among the set of N-level Pareto optimal items.
The second, first selects a level k < N such that the number of
k-level Pareto optimal items is at least N, and then chooses the best
N among them.

We perform a detailed evaluation study using synthetically gen-
erated groups of users based on the MovieLens dataset. We create
groups of 2 up to 8 random or similar users, and request 5 up to
100 group recommendations. We compare our methods against
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standard recommendation aggregation methods, as well as fairness-
aware techniques. Our results demonstrate that our Pareto-based
recommenders produce not only recommendations that signifi-
cantly more fair, but that also have higher group utility, in almost
all settings tested. The gains in fairness of our methods are more
pronounced in settings that matter the most in practice, e.g., in the
first few ranks and for medium-sized groups. Other notable conclu-
sions from our evaluation include the following. As the size of the
group increases, it becomes harder to make fair recommendations
to them, especially for groups of random users. On the other hand,
as the number of requested recommendations increases, it becomes
easier to produce fair recommendations.

The remainder of this paper is organized as follows. Section 2
presents related work. Then Section 3 defines the problem and
introduces our approach, and Section 4 presents the results of our
evaluation study. Section 5 concludes with general observations.

2 RELATED WORK

Literature on group recommenders is rich; we refer the reader to
[10, 14] for a systematic treatment of this research area.

One important distinction is whether groups are persistent or
ephemeral. In the former case, e.g., a household, there is typically
enough historical information about group-item interactions to
treat the group as a virtual user for whom recommendations are
made. In the latter case, groups are formed ad-hoc, e.g., a bunch of
friends arranging a dinner, and thus there no historical data about
how group-item interactions. There is also the case in-between of a
few observed group-item interactions, where techniques [5, 23, 26]
try to make use of both member-item and group-item interactions.
In this work, we deal with ephemeral groups.

There exist two basic paradigms for providing recommendations
to ephemeral groups. In profile aggregation, also referred to as ag-
gregated model [3] or group model [13], a group profile is created
by aggregating the profiles of group members, see e.g., MusicFX
[16], Yu’s TV recommender [32], and the content-based TV recom-
mender in [28]. In this way, the group can again be treated as a
virtual user, and standard recommendation techniques apply. The
second paradigm is to aggregate recommendations compiled for
each member separately. Inspired by social choice theory, numer-
ous aggregation strategies for profiles and recommendations have
been used [14].

We further distinguish two classes of strategies for aggregating
recommendations. In the first, termed rating aggregation, an item
is explicitly assigned a group rating determined by an aggregation
over the predicted member ratings. The aggregation strategies are
mostly inspired by social choice theory (see [13] for an overview),
and include taking the average, the minimum a.k.a. least misery
principle of not strongly displeasing any member, the maximum for
ensuring the greatest pleasure among members, and the product.
The vast majority of past work falls in this category; for reference
we mention the following systems: POLYLENS [17] that aggregates
recommendations assuming least misery, and INTRIGUE [1] that is
an interesting hybrid that first identifies sub-groups among groups
(e.g., children, or disabled persons) and creates an aggregate profile
for each, and then aggregates recommendations using a weighted
averaging scheme.
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In the second class, termed rank aggregation, the position of
an item in the outputted group recommendation list is explicitly
determined. Here the inspiration comes from rank aggregation
techniques for top-k lists [6, 7]. The work in [2] introduced this ap-
proach for group recommenders, where Borda count and Spearman
footrule aggregation were used.

It has been observed, e.g., in [15], that group dynamics play
a key role in group decisions. Therefore, several group recom-
menders take also into account the group composition. For example,
[8, 24, 25] study the social connections among members, while [22],
[3], and [12] consider the personality traits, roles, and authority on
topics, respectively, of group members. This line of work however
does not apply in our setting, where we make minimal assumptions
about what information is available to the recommender. Specifi-
cally, we only assume member-item interactions are known.

While a significant focus on group recommenders research is
on the group’s satisfaction, there is some recent work that seeks
to ensure fairness in group recommendations. A simple idea is to
include in the aggregation function a penalty term that measures
the amount of variation in the predicted ratings among the group
members [10]. [30] uses the median of predicted member ratings,
so as “to cause the lowest overall change of the individual user
preference”. Fairness for groups can also be considered as a multi-
stakeholder recommendation problem, where each member and
the whole group can be viewed as different stakeholders; fairness
in such settings is discussed in [4].

For the problem of recommending packages, i.e., a set of items
instead of a single item, to groups, the work in [20] considers a
fairness measure when compiling packages. Specifically, a package
is fair to a group member if it contains at least one item that the
member ranks with her top-N items. The goal of the system is to
identify the best package, where each package is assessed by a score
that is the product of the group utility of its items and the ratio of
users that find it fair. We refer to the greedy algorithm in [20] as
GREF. For the same problem of package to group recommendations,
[29] extends the previous fairness measure to m-proportionality,
which is the ratio of members that find at least m items in the
package to be within their top-N choices. Moreover, the concept of
m-envy-freeness is introduced, which is the ratio of members that
find at least m items in the package so that their predicted rating
for each item is among the best A% ratings the item is predicted to
receive by the other members. [29] introduces greedy algorithms,
which we denote as SPG and EFG, to maximize m-proportionality
and m-envy-freeness, respectively.

For the problem of top-N recommendations to groups, [11] de-
fines the utility of a member to a list as the (normalized) sum of
predicted relevance values (e.g., ratings) of all items in the list. Then,
the group utility (termed social welfare) is the average member util-
ity. Fairness is considered in four flavors that operate over member
utilities. Least misery fairness is the minimum utility of a member;
variance fairness is the negative variance of the member utilities;
min-max ratio fairness is the ratio of the minimum to maximum
member utility; Jain’s fairness is the ratio of the average squared
member utility over the square of the average member utility. The
objective is to create top-N recommendations that have both high
group utility and fairness. The best performing algorithm is a greedy
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method, which we denote as GVAR, that optimizes for variance
fairness.

A significant line of work concerns the evaluation of group rec-
ommenders. The seminal work of [15] studies what factors influence
group satisfaction and how it differs from individual satisfaction.
A comparative evaluation of profile aggregation strategies can be
found at [27], while studies of profile aggregation and rating ag-
gregation methods are presented in [3, 18]. We also note that [2]
compares rank aggregation techniques with rating aggregation but
finds no clear winner.

3 APPROACH

Problem Definition. For the remaining of this section, we consider
a particular group g consisting of m users. The only requirement
from the system is that it can generate top-N recommendations for
each group member. We refer to the top-N list for a member as her
ground truth. The member utility of a list of group recommendations
is equal to a similarity measure between the list and the member’s
ground truth. The group utility of a list is the average member utility.
The fairness of a list is the lowest member utility. The problem is
to compile a list of top-N recommendations to the group so as to
maximize fairness.

Preliminaries. Any item i can be described as a vector in R™
space, where each dimension corresponds to a group member, say u,
and its coordinate equals the rank ry, (i) of the item for this member.
Consider the example shown in Figure 1 about a group of two users,
uq and uy. The top-6 items for user u; are iy, i3, is, i1, ig, is, While
for uy are iy, ig, io, i3, ig, I5. Item i; ranks fourth for one member
and first for the other, and is thus represented by the point (4, 1)
on the plane. Observe that it is often impossible to compare two
items, e.g., i1 and iz as they represent different trade-offs among
the group members. In some case, however, one item, e.g., i1, can
be clearly better than another, e.g., i4.

We say that item i dominates another i’ according to group g,
if for each member item i ranks at least as good as i, and there
exists at least one member for whom i ranks better, i.e., Vu € g :
ru(i) < ry(i’), and Fu’ € g : ry (i) < ry(i’); we assume that ties
in ranks are possible. Intuitively, dominance means that the group
unanimously agrees that i is a better item than i’, as is the case with
i1 dominating i4 in the example.

An aggregation strategy is Pareto-efficient, or simply Pareto, if
whenever every member ranks one item higher than another, then
so does the strategy [31]. In other words, a Pareto aggregation
strategy respects the dominance relation among items, e.g., would
never rank iy before i1. We note that all preference (rating or rank)
aggregation strategies are Pareto.

The set of items that are not dominated by any other are called
Pareto optimal. The top item according to any Pareto aggregation
strategy is Pareto optimal. Items i; and iy comprise the set of Pareto
optimal items in the example. Generally, we can define the N-level
Pareto optimal set to contain items that are dominated by at most
N —1 other items. Thus, the top-N choices according to any Pareto
aggregation strategy are within the N-level Pareto optimal set. Item
i3 (resp. ig) is 2-level Pareto optimal as it is dominated by only one
item iy (resp. i1). On the other hand items i5 and i¢ are dominated
by at least two and are not 2-level Pareto optimal.
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Figure 1: Example of six items depicted as points based on
their ranks by the two group members; items i; and iy are
Pareto optimal; items i;—is are 2-level Pareto optimal.

Approach. Note that to identify the exact set of N-level Pareto
optimal items, we would need to obtain the rank of each item to
each user. In case this is impractical, we can approximate this set
with the following process. We request top-N’ recommendations
for each group member, where N’ > N is the largest number of
items the system can recommend, and take their union. Among
this subset of items, we identify the N-level Pareto optimal items,
which we take to be the approximation to the overall N-level Pareto
optimal items. For what follows, we refer to this extracted set as
the N-PO items.

Our approach will select N among the PO items to compile
the group recommendation list. Particularly, it assigns a score to
each PO item and then ranks them decreasingly on this score. We
would like the score of an item to represent the probability that any
Pareto aggregation strategy would rank the item among the top N
choices. As enumerating all possible Pareto aggregation strategies
is infeasible, we restrict ourselves to the case of a particular family
of aggregation strategies.

Specifically, we consider the class of linear aggregation strategies,
which includes the average aggregation strategy and each mem-
ber’s individual ranking. A linear strategy assigns weights to each
member and essentially computes a weighted sum of the ranks of an
item. Therefore, such a strategy can be uniquely represented by its
weight vector in the R™ space. Recall, that a hyperplane (line in 2d)
orthogonal to the weight vector captures the space of possible items
that achieve the same rank. In our example, weight w = (3/7,4/7)
represents the linear aggregation strategy that places i; and iy at
the same rank. As there is no other item that lies on the space
between the origin and this line, we deduce that items i1 and iz are
at the top rank according to linear strategy w.

In our example with a group of 2 users, observe that it is straight-
forward to compute the probability with which a linear strategy
would rank an item at the top. Only the Pareto optimal items would
have a nonzero probability, and, in fact, iz has a probability of 4/7,
while i1 of 3/7. To understand this, observe that any strategy other
than w would either place i1 or iy as the single top choice. A vector
assigning a higher relative weight to member u; than uy would rank
ip higher than i; (iz is the best option for u; individually, while i;
is the best for u3). Any such vector in favor of iz has slope that falls
in the bottom-right (red shaded) segment of the quadrant, which
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represents all possible slopes. Conversely, any vector favoring iy
over iy has slope in the top-right (blue shaded) segment. Since the
former segment is larger than the latter (by a factor of 4 : 3), one can
then argue that if all aggregation strategies are equally probable,
item iz is more likely to be the best choice for the group.

While, such an analytical computation of probabilities of in-
clusion in the top-N is possible for the case of groups with two
members, the general case is not as it entails computing the con-
vex hull of items and enumerating its facets [19]. Thus, we opt
for a simple Monte Carlo method for computing said probabilities.
Specifically, we generate a large number of random weight vectors,
each representing a different linear aggregation strategy, and count
how many times each N-PO item ranks within the top-N. Then,
items are ranked decreasingly by their counts, and the top-N are
returned as the group recommendations. We call this approach
N-level Pareto Optimal aggregation, or simply NPO.

Recall than NPO looks for items to recommend among the pool
of N-level Pareto optimal items. As this set can be much larger than
N, we also consider a variant of NPO that chooses among a smaller
pool of items. Specifically, we perform binary search to identify
the smallest level x € [1, N| such that there are at least N items in
the x-level Pareto optimal set. Then, we follow the same ranking
mechanism based on random weight vectors. We call this approach
x-level Pareto Optimal aggregation, or simply XPO.

4 EVALUATION

Section 4.1 describes out experimental setup, while Section 4.2
presents the results of our evaluation.

4.1 Setup

Dataset. For our evaluation, we use the MovieLens 1M dataset
[9] containing 6,040 users, 3,952 items (movies), and 1,000,209 rat-
ings. We synthetically create groups of size m = 2 up to 8 of two
different kinds. In RND we assign users to groups sampling uni-
formly at random from MovieLens. This corresponds to the real
life equivalent of groups with unrelated members, such as those
visiting a shop. In SIM we choose users that are similar to each
other, corresponding for example to groups of friends with similar
taste. Specifically, starting from a randomly selected user, the group
is build incrementally by adding the most similar (in terms of mean-
centered cosine similarity) user to the group. Similar to previous
work [11, 21, 29], we use a simple matrix factorization technique to
fill in the missing ratings in the dataset. For each group, we select
200 items at random, and we set the ground truth of each member to
her top-N items among them recommended by the system, where
N varies from 5 up to 100.

Methods. Our evaluation compares our methods, denoted as NPO
and XPO, with score aggregation, rank aggregation, and fairness-
based methods. AVG, LM, MAX, and MUL implement the additive,
least-misery, maximum-pleasure, and multiplicative score aggrega-
tion strategies, respectively [14]. BORDA and MED are two rank
aggregation strategies [2], that assign to an item its average or
median rank, respectively; MED is preferred over the Spearman’s
footrule-based method of [2] as an approximation of the Kemeny
optimal rank, due to its lowest time complexity. PEN is the sim-
ple method from [10] that introduces a variance-based penalty;
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GRF corresponds to the group rating fairness method of [21]; SPG
and EPG to the single proportionality and envy-freeness greedy
algorithms of [29]; and GVAR to the greedy variance algorithm of
[11].

Evaluation Metrics. Each method is evaluated primarily on its
fairness and secondarily on its group utility. Both these measures
are defined with respect to the member utility which quantifies the
similarity of a list o to the member’s ground truth o,,. We denote
by o[k] the item at the k-th position, and by o[: k] the first k items
in list 0. We consider four similarity metrics where higher values
are better; the first takes values in the range [—1, 1], while all others
in [0, 1].

Kendall’s 7. A pair of items is concordant if their relative ranking
is the same in both lists, and discordant if their relative ranking is
reversed in the lists. A pair of items that are at the same rank in one
list is neither concordant nor discordant. Any item that does not
appear in one list is considered to be at the last rank. Kendall’s 7 is
the number of concordant minus the number of discordant pairs,
normalized by the number of possible pairs.

P@k. The precision at position k of a list w.r.t. a member’s ground
truth measures the ratio of items in the first k positions of the list
that appear in the ground truth:

lo[1:k] N oy

P@k =
@ k

AP. The Average Precision (AP) of a list w.r.t. a member’s ground
truth is the average of precision at every recall level (a position in
the ranking where a relevant item is found), and is computed as:

1
AP = — P@kak Noyl,
ug@ lolk1 N oul

where |o[k] N o;| indicates whether the item at the k-th position
of list o is in the member’s ground truth.

NDCG@k. As in [11], we use Borda semantics and set the rele-
vance of an item at position k in the ground truth equal to N -k + 1.
We denote the relevance of a ground truth item i as ry(i). The
Discounted Cumulative Gain (DCG) at position k of a list w.r.t. a
member’s ground truth is:

IDCG@k is the maximum possible DCG@k, and the Normal-
ized Discounted Cumulative Gain at position k is NDCG@k =
DCG@k/IDCG@k.

The reported values of fairness and group utility are the averages
among 100 randomly generated groups.

4.2 Evaluation Results

Default Setting. In the first experiment, we investigate the fair-
ness and group utility achieved by all methods, for the default set-
ting where we fix the size of group to m = 5 and request the N = 20
recommendations. We consider various alternative definitions of
member utility: Kendall’s 7, average precision, and precision and
NDCG at ranks 1, 5, 10, 20.
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Table 1 present the results for groups of five random users. The
first set of columns correspond to fairness, while the last to group
utility. For each column, the best value is shown with bold.

Let us first investigate fairness, where the most important ob-
servation is that for all examined flavors, the best value is attained
by one of our methods, seven times by XPO and three times by
NPO. In all cases, the margin is quite large, e.g., for NDCG@20,
XPO achieves 0.579, NPO 0.472, while the third best method, MUL,
only 0.438. Moreover, for all flavors except Kendall’s 7, the sec-
ond best method is our other method. Consistently among fairness
flavors we find that: among score aggregation techniques, AVG
and MUL are the strongest; among rank aggregation, BORDA is
the best; among fairness-aware recommenders, PEN and GVAR
appear stronger. Across categories, we find that score aggregation
techniques perform better than rank aggregation or fairness-aware
methods.

The results with respect to group utility are suprisingly analo-
gous. The method that achieves the highest group utility is one of
our fairness-aware methods, except in the case of Kendall’s 7. The
margins are this time smaller, and in some cases the second best
method is not our other method, but instead one of AVG, PEN, or
GVAR. Regarding our methods, we observe that NPO makes better
choices for the first few ranks (higher P@1 and NDCG@1) while
XPO makes better choices down the list.

Table 1 present the results for groups of five similar users. The
trends shown there are consistent with those in the case of groups
with random members. As expected, making recommendations for
groups of like-minded users is an easier task and this is evidenced
by the higher values across all measures. Again, NPO and XPO
are the best two methods for fairness and group utility across all
flavors (except Kendall’s 7) with a wide margin. Between them,
NPO appear stronger when evaluated at the first ranks, but XPO is
overall the (r and AP) the most effective method. Among the other
methods, AVG is consistently the third best group recommender.

Varying Group Size. In the second experiment, we investigate the
effect of group size in fairness as we request for top N = 20 group
recommendations; findings on group utility are somewhat similar
and omitted. We only show results on member utilities defined
as Kendall’s 7, AP, NDCG@1, and NDCG@5; other flavors show
similar results and are omitted.

Figures 2 and 3 show fairness vs. m for groups of random and
similar users, respectively. As the number m of users increases all
flavors of fairness decrease, meaning that it becomes harder to
provide fair recommendations to more users, especially if they are
randomly selected. In all setting tested, the most fair method is
one of NPO and XPO. Particularly, XPO achieves a wide margin
in terms of fairness measured for the entire recommended list, as
shown by member utility defined in terms of 7 and AP. NPO is the
method that places at the first few ranks items that are considered
fair, particularly in the case of smaller groups. For large groups
and/or lower ranks, XPO is the most fair. Among the other methods,
we observe that in most cases AVG is the most fair with MUL and
PEN closely following.
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Table 1: Fairness and Group Utility for RND; m = 5, N = 20

Fairness Group Utility

T AP P@1 P@5 P@10 P@20 ndcg@1 ndeg@5 ndeg@10 ndcg@20 T AP P@1 P@5 P@10 P@20 ndcg@1 ndeg@5 ndeg@10 ndcg@20
AVG -0.352 0.126 0.490 0.294 0.3 0.267 0.249 0.302 0.314 0.298 -0.221 0.258 0.702 0.575 0.490 0.399 0.694 0.596 0.530 0.455
LM -0.414 0.071 0.385 0.208 0.196 0.165 0.234 0.226 0.222 0.197 -0.305 0.171 0.632 0.484 0.385 0.276 0.621 0.510 0.431 0.341
MAX -0.339 0.070 0.424 0.142 0.2 0.223 0.009 0.118 0.177 0.208 -0.052  0.224 0.346 0.428 0.424 0.399 0.344 0.409 0.413 0.400
MUL -0.356 0.121 0.486 0.288 0.295 0.260 0.249 0.299 0.311 0.290 -0.228 0.250 0.702 0.570 0.486 0.389 0.694 0.593 0.526 0.446
BORDA  -0.413 0.075  0.406  0.15 0.206 0.217 0.063 0.136  0.186 0.210 -0.301 0.198  0.478  0.441 0.406 0.352 0.469  0.441 0.417 0.378
MED -0.435 0.080  0.427 0.1 0.177 0.237 0.008 0.079  0.141 0.211 -0.301 0.225 0.364 0398  0.427 0.395 0.359  0.383  0.408 0.396
PEN -0.352 0.123  0.488  0.294  0.298 0.261 0.249 0.304  0.313 0.293 -0.225 0.254  0.702  0.571 0.488 0.394 0.694  0.594  0.528 0.450
GRF -0.375 0.094 0.473 0.26 0.255 0.226 0.074 0.246 0.258 0.245 -0.231 0.243 0.53 0.550 0.473 0.379 0.521 0.545 0.493 0.423
SPG -0.434 0.084 0.427 0.1 0.176 0.236 0.063 0.095 0.152 0.218 -0.299 0.230 0.498 0.403 0.427 0.395 0.488 0.411 0.423 0.406
EFG -0.435 0.082 0.427 0.098 0.177 0.237 0.034 0.087 0.147 0.214 -0.301 0.226 0.404 0.398 0.427 0.395 0.394 0.389 0.411 0.398
GVAR -0.352 0.123 0.491 0.296 0.299 0.267 0.189 0.294 0.307 0.294 -0.222 0.256 0.664 0.576 0.491 0.399 0.656 0.590 0.526 0.452
NPO -0.349  0.132 0482  0.274  0.289 0.281 0.305 0307 0.314 0.311 -0.223 0.264  0.742 0.557  0.482 0.415 0.732  0.589  0.525 0.466
XPO -0.212 0.205 0.566 0.386 0.396 0.376 0.268 0.383  0.403 0.406 -0.094 0.326 0.724 0.629 0.566 0.485 0.716 0.642 0.594 0.532

Table 2: Fairness and Group Utility for SIM; m = 5, N = 20

Fairness Group Utility

T AP P@1 P@5 P@10 P@20 ndcg@1 ndeg@5 ndeg@10 ndeg@20 T AP P@1 P@5 P@10 P@20 ndcg@1 ndeg@5 ndeg@10 ndeg@20
AVG -0.241 0.239  0.633  0.552  0.438 0.367 0.816 0.609  0.510 0.437 -0.091  0.390 0.924 0.755  0.633 0.495 0.923 0.793  0.695 0.577
LM -0.262 0.211 0.590  0.54 0.388 0.327 0.816 0.602 0.476 0.403 -0.120  0.354  0.924 0.745  0.590 0.452 0.923 0.785 0.664 0.542
MAX -0.187 0.151 0.559  0.276  0.326 0.332 0.135 0.252 0.313 0.329 0.149 0345 0496  0.556  0.559 0.526 0.494  0.543  0.549 0.530
MUL -0.242 0.238  0.632  0.556  0.434 0.366 0.816 0.612 0.508 0.438 -0.091 0389 0924 0.758  0.632 0.494 0.923 0.795 0.694 0.576
BORDA  -0.458 0.085 0.341 0.096 0.148 0.235 0.077 0.101 0.134 0.203 -0.358  0.206 0.304 0.318 0.341 0.371 0.301 0.315 0.332 0.357
MED -0.527 0.066 0.275 0.056 0.11 0.185 0.020 0.045 0.090 0.154 -0.420  0.182 0.196 0.229 0.275 0.339 0.196 0.217 0.252 0.306
PEN -0.242 0.237 0.632 0.552 0.434 0.364 0.816 0.609 0.507 0.437 -0.092  0.388 0.924 0.754 0.632 0.493 0.923 0.792 0.694 0.575
GRF -0.329  0.150  0.542  0.292  0.332 0.338 0.137 0.259  0.301 0.321 -0.183  0.317 0368  0.506  0.542 0.484 0.367 0.475 0.511 0.483
SPG -0.525 0.069  0.276  0.056  0.11 0.185 0.097 0.060  0.099 0.159 -0.417 0.187 0332 0.234  0.276 0.339 0329  0.246  0.269 0.317
EFG -0.527 0.067  0.275 0.056  0.11 0.185 0.020 0.049  0.092 0.155 -0.420 0.182 0.2 0.229  0.275 0.339 0.199  0.218  0.252 0.306
GVAR -0.250  0.206  0.630  0.512  0.438 0.367 0.176 0.472 0.435 0.390 -0.105  0.357 0.4 0.710  0.630 0.496 0.399  0.666  0.626 0.534
NPO -0.234 0.268 0.650 0.636  0.46 0.377 0.922 0.708 0.561 0.472 -0.103  0.413 0.988 0.822 0.650 0.509 0.984 0.862 0.728 0.601
XPO -0.003 0.377 0.739 0.616 0.582 0.508 0.855 0.668 0.632 0.579 0.111 0.495 0.948 0.801 0.739  0.605 0.947 0.832 0.779 0.674

Varying Top-N. In the last experiment, we fix the group size
to m = 5 and request from N = 5 up to 100 group recommenda-
tions. As before, we report the fairness flavors on Kendall’s 7, AP,
NDCG@1, and NDCG@5, and omit results on group fairness.

Figures 4 and 5 depict fairness vs. N for groups of random and
similar users, respectively. Increasing the number of requested rec-
ommendations means that the length of the ground truth lists also
increases, and thus all flavors of fairness increase with N. In almost
all settings, NPO or XPO are the most fair group recommenders,
but their margin decreases with N. It is worth mentioning that
for groups of similar users when N = 100, the most fair method
in terms of NDCG@1 and NDCG@5 is plain AVG. In this setting,
half of the items to choose from are relevant, and thus NDCG val-
ues approach 1. For smaller values of N, and particularly in terms
of NDCG-based fairness, our methods offer significant benefits in
groups of similar users.

5 CONCLUSIONS

In this work, we propose two novel top-N group recommenders
that are fairness-aware. More precisely, the notion of fairness is
intuitively defined in terms of the minimum utility any group mem-
ber attains from the recommended list. A member’s utility is in
turn relative to her own’s best possible list of recommendations.
The main idea behind our recommenders is that they focus on the
Pareto optimal items, and seek to rank them in an objective and fair
manner that treats each member equally. Specifically, our methods
consider a class of Pareto efficient aggregation strategies and esti-
mate the probability of an item to belong within the top-N ranks

of any such strategy. Items are then ranked decreasingly by their
estimated probability.

Experiments on synthetically generated groups over a real dataset
show that in a variety of settings our two group recommenders
are not only the best in terms of fairness, but also in terms of the
overall group utility. Our study has also made some interesting ob-
servation regarding existing group recommenders, fairness-aware
or not. The effectiveness of all methods decreases as the number
of random users in a group increases. The phenomenon is much
less pronounced in groups of similar users. In general, high inter
group similarity tends to favor non fairness-based methods. Sur-
prisingly, we find that score aggregation methods are more fair
than existing fairness-aware methods, with the traditional average
and multiplicative strategies being the best performers.

In the future, we would like to closely investigate the perfor-
mance of our two methods, and identify exactly when and why one
is expected to outperform the other. The goal is to define a hybrid
that is the single most fair method across settings.
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