
Continuous Monitoring of Nearest Trajectories

Dimitris Sacharidis
Institute for the Management

of Information Systems
R.C. ATHENA

dsachar@imis.athena-
innovation.gr

Dimitrios Skoutas
Institute for the Management

of Information Systems
R.C. ATHENA

dskoutas@imis.athena-
innovation.gr

Georgios Skoumas
Knowledge and Database

Systems Laboratory
National Technical University

of Athens, Greece
gskoumas@dblab.ntua.gr

ABSTRACT
Analyzing tracking data of various types of moving objects is an in-
teresting research problem with numerous real-world applications.
Several works have focused on continuously monitoring the nearest
neighbors of a moving object, while others have proposed similar-
ity measures for finding similar trajectories in databases containing
historical tracking data. In this work, we introduce the problem of
continuously monitoring nearest trajectories. In contrast to other
similar approaches, we are interested in monitoring moving objects
taking into account at each timestamp not only their current po-
sitions but their recent trajectory in a defined time window. We
first describe a generic baseline algorithm for this problem, which
applies for any aggregate function used to compute trajectory dis-
tances between objects, and without any restrictions on the move-
ment of the objects. Using this as a framework, we continue to
derive an optimized algorithm for the cases where the distance be-
tween two moving objects in a time window is determined by their
maximum or minimum distance in all contained timestamps. Fur-
thermore, we propose additional optimizations for the case that an
upper bound on the velocities of the objects exists. Finally, we
evaluate the efficiency of our proposed algorithms by conducting
experiments on three real-world datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms

Keywords
moving objects, nearest neighbors, continuous monitoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3131-9/14/11 ...$15.00
http://dx.doi.org/10.1145/2666310.2666408

1. INTRODUCTION
The increasingly widespread use of GPS enabled devices and

other positioning technologies has made possible the tracking and
monitoring of various types of moving objects, such as cars, peo-
ple or animals. This has consequently lead to the study of a broad
range of queries in a multitude of settings and applications. Re-
trieving objects whose motion is “similar” to that of a target query
object is one of the most basic and useful analytical queries. In
the literature, two important types of such moving object similar-
ity queries have been proposed, the Nearest Neighbor (NN) and
the Nearest Trajectory (NT), also known as trajectory similarity,
queries. Both types define a similarity (or equivalently a distance)
metric between moving objects, and return the top-k most simi-
lar (or equivalently least distant) objects with respect to a specified
moving query object. The distinguishing characteristic is the defi-
nition of the metric. Generally speaking, NN queries, e.g., [5, 8],
are concerned with the distance between individual locations of
moving objects, i.e., at some particular time instance, whereas NT
queries, e.g., [19, 21] take into account the distance between the
trajectories of moving objects, i.e., for the sequence of locations
over a time interval.

Both query types have been extensively studied for historical
data, which can be stored on disk and indexed by specialized data
structures. To the best of our knowledge, however, only NN queries
have been considered in a continuous monitoring setting, where
new object locations continuously arrive, and the result must be
accordingly updated. This work introduces and studies Continuous
Nearest Trajectory (CNT) queries. Given a trajectory distance, i.e.,
a metric aggregating individual location distances within a speci-
fied time window, a CNT query continuously returns the set of k
objects that have the smallest trajectory distance to a given query
object. CNT queries are a natural extension of both continuous
NN queries, in the sense that the recent trajectory (and not only the
last location) of objects is considered, as well as of historical NT
queries, in that the result is computed and maintained in real-time.

We note that existing approaches do not extend for CNT queries.
This is obvious for methods designed for historical data, as they
take advantage of specialized index structures (which are not suit-
able for highly dynamic streaming data), and have the entire trajec-
tory completely known upfront. Moreover, algorithms for continu-
ous NN queries cannot be adapted for CNT. The main reason being
that these methods assume that either the objects [34] or the query
[31, 29, 17] is stationary, and define validity or influence spatial
regions, which guarantee that the result will not change as long as
the query object remains inside the region, in the former case, or
that objects do not cross the region, in the latter case. Note that
the latter methods can handle moving queries but only by treating
them as new queries. This means that previous computations are

no longer useful and the result needs to be computed from scratch,
a scenario which is only tolerable when the query object changes
location infrequently. Therefore, a validity/influence region-based
approach is not possible for CNT queries, where both the query ob-
ject and the other objects move continuously and freely. However,
we show that, in a specific setting (concerning the definition of the
trajectory distance and assuming maximum velocities), it is possi-
ble to determine the minimum expected time when a moving object
can influence the result.

There are some other works dealing with different types of con-
tinuous queries on moving objects, which however do not extend
for CNT queries either. In a setting similar to ours, [2] defines
a trajectory distance metric, and continuously computes the spa-
tiotemporal trajectory join, i.e., determines pairs of objects whose
trajectory distance does not exceed a given threshold. In other
words, the underlying computation is answering a range query un-
der a hard threshold, which is always easier to process as the search
space is restricted. In contrast, the k-th trajectory distance in CNT
queries is not known beforehand and can be arbitrarily high, mak-
ing the methods of [2] inapplicable for CNT queries. Another work
[27] proposes an online method to determine groups of objects that
move close together, i.e., within a disk of a given radius. In their
problem, only the distance between individual locations is taken
into account and the threshold is also hard, making their ideas not
suitable for CNT queries.

Given these observations, we propose a generic baseline algo-
rithm, termed BSL, for processing CNT queries. This approach
makes no assumptions regarding the underlying trajectory distance
function or the movement of the objects. Thus, it serves as a frame-
work for adapting and optimizing algorithms to more specific cases.

Building upon this, we derive an optimized algorithm, called
XTR, for the cases where the trajectory distance between two mov-
ing objects is defined based on the extrema (maximum or mini-
mum) of individual location distances. The maximum-defined CNT
query establishes a distance guarantee that spans the time window
within which trajectories are examined, and can be used, for ex-
ample, to determine how far the nearest objects have strayed. The
minimum-defined CNT query determines objects that have come
close to the query at any time during the recent past, and can be
thought of as a continuous NN query with “memory”. On the
other hand, using both the minimum and the maximum location
distances, gives a more informative description of the movement of
an object, as it determines the tightest annulus (donut) around the
query that contains the object’s trajectory.

Moreover, we study the aforementioned case when a global max-
imum velocity for the objects is known. This is a reasonable as-
sumption given that most moving objects have upper bounds on
their attainable velocities. For this particular setting, we introduce
the HRZ algorithm, which computes distance bounds in order to
determine the earliest possible time, termed horizon, when an ob-
ject may influence the result.

Our main contributions can be summarized as follows:
• We introduce and formally define the problem of continuously

monitoring the objects with the k-nearest trajectories to a given
query object, where trajectory distances take into consideration
the objects’ recent locations.
• We present a generic baseline algorithm (BSL) for the problem,

which defines the types of events and operations needed for the
computation.
• We propose the XTR algorithm optimized for the case when the

trajectory distance is determined by the maximum or minimum
individual location distance between objects. We also discuss
some other related trajectory distance definitions.

• We present the HRZ algorithm that introduces further optimiza-
tions assuming that the moving objects have bounded velocities.
• We experimentally evaluate the proposed algorithms using real-

world datasets.
The rest of the paper is organized as follows. Section 2 discusses

related work. Section 3 formally defines the problem. Then, Sec-
tions 4–6 present our algorithms. Finally, Section 7 presents our
experimental evaluation, and Section 8 concludes the paper.

2. RELATED WORK
We discuss various types of queries for moving objects, distin-

guishing between NN variants in Section 2.1 and NT methods in
Section 2.2.

2.1 NN Queries on Moving Objects
Given a (stationary) query object location and a set of (station-

ary) object locations, the k-Nearest Neighbor (NN) query retrieves
the k objects which are closer to the query location. There are many
different ways to extend the NN query for moving objects during
some time interval, evident by the rich bibliography on the subject.

A first classification is based on where the interval of interest lies
with respect to the current time. If it is in the past, the queries are
termed historical, as they concern stored trajectory data. If the in-
terval is placed in the future, the queries are further classified into
predictive, when it can be assumed that objects move in a known
manner (i.e., with constant velocity, or along a line) and thus their
future locations can be extrapolated, or monitoring, when no as-
sumptions are made on the moving patterns and thus location up-
dates are issued. Processing historical and predictive NN queries
is generally less challenging compared to monitoring queries, be-
cause the former essentially have at query time the entire trajecto-
ries of the moving objects.

The second classification is based on the semantic of the NN
query during an interval. A snapshot NN query reports the objects
that are closest to the query object at any time instance within the
interval; e.g., find the object that comes closest to some location
within the next 10 minutes. A continuous NN query reports the
objects that are closest to the query object at every time instance
within the interval; e.g., report the objects that were at some time
closest to the query object during the past 10 minutes. Note that
in the data stream literature, the term continuous (or long standing)
query [1] refers to the case when the result of a query must be con-
tinuously updated as streaming tuples arrive; in the context of NN
queries, these requirements essentially correspond to the continu-
ous monitoring NN query.

Regarding predictive queries, [13] presents a dual plane method
for predictive snapshot NN queries, in the case that all objects move
in 1-D space, or are restricted to move within the same segment
(i.e., road). [23] studies continuous predictive variants for various
spatial queries, including NN, and describe a method to return the
initial result and its validity period (i.e., the time at which the re-
sult will change). [24] studies continuous predictive NN queries
assuming that only the query is moving along a line, while all other
objects are stationary. [10] and [3] also deal with continuous pre-
dictive NN queries, but they are able to handle updates on the mo-
tion patterns of objects, without computing the result from scratch.

For continuous monitoring NN queries, [22] and [34] handle the
case when only the query object is moving. The former retrieves
m > k nearest neighbors hoping that the result at a future time
is among these m objects, provided that the query does not move
much. The latter returns a Voronoi-based validity region such that
the result does not change as long as the query remains within the
region. [31], [29] and [17] present incremental grid-based methods

for general continuous monitoring NN queries, i.e., when all ob-
jects move in a non-predictive manner; the last two works feature
shared execution techniques to handle multiple NN queries.

In the case of historical trajectory data, R-tree based trajectory
indices (e.g., 3D R-tree [26], TB-tree [20]) are typically used to ex-
pedite the NN query processing. [6] handles historical snapshot NN
queries, while [5], [8] process historical continuous NN queries.

Another line of work concerns NN queries over uncertain data.
For example, [25] processes continuous monitoring NN queries for
objects with uncertain locations. [9] handles continuous predic-
tive NN queries with updates for objects with uncertain locations
and speeds. [18] deal with historical snapshot and continuous NN
queries for objects with uncertain locations.

Finally, there has been some interest on identifying groups of
moving objects, such as moving object clusters [12], flocks [7, 27],
convoys [11], and swarms [15]. Generally speaking, these groups
consist of objects that are close to each other (e.g., within a disk of
a given radius) at each time instant. These methods however cannot
be used for processing CNT queries.

2.2 Nearest Trajectories
There exist many approaches for defining distance (or similarity)

metrics for trajectories. All of them also propose methods to iden-
tify the most similar trajectory to a given query trajectory, which
can be extended to retrieve the top-k similar ones, but their tech-
niques only operate on historical data. A useful survey on the topic
is included in [19].

While the Euclidean distance (or some other Lp norm) is typi-
cally used to quantify closeness of two locations, the extension for
the case of multiple locations within trajectories is not straightfor-
ward. In addition, a trajectory distance must take into account the
temporal aspect of the locations. [30] defines the trajectory dis-
tance as the L2 norm of individual Euclidean location distances,
after re-sampling the trajectories to account for different reporting
intervals. [16] ignores the temporal dimension and defines spatial
trajectory distance as the average of the Euclidean distances com-
puted between a location in one trajectory and its closest location
in the other (termed the one way distance).

The previous trajectory distances can be computed in linear time
with respect to the trajectory length. On the other hand, there exist
more complex metrics, inspired from sequence similarity measures,
that require quadratic time. [28] uses the Longest Common Subse-
quence (LCSS) similarity measure, an edit distance variant, that
allows the matching of locations that are close in space at different
time instants, provided that they are not far in time, and also allows
for locations to be unmatched, e.g., accounting thus for location
imprecisions or small deviations. In a similar manner, [4] defines
the Edit Distance on Real Sequence (EDR) that captures the min-
imum number of edit operations (insert, delete, replace locations)
necessary to transform one trajectory into the other.

An approach for finding historical top-k similar trajectories is
presented in [21]. The basic algorithm prioritizes object examina-
tion aiming to avoid distance computations for objects not in the
result. In addition, approximate techniques are also presented.

Another related problem is trajectory clustering, where the goal
is to group trajectories based on a trajectory distance metric. For
this problem, however, the basic underlying operation is typically a
range query (retrieve trajectories within a given distance threshold)
rather than a top-k similarity query. For example, in [14] the goal
is to partition historical trajectories into sub-trajectories and then
group them to construct dense clusters according to a metric that
composes a perpendicular, a parallel, and an angle distance.

To the best of our knowledge, continuous monitoring of top-k

similar trajectories has not been addressed in the past. The only
work that handles continuous monitoring of a trajectory defined
query is [2], which deals with spatiotemporal trajectory joins. The
underlying trajectory distance metric is the maximum among all
Euclidean location distances, and the goal is to find pairs of tra-
jectories that are within a given trajectory distance threshold. That
is the core query is a range rather than a top-k similarity query.
Therefore, their approach is not applicable to our problem.

3. PROBLEM DEFINITION
Consider a set O of moving objects, whose locations are contin-

uously monitored and reported at fixed discrete times, called times-
tamps. Location updates have the form 〈o, t, x, y〉, meaning that
object o at timestamp t is at location o[t] = (x, y). We assume that
updates always arrive in increasing order of their timestamps, but
we do not assume that for each timestamp updates are received for
all objects.

We denote as T (o) the set of timestamps at which updates for
o were received. For simplicity and without loss of generality we
assume that for any timestamp t′ for which no update for o was
received, i.e. t′ 6∈ T (o), the location of o is the same as its last
reported location, i.e. o[t′] = o[t], where t ∈ T (o) is the latest
timestamp before t′. Essentially, this corresponds to assuming that
object o has not moved during time [t′, t]; making other assump-
tions can also be handled accordingly, e.g., by issuing artificial up-
dates for the objects based on inferred locations.
Definition 1. The location distance between two objects o and o′

at timestamp t is given by the Euclidean metric, i.e.,

d(o, o′, t) =
√

(x− x′)2 + (y − y′)2.

where o[t] = (x, y) and o′[t] = (x′, y′) are the respective (reported
or extrapolated) locations of o and o′ at t.

The above definition measures the distance between two objects
at a single timestamp. However, we are interested in comparing the
recent trajectories of the objects, hence their distances over a series
of consecutive timestamps within a specified time window. For this
purpose, we introduce the following definition.
Definition 2. Given two objects o and o′, a time windoww, and an
aggregate function G, the trajectory distance of o and o′ is defined
by applying G on the location distances of o and o′ at each times-
tamp within the time window of length w ending at timestamp t:

D(o, o′, t, w,G) = Gτ∈[t−w,t]d(o, o′, τ).

Function G can be any aggregate function, e.g., minimum, maxi-
mum, average, among others.

We now formally define the problem of continuously reporting
the objects with the k-nearest trajectories to a moving query object.

Problem Statement. The Continuous Nearest Trajectory (CNT)
query 〈O, q, T , k, w,G〉, whereO is a set of moving objects, q ∈ O
a query object, and T a series of consecutive future timestamps,
returns for each timestamp t ∈ T the k objects in O that have the
smallest trajectory distance to q w.r.t. the time window w and the
aggregate function G, i.e., ∀t ∈ T it returns a subset Ok ⊆ O of
size k, such that ∀o ∈ Ok, o′ ∈ O \Ok:

D(q, o, t, w,G) ≤ D(q, o′, t, w,G).

4. BASELINE FOR CNT
We first describe a generic baseline (BSL) method for answering

continuous nearest trajectory queries. BSL operates under any ag-

Algorithm 1: BSL
1 foreach t ∈ T do
2 OA ← ∅ // the set of affected objects at t
3 if QUpd then
4 q.loc← (xq, yq) // update q’s current location
5 OA ← O // mark all objects for processing
6 else
7 foreach OUpd and OExp do
8 OA ← OA ∪ o // add the referred object in OA

9 foreach o ∈ OA do
10 Do ← BSL_ProcessObject(o)
11 if Do has changed then
12 if o in the results R then
13 update o’s entry in R
14 else if Do smaller than the trajectory distance of R’s last entry

then
15 delete R’s last entry
16 insert an entry for o in R

17 report t, R

gregate function G and follows an event driven process, where the
events to be handled are specified below:
• Query location updates (QUpd). This is an update 〈q, t, x, y〉

to the location of the query object q, specifying its new location
(x, y) for the current timestamp t. This may result in changes in
the trajectory distances of the objects, and subsequently changes
in the current set of nearest trajectories (NTs). When objects are
allowed to move arbitrarily, their new distances to the new query
location have to be computed, and the new aggregate distances
and NTs have to be evaluated.
• Object location updates (OUpd). This is an update 〈o, t, x, y〉 to

the location of an object o, specifying its new location (x, y) for
the current timestamp t. As a result, the current location distance
of the object to the query has to be evaluated, which may affect
its trajectory distance within the window w. If this changes, it
may in turn affect the inclusion or not of the object in the re-
sult set. In addition, the system needs to remember to purge this
location distance when it becomes obsolete, i.e., concerns a lo-
cation outside the window. Therefore, it generates a correspond-
ing expiration event that will be triggered at timestamp t+w as
described next.
• Object distance expiration (OExp). Unlike QUpd and OUpd,

which are events received by the external environment, OExp
events are generated and triggered by the system as part of han-
dling OUpd events. OExp events have the form 〈o, t〉, and mean
that a location distance for object o is set to expire at timestamp
t (this location distance was computed for a location update re-
ceived at timestamp t−w). Similarly to a location update, such
a removal may affect the trajectory distance of the object, and
consequently its inclusion in the set of NTs.

In the following, we describe in detail how BSL handles the above
events to evaluate a CNT query.

BSL makes use of the following in-memory data structures. For
the query, it only stores its latest location q.loc. For each object, it
stores its latest location o.loc, as well as a list o.hist of location dis-
tances and their corresponding timestamps, ordered by time. In ad-
dition, it uses an event queue Q to store and process OExp location
distance expiration events, i.e., for removing distances for times-
tamps outside the time window w. An OExp event 〈o, t〉 means
that at time t, BSL needs to purge an expired distance for object o.
This is the least recent location distance in the list o.hist. Events
in Q are inserted and processed in a FIFO manner, i.e. they are
ordered by time. Finally, BSL maintains a results list R of size k,
where each entry corresponds to an object and its trajectory dis-

Algorithm 2: BSL_ProcessObject
1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then
4 update o.loc, if changed
5 compute new location distance d
6 add d to o.hist
7 create OExp event for o at timestamp t + w

8 update trajectory distance Do

9 return Do

tance, updated at every timestamp. Any object that does not appear
in the list at time t has trajectory distance not less than the largest
trajectory distance in R.

Algorithm 1 shows the pseudocode for BSL. Since this is a con-
tinuous query, BSL executes in a loop for every timestamp t ∈ T
(line 1), i.e. as long as the query is standing, and at each itera-
tion it reports the current result set R (line 17). The input at each
timestamp is the set of QUpd, OUpd, and OExp events that have
been received for processing. Based on these events, BSL deter-
mines the set of affected objects OA that require processing at this
timestamp (line 2). Note that the set OA contains not only objects
that have received location updates, but also objects for which an
expiration event was triggered, or, in the case of a query update, all
objects.

If the query object has moved to a new location, then q.loc is
updated and new object distances need to be computed (lines 3–
5). Otherwise, only those objects for which an update or expira-
tion happened are marked for processing (lines 6–8). Subsequently,
each affected object o ∈ OA is processed (lines 9–17). First, the
procedure BSL_ProcessObject is invoked (line 10), which up-
dates o.loc and o.hist accordingly, and recomputes the object’s lo-
cation distance and trajectory distance (see Algorithm 2 below).
Then, BSL checks if the returned trajectory distance has changed
(line 11). If so, then the result set R may need updating. In par-
ticular, if o was in the result, then its entry in R must be updated
(lines 12–13) with the new trajectory distance. Otherwise, if the
new trajectory distance is smaller than any trajectory distance inR,
this means that o should be (tentatively) inserted in R, evicting the
last entry (lines 14–16).

We next describe the procedure BSL_ProcessObject, shown
in Algorithm 2, in more detail. If an expiration event has occurred
for o, then the expired location distance is removed from o.hist
(lines 1–2). If the object’s location has changed, o.loc is updated
(line 4). The new location distance of o is computed and added to
the history (lines 5–6). Moreover a corresponding expiration event
is added in Q (line 7). Finally, the new trajectory distance for o is
computed and returned (lines 8–9).

5. EXTREMA-DEFINED CNT
In the following, we assume that the aggregate function G defin-

ing the trajectory distance is max or min over location distances,
or, more generally, any other function taking as input only the ex-
trema (max, min) location distances. In these instances, the tra-
jectory distance is determined by one (or two) location distances
within the time window. Note, however, that these location dis-
tances may change over time, as new locations arrive and old ones
expire. Nonetheless, we show that processing of extrema-defined
CNT queries can be streamlined. We first start our discussion con-
sidering the case of the max function; the case of min can be han-
dled in a similar manner, and is hence omitted. We then discuss the
necessary changes to process CNT queries for any extrema-defined
aggregate function.

Algorithm 3: XTR_ProcessObject
1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then
4 update o.loc, if changed
5 compute new location distance d
6 add d to o.hist
7 remove from o.hist all location distances less than d

8 t′ ← the earliest timestamp in o.hist
9 if Q contains OExp event for o then

10 update OExp’s time to t′ + w
11 else
12 insert in Q the event 〈o, t′ + w〉

13 return Do ← earliest location distance in o.hist

When the aggregate function G is max, the trajectory distance
of an object o is determined by the largest location distance within
the time window w. In that case, we show that it is possible to
discard some location distances which cannot influence the trajec-
tory distance during their lifespan. Based on this observation, we
describe the Extrema (XTR) algorithm, which is based on the BSL
framework but reduces the number of location distances stored per
object, and, consequently, the number of events generated and pro-
cessed. The key observation of XTR is captured by the following
lemma.
Lemma 1. Given an object o, where d < d′ are two location dis-
tances at timestamps t < t′ for t′ − t ≤ w, the location distance d
does not contribute to the trajectory distance of o for any timestamp
after t′.
Proof. Location distance d is valid, i.e., may contribute to the tra-
jectory distance, during its lifespan ending at timestamp t+w. Dur-
ing the time interval [t′, t+w], location distance d′ is also valid and
greater, and thus dominates d. As a result, the trajectory distance,
i.e., the maximum location distance, must be at least d′ > d.

The XTR algorithm uses the same data structures and variables
as BSL and performs the same main operations described in Al-
gorithm 1. However, XTR differs from BSL in the way it pro-
cesses objects. In particular, we discern the following main differ-
ences. First, XTR only keeps the non-dominated location distances
in o.hist, as Lemma 1 suggests. Second, at any time t, the event
queue Q contains only a single entry per object o, and its seman-
tics can be viewed differently: it now schedules trajectory distance
recomputations rather than location expirations. By purging a pri-
ori those earlier location distances that are smaller than d, XTR
avoids unnecessary triggering of the corresponding OExp events,
thus avoiding unnecessary processing of objects whose trajectory
distance cannot yet change.

The processing for an object o in XTR is handled by the pro-
cedure XTR_ProcessObject outlined in Algorithm 3. Its first
tasks, removing expired location distances, updating the object’s
location, and recomputing the object’s location distance to the query,
are identical to BSL’s (lines 1–6). In addition, based on Lemma 1,
XTR removes any location distances less than d from o.hist (line
7). Let t′ be the earliest timestamp that remains (line 8). XTR in-
serts in Q an event to expire the location distance at t′, if no event
for o in Q already exists, otherwise it resets the scheduled time of
the existing event (lines 9–12). This event essentially schedules the
next trajectory distance recomputation necessary for o (assuming
that the trajectory distance is not affected by newer location up-
dates until then). Finally, the trajectory distance is set to the earliest
location distance and returned (line 13).

We now discuss the general case where the aggregate function
G is some function over the extrema (min and max) location dis-
tances. One example of such a function is the average of the mini-

mum and maximum location distances recorded for an object within
the current time window. Recall that Lemma 1 identifies loca-
tion distances which are irrelevant for the max case; an analogous
lemma holds for the min case. Therefore, when both the max
and the min location distance contribute to the trajectory distance,
we can discard location distances which are irrelevant for both ex-
trema cases. Following this observation, we propose the following
changes to the XTR_ProcessObject algorithm. For each ob-
ject o, we maintain its minimum and maximum location distances
for the current time window, denoted as o.min and o.max, respec-
tively, i.e. o.min = min{o.hist} and o.max = max{o.hist}. In
addition, we keep a time marker tm which is the earliest timestamp
of either o.min or o.max. In the event queue Q, we still need to
keep only one entry for each object o, set to 〈o, tm + w〉, to trig-
ger a reevaluation of its trajectory distance when either o.min or
o.max expires. Moreover, the early removal of unnecessary en-
tries in o.hist is now done as follows. When o.min or o.max
changes, and tm is set accordingly, we remove all entries from
o.hist with timestamp earlier than tm. The reason for this is that
for any location distance d with timestamp t < tm it holds that
o.min < d < o.max (otherwise, d would be the current min or
max) and d cannot become a future o.min or o.max since it ex-
pires before them.

6. EXPLOITING BOUNDED VELOCITIES
FOR EXTREMA-DEFINED CNT

This section considers extrema-defined trajectory distances and
assumes that there exists a global upper bound vmax on the velocity
of a moving object1. Under this realistic assumption, we show that
it is possible to derive a more efficient algorithm than XTR for
processing CNT queries. The proposed Horizon (HRZ) algorithm
takes advantage of the velocity bound to further reduce the number
of location updates that need to be processed. Similar to Section 5,
we assume that the trajectory distance is the maximum location
distance within the time window; the case of min is similar, while
the more general case of extrema-defined functions can be handled
in a straightforward manner.

The basic idea behind HRZ is the following. For ease of expo-
sition, assume k = 1 and consider two objects o and o′. Let D[t]

and D
′
[t] denote, respectively, a lower and an upper bound on the

trajectory distances of o and o′ to the query q at time t. Clearly,
if D[t] > D

′
[t] for any timestamp t within a time interval, then o

cannot be in the result during that interval. Hence, in Section 6.1,
we derive lower and upper bounds on trajectory distances. Then, in
Section 6.2, we discuss the computation of the time horizon, which
determines a time interval during which a particular object may not
be a result. Finally, in Section 6.3, we put our ideas together and
present the HRZ algorithm.

6.1 Bounds on Trajectory Distances
Let t be the current timestamp, and consider an object o for

which the most recent location distance is d received at timestamp
td ≤ t, and its current trajectory distance is D ≥ d, valid since
timestamp tD ≤ td. A lower bound for the trajectory distance of
o at any future timestamp t′ > t can be computed assuming that
object o moves at maximum velocity vmax towards the query q,
while q also moves at maximum velocity vmax towards o. As a re-
sult, since the last known update at td, the location distance of o to
q is decreasing at a maximum rate of 2vmax. Notice however that
this will affect its trajectory distance only after both D and d have
1Note that the extension to differing maximum velocities across
objects is straightforward and thus omitted.

expired. The trajectory distance in this setting is clearly a lower
bound for the trajectory distance of o for any possible motion of o
and q. Thus, we derive the following lemma.
Lemma 2. Given an object o at current timestamp t, with latest
location distance d at timestamp td ≤ t and current trajectory dis-
tance D ≥ d valid since tD ≤ td, its trajectory distance for any
future timestamp t′ ≥ t is lower bounded by the function:

Do[t
′] =


D if t ≤ t′ ≤ tD + w

d if tD+w<t′≤ td+w
max{d−2vmax · (t′−td), 0} if t′ > td + w.

Proof. First, observe that at time t the history of the object (i.e.,
during the time interval [t − w, t]) certainly contains a location
distance with valueD at time tD (determining the current trajectory
distance) and another with value d at time td. It may also contain
other location distances, which however must have values between
d and D. Consequently, it is easy to see that the lemma holds for
the first two clauses.

Regarding the third clause, we need to show that for any future
timestamp t′ > t, the lower bound holds. Consider the location
distances valid during the future time window [t′ − w, t′]; recall
that location distance d is no longer valid. Let dm be the largest
valid location distance with timestamp tm ∈ [t′−w, t′]. Therefore,
the trajectory distance at time t′ is defined as dm. Due to the bound
on the velocity of objects, it holds that any object, o or the query
q, from timestamp td (of o’s known location update in the past)
up to timestamp tm cannot have traveled a distance greater than
vmax ·(tm− td). As a result, the location distance of o cannot have
decreased more than 2vmax · (tm − td) (but not become less than
zero), which is the case that o and q travel towards one another (and
travel together once they reach each other). Therefore, the location
distance at tm cannot be less than dm ≥ d−2vmax ·(tm−td), and
is also greater than zero. Since tm ≤ t′, the lower bound holds.

In a similar way, we can also derive an upper bound for the tra-
jectory distance of o in a future timestamp t′. This can be com-
puted assuming that object o moves at maximum velocity vmax
away from the query q, while also q moves at maximum velocity
vmax away from o. As a result, since the last known update at
td, the location distance of o to q is increasing at a rate of 2vmax.
Again, any updates will come into effect only as long as there ex-
ists no previous value that is still valid and greater. The trajectory
distance in this setting is clearly an upper bound for the trajectory
distance of o for any possible motion of o and q. Thus, we derive
the following lemma.
Lemma 3. Given an object o at timestamp t, with latest location
distance d at timestamp td ≤ t and current trajectory distance
D ≥ d valid since tD ≤ td, its trajectory distance for any future
timestamp t′ ≥ t is upper bounded by the function:

Do[t
′] =

{
max{D, d+ 2vmax · (t′ − td)} if t ≤ t′ ≤ tD + w

d+ 2vmax · (t′ − td) if t′ > tD + w.

Proof. Consider the first clause, and a timestamp t′ ∈ [t, tD + w];
the corresponding time window is [t′ − w, t′] and D is still valid.
Let dm denote the largest valid location distance with timestamp
tm ∈ [t′ − w, t′]. Trivially, if dm is D, the upper bound holds.
Assume otherwise, i.e., dm > D. Using similar reasoning as
in Lemma 2, the location distance of o from timestamp td up to
timestamp tm cannot have increased more than 2vmax · (tm − td).
Therefore, dm ≤ d+2vmax · (tm − td), and the upper bound also
holds for this case because tm ≤ t′. The second clause is proved
in a similar way, given that D has now expired.

6.2 Time Horizon of Objects
We now proceed to derive the minimum time required for an

object o 6∈ R to enter the result set. We refer to this as the time
horizon of an object, corresponding to the earliest time for which
the object’s trajectory distance may become equal to (or less than)
the trajectory distance of some object in R. Using Lemmas 2 and
3, the time horizon is formally defined as follows.
Definition 3. Given the current result setR at timestamp t, the time
horizon th for an object o 6∈ R is defined as the earliest possible
time that the trajectory distance of o becomes lower than that of any
object in R, i.e.:

th = min{t′ ≥ t | ∃o′ ∈ R : Do[t
′] ≤ Do′ [t′]}

An important remark regarding the previous definition is that it
does not suffice to just consider the trajectory distance upper bound
of the k-th object in R. As location updates may not occur at all
timestamps, it is possible for two objects oi, oj ∈ R with trajec-
tory distances Di < Dj to have at some future timestamp t′ upper
trajectory bounds such that Di[t′] > Dj [t

′]. This can occur, for
example, when the objects’ last location distances and timestamps
satisfy the conditions di > dj and ti < tj .

As a result, computing the time horizon for an object requires
considering the trajectory distance upper bounds for all objects in
R, which is time consuming given that the time horizon needs to
be computed at each timestamp for each affected object not in the
result set. We thus propose an alternative method for determining
the time horizon. The key idea is the following lemma, which de-
rives a single upper bound on the trajectory distance of any object
in the result set R.
Lemma 4. Consider a set of objects R at current timestamp t,
where, for the i-th object, di denotes its latest location distance
at timestamp tid and Di ≥ di denotes its current trajectory dis-
tance valid since timestamp tiD ≤ tid. Define object o+ ∈ R to
be the one with the largest trajectory distance, and object o∗ ∈ R
to be the one that can have the largest possible location distance at
current timestamp t, i.e.,

o+ = argmax
oi∈R

Di and o∗ = argmax
oi∈R

(
di + 2vmax · (t− tid)

)
.

Then, the trajectory distance of any object in R for any future
timestamp t′ ≥ t is upper bounded by the function:

DR[t
′] =

{
max{D+, d∗+2vmax · (t′−t∗)} if t ≤ t′ ≤ t+w
d∗ + 2vmax · (t′ − t∗) if t′ > t+ w,

where D+ is the trajectory distance of o+, and d∗ is the latest lo-
cation distance of o∗ computed at timestamp t∗.

Proof. It suffices to show that the upper bound on the trajectory
distance of each object in R according to Lemma 3 is always (i.e.,
for any t′ > t) not greater than the upper bound provided by this
lemma. Consider an object oi ∈ R and its trajectory distance upper
bound:

Di[t′] =

{
max{Di, di+2vmax · (t′−tid)} if t≤ t′≤ tiD + w

di + 2vmax · (t′ − tid) if t′ > tiD + w.

First note that tiD < t, and consider a future timestamp t′ during
the time interval [t, tiD + w]. Comparing the first clause of the two
bounds, we can see that D+ ≥ Di from the definition of object
o+. On the other hand, from the definition of o∗ we derive that
d∗+2vmax ·(t−t∗) ≥ di+2vmax ·(t−tid). Adding 2vmax ·(t′−t)
to both sides of the inequality, we derive that the lemma holds.

Algorithm 4: HRZ
1 foreach t ∈ T do
2 OA ← ∅ // the set of objects marked for processing at t
3 if QUpd then
4 q.loc← (xq, yq) // update q’s current location
5 OA ← O // mark all objects for processing
6 else
7 foreach OUpd and OExp do
8 OA ← OA ∪ o // add the referred object in OA

9 foreach o ∈ OA ∩ R do
10 Do ← HRZ_ProcessObject(o)
11 update o’s entry in R

12 identify objects o+ and o∗ in R // from Lemma 4
13 foreach o ∈ OA \ R do
14 if t < o.th − w then continue
15 Do ← HRZ_ProcessObject(o)
16 if Do smaller than the trajectory distance of R’s last entry then
17 delete R’s last entry
18 insert an entry for o in R

19 report t, R

Next, consider a future timestamp t′ during the time interval
[tiD + w, t + w], and compare the second clause of Di[t′] to the
first clause of DR[t′]. With similar reasoning as before, we have
that d∗ + 2vmax · (t′ − t∗) ≥ di + 2vmax · (t − tid), and since
the first clause of DR[t′] is always greater than the left-hand side
of the inequality, the lemma holds.

In the case of a future timestamp t′ > t + w, when the second
clauses of the bounds apply, it is easy to see, using similar reason-
ing as before, that the lemma holds.

Using the bound on the trajectory distance of any object in R, it
is possible to efficiently compute a timestamp that never overesti-
mates the time horizon, as the next lemma suggests.
Lemma 5. Given the current result set R at timestamp t, the time
horizon th for an object o 6∈ R is not less than the following value:

th ≥ min{t′ ≥ t |Do[t′] ≤ DR[t′]}.

Proof. Denote as A the set from Definition 3, i.e., A = {t′ ≥
t | ∃o′ ∈ R : Do[t

′] ≤ Do′ [t′]}, and as B the set from this lemma,
i.e., B = {t′ ≥ t | Do[t′] ≤ DR[t

′]}. We claim that B ⊆ A

to prove the lemma. Since it holds that DR[t′] ≥ Do′ [t
′] for any

o′ ∈ R from Lemma 4, the condition of set B is harder to satisfy
than that of A, and thus the claim B ⊆ A holds.

Lemma 5 suggests that we can compute, in constant time, a
timestamp not greater than the time horizon as the solution of the
equationDo[t′] = DR[t

′]. Henceforth, to simplify the presentation
of HRZ, whenever we refer to the time horizon th or its computa-
tion, we mean the solution of this equation instead of Definition 3.

6.3 The HRZ Algorithm
Having a method to compute the time horizon of an object, we

next detail the HRZ algorithm, highlighting its differences with re-
spect to XTR. The data structures and variables that HRZ uses are
as in XTR, with the exception that for each object HRZ additionally
stores its time horizon th indicating the time after which the object
may appear in the result set R. The computation of th is based on
Lemma 5. The HRZ algorithm takes advantage of the time horizon
to reduce the number of events processed as follows. At any times-
tamp before th−w, HRZ ignores updates for the particular object.
During the time interval [th − w, th], HRZ only stores the loca-
tions and location distances, since these are necessary to compute
the trajectory distance at time th. However, it does not compute the
trajectory distance, since it is guaranteed to be greater than those in

Algorithm 5: HRZ_ProcessObject
1 if OExp event for o was triggered then
2 remove the expired location distance from o.hist

3 if QUpd or OUpd event for o was received then
4 update o.loc, if changed
5 compute new location distance d
6 if o 6∈ R then
7 compute th
8 else th ← t
9 if t < th − w then

10 clear state of o
11 remove o’s entry in Q
12 return Do ←∞
13 else
14 add d to o.hist
15 remove from o.hist all location distances less than d and with

timestamps before t− w
16 if t < th then
17 return Do ←∞
18 else
19 t′ ← the earliest timestamp in o.hist
20 if Q contains OExp event for o then
21 update OExp’s time to t′ + w
22 else
23 insert in Q the event 〈o, t′ + w〉

24 return Do ← earliest location distance in o.hist

R, and it does not add any events in Q. After the time horizon th,
HRZ operates similar to XTR.

Algorithm 4 shows the pseudocode for HRZ. The main differ-
ence from BSL and XTR is that it handles the processing of af-
fected objects in two phases. In the first phase (lines 9–11), HRZ
considers only objects that are in R, i.e., objects that were reported
as results in the previous timestamp. For these objects, the pro-
cessing (handled by HRZ_ProcessObject) is essentially identical to
XTR, as we later explain. Once processing is completed, the ob-
ject’s entry in R is updated if its trajectory distance changed.

Between the first and second phase, HRZ scans all objects in
R, and determines objects o+ and o∗ as defined in Lemma 4 (line
12). Then, during the second phase (lines 13–18), HRZ considers
the remaining affected objects, i.e., not in R. If the current time is
more thanw timestamps before the time horizon o.th of an object o,
HRZ essentially ignores o (line 14). For each other affected object,
its processing (handled by HRZ_ProcessObject at line 15) differs
significantly from XTR. Once it concludes, HRZ checks whether
the object should be included in the result set R provided that its
trajectory distance has sufficiently decreased (lines 16–18).

We next describe the HRZ_ProcessObject procedure, shown in
Algorithm 5. As in XTR, the procedure removes expired location
distances if an event from Q was triggered (lines 1–2). The main
operations of the procedure occur when either an object or a query
location update were received (lines 3–23). First, the object’s loca-
tion is updated, if it changed, and its location distance is computed
(lines 4–5). If the object o under processing did not belong in the
result at the previous timestamp (line 6), the procedure computes
the time horizon th by applying Lemma 5 (line 7); otherwise th
is set to current time (line 8), meaning that object o may belong
in the result. Since the time horizon is now recalculated taking
into account the object’s current location distance, it is necessary
to check again if the object should be ignored (line 9). If the check
succeeds, all stored information for object o is cleared, its entry
in the event queue is removed and an infinite trajectory distance is
returned (lines 10–12).

In the following operations (lines 14–23), it holds that the current
time is t ≥ th − w, hence HRZ needs to store locations and loca-
tion distances. The object’s current location distance d is stored

(line 14), and all location distances less than d are removed (line
15) as in XTR. Subsequently, if the current time falls in the in-
terval [th − w, th] (line 16), finding the actual trajectory distance
during this interval is not necessary, as the object is guaranteed to
not be in the result set. Therefore, HRZ simply returns an infinite
trajectory distance (line 17) and, to increase efficiency, it does not
create a corresponding expiration event. A consequence is that at
future timestamps after the current time horizon, there may exist
expired location distances. Therefore, the procedure may also have
to remove such distances (line 15). Otherwise, if the current time
is not before the time horizon (line 18), the processing is identical
to XTR. That is, the earliest timestamp is identified, and the event
queue is properly updated (lines 19–22). The last operation is to
compute the trajectory distance from the earliest location distance
and return it (line 24). As a final note, observe that if the object
was not in the result at the previous timestamp, its processing is
identical to XTR, as its time horizon is set to current time (line 8).

7. EXPERIMENTAL EVALUATION
To evaluate the efficiency of the proposed algorithms for the

continuous nearest trajectories query, we conduct experiments us-
ing three real-world trajectory datasets. In the following, we first
present the datasets used for the evaluation and then we report the
results of our experiments.

7.1 Datasets
To cover a variety of cases regarding the shapes of trajectories,

the type of the objects, and the speed and type of movement, we
use three different real-world datasets in our experiments. We refer
to these datasets as Beijing taxis, Aegean ships, and Athens vehi-
cles. These datasets vary in their characteristics, ensuring that our
methods are robust across diverse settings. For example, in the Bei-
jing taxis dataset, the shape of the trajectories exhibits a relatively
high regularity due to the grid-like structure of the underlying road
network. At the other end, the Athens road network is highly irreg-
ular, resulting in diverse trajectories with constantly varying head-
ings. Finally, the Aegean ships trajectory dataset comprises rela-
tively long trajectories with medium degree of heading variations.

A typical issue in trajectory datasets is the often high variation
of the sampling rate, caused, for example, by weak GPS signal, or
when the user manually switches off their personal tracking devices
(e.g., to save battery or for privacy). In our datasets, to reduce
such gaps, when the time interval between two consecutive reported
locations exceeds a specified threshold (set to 30 seconds) but is
not greater than a maximum threshold (set to 120 seconds), we use
linear interpolation to create intermediate location updates.

We next detail the used datasets.
• Beijing taxis. These trajectories are from the T-Drive trajectory

dataset, which contains GPS tracking data from taxis moving in
the area of Beijing [32, 33]. A total of 1,023,924 trajectories are
used. These trajectories belong to a total of 569 taxis recorded
in the period 2/2/2008 – 4/2/2008. Each trajectory comprises on
average 3,017 points (i.e. location updates).
• Aegean ships. This dataset contains GPS tracking data from

ships moving in the Aegean sea2. A total of 986,275 trajecto-
ries are used, obtained from 887 ships in the period 31/12/2008 –
02/01/2009. On average, each trajectory comprises 1,101 points.
• Athens vehicles. This dataset contains GPS tracking data from

vehicles moving in the area of Athens, recorded in the context of
the SimpleFleet project3. 667,421 trajectories are used, coming

2http://www.chorochronos.org/?q=node/8
3http://www.simplefleet.eu/

from 2,497 vehicles on 01/10/2012. Each trajectory comprises
157 points on average.

7.2 Results
The goal of the experimental evaluation is to study the efficiency

of the proposed algorithms, and in particular to compare the speedup
achieved by the XTR and HRZ algorithms with respect to the more
generic baseline BSL algorithm. For this purpose, we conduct a
series of experiments, using the datasets previously described. The
trajectory distance metric used in all experiments is the maximum
of all valid location distances. We note that the performance of BSL
is identical for all metrics, as the method is distance agnostic. On
the other hand, XTR and HRZ have roughly the same performance
for any extremum-defined trajectory distance metrics.

The main performance metric is the total execution time, i.e.,
the time spent processing a CNT query over its entire lifespan. To
better investigate the performance gains of XTR and HRZ with re-
spect to BSL, we also report their relative improvement in execu-
tion time, and the percentage of events (location updates and expi-
rations) that they process compared to BSL. The investigated pa-
rameters affecting the performance of the algorithms is the number
k of nearest trajectories requested, the size w of the time window,
and the number |O| of objects. In all settings, the reported perfor-
mance metrics (time and number of events) are the average of 10
executions involving randomly selected query objects. The answer
to a CNT query is calculated at each timestamp that an update or
an expiration event occurs.

7.2.1 Varying the number of nearest trajectories
In this experiment, we measure the total execution time of each

of the three algorithms with respect to the number k of nearest tra-
jectories returned. The total monitoring time T is set to 60 minutes,
and the sizew of the time window for keeping each object’s history
is set to 5 minutes. The results are presented in Figure 1.

The first important observation is that for all datasets, the exe-
cution times of both XTR and HRZ are significantly lower than
for BSL, clearly showing in practice the effectiveness of the corre-
sponding optimizations for these cases. Furthermore, HRZ has also
a clear benefit over XTR. The differences are more pronounced in
the Beijing taxis dataset, which shows that, due to the regularity in
the movement of objects imposed by the underlying grid-like struc-
ture of the Beijing road network, more effective pruning of location
updates and distance recomputations can be achieved. In contrast,
the differences become relatively smaller in Athens vehicles, where
the road network is less uniform.

A second observation is that for all algorithms the execution time
increases with k. This is expected since k regulates the size of the
ordered list R that has to be maintained by the algorithm at each
timestamp. However, this increase is lower for XTR and, even more
so for HRZ, which is an additional evidence that XTR and HRZ
need to process fewer events, and hence perform fewer lookup and
sort operations on R.

7.2.2 Varying the size of the time window
In the next experiment, we compare the execution time of the

three algorithms with respect to the window size w during which
the past location distances of an object remain valid and contribute
to the trajectory distance. As previously, the total monitoring time
T was set to 60 minutes, and k was set to 10. To better illustrate
the improvement in execution time achieved by XTR and HRZ with
respect to BSL, we plot the speedup of XTR and HRZ compared
to BSL. The results are shown in Figure 2.

As illustrated, XTR shows a speedup of almost up to 5 times over

10 20 30 40 50 60
0

50

100

150

200

250

300

Number of k-nearest trajectories

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(a) Beijing taxis

10 20 30 40 50 60
0

50

100

150

Number of k-nearest trajectories

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(b) Aegean ships

10 20 30 40 50 60
0

100

200

300

400

Number of k-nearest trajectories

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(c) Athens vehicles

Figure 1: Execution time of BSL, XTR and HRZ w.r.t. the number k of nearest trajectories returned at each timestamp.

10 20 30 40 50 60
0

500

1000

1500

2000

2500

Window Size (mins)

Im
p
ro
ve
m
en
t
in

T
im

e
(%

)

XTR .vs BSL
HRZ .vs BSL

(a) Beijing taxis

10 20 30 40 50 60
0

500

1000

1500

2000

2500

Window Size (mins)

Im
p
ro
ve
m
en
t
in

T
im

e
(%

)

XTR .vs BSL
HRZ .vs BSL

(b) Aegean ships

10 20 30 40 50 60
200

300

400

500

600

Window Size (mins)

Im
p
ro
ve
m
en
t
in

T
im

e
(%

)

XTR .vs BSL
HRZ .vs BSL

(c) Athens vehicles

Figure 2: Execution time speedup of XTR and HRZ compared to BSL w.r.t. the size w of the time window.

10 20 30 40 50 60
0

5

10

15

20

25

30

35

Window Size (mins)

P
er
ce
n
ta
g
e
o
f
E
ve
n
ts

(%
)

XTR
HRZ

(a) Beijing taxis

10 20 30 40 50 60
0

5

10

15

20

25

30

Window Size (mins)

P
er
ce
n
ta
g
e
o
f
E
ve
n
ts

(%
)

XTR
HRZ

(b) Aegean ships

10 20 30 40 50 60
0

5

10

15

20

25

30

Window Size (mins)

P
er
ce
n
ta
g
e
o
f
E
ve
n
ts

(%
)

XTR
HRZ

(c) Athens vehicles

Figure 3: Percentage of events handled by XTR and HRZ compared to BSL w.r.t. the size w of the time window.

BSL, while for HRZ it is even higher, in the range of 15× to 22×
for the first two datasets and 4× to 6× for the Athens vehicles. No-
tice that in this setting k = 10, so when these results are considered
in conjunction with those illustrated in Figure 1, these speedups are
expected to be increasingly higher for higher values of k.

Moreover, the speedup for both algorithms increases as the win-
dow sizew increases. This behavior is because XTR and HRZ only
consider the maximum or minimum value in each object’s history,
so the gain is higher for larger time windows. The gain for HRZ is
even higher as w increases, since HRZ is able to set time horizons
for objects later in the future, thus ignoring more location updates
and further decreasing the total events to be handled.

To better illustrate the reduction of the number of events that
XTR and HRZ process, and how this is affected by the size of
the time window, we also report the number of events in the event
queue Q that are created and processed by XTR and HRZ with re-
spect to those by BSL. The results are shown in Figure 3. Indeed,
the results are in agreement with those in Figure 2, showing that

XTR needs to process only about 30% of the events processed by
BSL, while HRZ fewer than 5%.

7.2.3 Varying the number of objects
In the last set of experiments, we measure the performance of the

algorithms with respect to the number of objects. For this purpose,
we create subsets of the original datasets, containing a specific por-
tion of randomly selected objects, and ran the algorithms on these
subsets. The other parameters are set to T = 60 minutes, k = 10,
and w = 5 minutes. The results are plotted in Figure 4.

As expected, the execution time of all algorithms increases as the
size of the dataset increases. However, XTR and, especially, HRZ
show better scalability. Especially HRZ for the cases of the Beijing
taxis and the Aegean ships, where the movement of the objects is
relatively more regular, proves to be quite robust with respect to
the total number of objects, which verifies that it can successfully
avoid unnecessary examinations of objects that cannot qualify as
candidates for the result set.

20 40 60 80 100
0

5

10

15

20

Percentage of Objects (%)

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(a) Beijing taxis

20 40 60 80 100
0

2

4

6

8

Percentage of Objects (%)

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(b) Aegean ships

20 40 60 80 100
0

5

10

15

20

25

Percentage of Objects (%)

E
x
ec
u
ti
o
n
T
im

e
(s
ec
s)

BSL
XTR
HRZ

(c) Athens vehicles

Figure 4: Execution time of BSL, XTR and HRZ w.r.t. the size |O| of the dataset.

8. CONCLUSIONS
This paper introduced and studied the problem of continuously

reporting moving objects with similar recent trajectories to a given
query object. This problem extends the case of continuous nearest
neighbor monitoring and of discovering similar trajectories in his-
torical data. We proposed a generic baseline method that operates
for any aggregate trajectory distance metric; the extension to other
metrics is left as future work. Then we turned our attention to in-
stances where the distance between the trajectories of two objects
is determined by the extrema (minimum and maximum) of their
individual location distances. For these instances, we described
two more efficient algorithms, with the latter taking into account a
given bound on the velocities of objects. Our experimental study
on real-world datasets showed that our methods exhibit up to 22
times performance gain compared to the baseline.
Acknowledgements This work was supported by the EU FP7 Projects
GEOCROWD (FP7-PEOPLE-2010-ITN-264994) and GEOSTREAM
(FP7-SME-2012-315631), and by the European Union (European
Social Fund – ESF) and Greek national funds through the Opera-
tional Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) – Research Funding Pro-
gram: Thales. Investing in knowledge society through the Euro-
pean Social Fund.

9. REFERENCES
[1] S. Babu and J. Widom. Continuous queries over data streams.

SIGMOD Record, 30(3), 2001.
[2] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory

joins. In GSN, 2006.
[3] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest

and reverse nearest neighbor queries for moving objects. VLDB J.,
15(3), 2006.

[4] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, 2005.

[5] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Algorithms
for nearest neighbor search on moving object trajectories.
GeoInformatica, 11(2), 2007.

[6] Y. Gao, C. Li, G. Chen, L. Chen, X. Jiang, and C. Chen. Efficient k
-nearest-neighbor search algorithms for historical moving object
trajectories. J. Comput. Sci. Technol., 22(2), 2007.

[7] J. Gudmundsson and M. J. van Kreveld. Computing longest duration
flocks in trajectory data. In GIS, 2006.

[8] R. H. Güting, T. Behr, and J. Xu. Efficient k-nearest neighbor search
on moving object trajectories. VLDB J., 19(5), 2010.

[9] Y.-K. Huang, S.-J. Liao, and C. Lee. Efficient continuous k-nearest
neighbor query processing over moving objects with uncertain speed
and direction. In SSDBM, 2008.

[10] G. S. Iwerks, H. Samet, and K. P. Smith. Continuous k-nearest
neighbor queries for continuously moving points with updates. In
VLDB, 2003.

[11] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen.

Discovery of convoys in trajectory databases. PVLDB, 1(1), 2008.
[12] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving

clusters in spatio-temporal data. In SSTD, 2005.
[13] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor

queries in a mobile environment. In STDBM, 1999.
[14] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a

partition-and-group framework. In SIGMOD, 2007.
[15] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed

temporal moving object clusters. PVLDB, 3(1), 2010.
[16] B. Lin and J. Su. Shapes based trajectory queries for moving objects.

In GIS, 2005.
[17] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias. Conceptual

partitioning: An efficient method for continuous nearest neighbor
monitoring. In SIGMOD, 2005.

[18] J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis,
L. Chen, and H.-P. Kriegel. Probabilistic nearest neighbor queries on
uncertain moving object trajectories. PVLDB, 7(3), 2013.

[19] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G. L. Andrienko,
and Y. Theodoridis. Similarity search in trajectory databases. In
TIME, 2007.

[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in
query processing for moving object trajectories. In VLDB, 2000.

[21] G. Skoumas, D. Skoutas, and A. Vlachaki. Efficient identification
and approximation of k-nearest moving neighbors. In
SIGSPATIAL/GIS, 2013.

[22] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving
query point. In SSTD, 2001.

[23] Y. Tao and D. Papadias. Time-parameterized queries in
spatio-temporal databases. In SIGMOD, 2002.

[24] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor
search. In VLDB, 2002.

[25] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and I. F. Cruz.
Continuous probabilistic nearest-neighbor queries for uncertain
trajectories. In EDBT, 2009.

[26] M. Vazirgiannis, Y. Theodoridis, and T. K. Sellis. Spatio-temporal
composition and indexing for large multimedia applications.
Multimedia Syst., 6(4), 1998.

[27] M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of
flock patterns in spatio-temporal data. In GIS, 2009.

[28] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar
multidimensional trajectories. In ICDE, 2002.

[29] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in
spatio-temporal databases. In ICDE, 2005.

[30] Y. Yanagisawa, J. Akahani, and T. Satoh. Shape-based similarity
query for trajectory of mobile objects. In MDM, 2003.

[31] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor
queries over moving objects. In ICDE, 2005.

[32] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from
the physical world. In KDD, 2011.

[33] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: driving directions based on taxi trajectories. In GIS, 2010.

[34] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD, 2003.

	Introduction
	Related Work
	NN Queries on Moving Objects
	Nearest Trajectories

	Problem Definition
	Baseline for CNT
	Extrema-defined CNT
	Exploiting Bounded Velocities for Extrema-defined CNT
	Bounds on Trajectory Distances
	Time Horizon of Objects
	The HRZ Algorithm

	Experimental Evaluation
	Datasets
	Results
	Varying the number of nearest trajectories
	Varying the size of the time window
	Varying the number of objects

	Conclusions
	References

