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ABSTRACT
The ubiquity of mobile location aware devices and the prolifera-
tion of social networks have given rise to Location-Aware Social
Networks (LASN), where users form social connections and make
geo-referenced posts. The goal of this paper is to identify users
that can influence a large number of important other users, within
a given spatial region. Returning a ranked list of regionally influen-
tial LASN users is useful in viral marketing and in other per-region
analytical scenarios. We show that under a general influence prop-
agation model, the problem is #P-hard, while it becomes solvable
in polynomial time in a more restricted model. Under the more re-
strictive model, we then show that the problem can be translated to
computing a variant of the so-called closeness centrality of users in
the social network, and devise an evaluation method.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications

General Terms
Algorithms

Keywords
location-aware services, social networks, propagation model, influ-
ence maximization, graph closeness centrality

1. INTRODUCTION
The proliferation of mobile location-aware devices (e.g., smart-

phones, tablets, GPS devices) and the current trend for services
based upon the social interactions of their users have given rise to
the so-called Location-aware Social Networks (LASN). In the most
predominant LASNs, such as Foursquare or Twitter (geo-tagged
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tweets), a user can become friend with another, forming thus a so-
cial network, and more importantly can check-in at various places,
i.e., share in public (or to her friends/followers) her current location
and activity, for example eating at a restaurant, attending a concert.

In LASNs it is often useful to find users that are highly influ-
ential within a specific geographical region. Consider for example
the organizer of a city-wide festival looking to attract people across
city districts. The organizer could utilize an LASN to determine
the most influential user within each district, and then, recruit her
to locally advertise the festival. Contrary to recruiting a group of
globally influential users, targeting regionally influential users has
increased chances to draw attendance from all districts. As another
example, consider a natural disaster, where affected people often
turn to LASNs as a source of prompt information as well as a means
for self-organizing community-driven help and support. The gov-
ernment seeking to reward the most active and helpful civilians in
the aftermath, would locate the most influential LASN users within
the affected area. In such scenarios, the common theme is ranking
LASN users according to their computed geo-social influence.

In this work, we introduce the top-k Regionally Influential LASN
users (k-RIL) problem. A user checks-in at a location ` when she
makes a geo-tagged post from `. Thus, given a spatial region R,
we say that a user is regional if she has checked-in at least once
at a location within R. Moreover, the locality of a regional user u
models the probability that u will check-in at a location within R,
and, in a sense, generalizes for regions the concept of “mayorship”
in Foursquare. Assuming an information propagation model for
social networks [7], the regional influence of a user is defined as
the (expected) total locality of users she influences. Under these, k-
RIL returns the k regional users with the highest regional influence.

The k-RIL problem is related to the problems of Influence Max-
imization (IM) in social networks, and Graph Closeness Centrality
(GCC). In IM, given an information propagation model, e.g., the
Independent Cascade (IC) described in [7], the goal is to select a
group of users, termed seeds, that collectively influence the largest
number of other users. The most computationally challenging (#P-
hard) task in IM problems is computing the probability of a user
being influenced. Note that even though the k-RIL problem defini-
tion is similar to the case of a single seed in IM, the #P-hardness
still holds. Therefore, a common strategy in IM problems is to
simplify the underlying model. In this spirit, the Maximum Influ-
ence Arborescence (MIA) model [9] restricts IC with respect to
the following two assumptions: (i) a user may influence another
only through third users which lie on the path that maximizes the
aggregate propagation probability, and (ii) only such paths with ag-
gregate propagation probability above a pre-defined threshold are
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Figure 1: Running example of 9 users and 6 locations

considered. In our work, we adopt a similar strategy introducing
a restricted version of the IC model, termed MIAwoT, which is
however significantly less restrictive than MIA. Finally, a very re-
cent work [8] solves an IM problem in a similar context to ours,
However, this work targets the fundamentally different problem of
selecting a group of k users that collectively maximize influence
within a region R, whereas k-RIL seeks to rank users. In addition,
it makes some unrealistic assumption, e.g., each LASN user has a
known fixed location, and the proposed solution relies on extensive
pre-computations, which makes it unsuitable for k-RIL.

Under the MIAwoT model, we show that it is possible to com-
pute the regional influence of a user deterministically, by carefully
assigning weights to edges of the social graph and computing net-
work distances between users. As a result, k-RIL becomes similar
to the Graph Closeness Centrality (GCC) problem [1], i.e., find
the node that minimizes the sum of distances to all other nodes.
However, the state-of-the-art method for GCC [6] optimizes only
the case of directed graphs and thus cannot be applied in our set-
ting. Therefore, we present a preliminary solution to k-RIL termed
DRIC, that calculates all pairwise network distances (after com-
puting the appropriate weights) and, then determines the regional
influence of users. Our experiments show that DRIC can be effi-
cient when both the size of the social network and the number of
regional users are small, as it essentially computes the influence of
all regional users.

2. PROBLEM DEFINITION
Before formally introducing the k-RIL problem, we present some

necessary definitions.
Location-Aware Social Network (LASN). Let U denote the set
of users, L the set of locations, and C the set of check-ins, where
a check-in (u, `) means that user u has checked-in at location `;
C(u) denotes the set of locations user u has checked-in. The so-
cial graph G(U,E) contains an (undirected) edge (ui, uj) ∈ E
indicating that ui and uj are friends.
Propagation Model. Each edge (ui, uj) ∈ E is associated with
a propagation probability pij > 0, which quantifies the degree of
influence between the two users. This value is calculated directly

from the users’ check-ins, e.g., using the Jaccard similarity:

pij =
|C(ui) ∩ C(uj)|
|C(ui) ∪ C(uj)|

,

or it can also be determined by external parameters, such as the
users’ profiles and their friendship duration.

The propagation model we adopt differs from the maximum in-
fluence arborescence (MIA) model in that it does not enforce an
influence threshold (i.e., we do not require the second assumption
discussed in Section 1). This model, which we refer to as MIAwoT,
is a restricted version of the Independent Cascade (IC) model but is
significantly less restrictive than MIA.

The concept of maximum influence paths is principle in MIA-
woT. Let πst denote a simple path uπ[1] · · ·uπ[m] on the social
graph from user uπ[1] ≡ us to uπ[m] ≡ ut, and define the path
propagation probability of πst as

p(πst) =

m−1∏
i=1

pπ[i]π[i+1] (1)

A path from us to ut is called the maximum influence path (mip),
and denoted by π∗st, if it has the highest path propagation probabil-
ity among all other paths from us to ut. As there can be multiple
paths that maximize the path propagation probability, the maximum
influence path is selected as one of them subject to the restriction
that all its subpaths are also mips (as in MIA [9]).

Users in MIAwoT, as in IC, can be in two possible states, in-
fluenced and not influenced; once a node becomes influenced it
remains so. Propagation on G under MIAwoT proceeds as follows.
Let St represent the set of users influenced at step t. At step t = 0,
the influenced users S0 are also called the seeds. Then at step t+1,
each user ui that was influenced at step t, i.e., ui ∈ St \ St−1,
may influenced her neighbor uj with probability pij , only if edge
(ui, uj) lies on some maximum influence path starting from a seed.
This last clause is what differentiates MIAwoT from IC. Note that
each user is given only one chance to influence her neighbors, at the
step right after she became influenced. Propagation ends at the step
when no new user is influenced. We denote the set of eventually
influenced users as Φ(S0); when S0 is a single user u we simply
denote it as Φ(u).
Problem Statement. Given a spatial region R, we define the set of
regional users UR ⊆ U as the users who have checked-in at least
once at a location inside R, i.e, UR = {u|u ∈ U,∃` ∈ C(u) : ` ∈
R}. Moreover, for an LASN user u we define the ratio γR(u) of
u’s local check-ins in R over the total as the locality of the user:

γR(u) =
|C(u) inside R|
|C(u)| (2)

Intuitively, the locality captures the prior probability of a user check-
ing in at some location inside a given region R.

Given a region R, the regional influence of a user u is defined as
the expected sum of localities of users influenced by u (expectance
E is on the random set Φ(u) over the propagation probabilities):

IR(u) = E

 ∑
u′∈Φ(u)

γR(u′)

 . (3)

Note that non-regional users have localities equal to zero, and
thus they do not contribute to the regional influence. This means
that equivalently, the summation in Equation 3 could be restricted
over users in Φ(u) ∩ UR.

We next state the top-k Regionally Influential LASN users (k-
RIL) problem.



Problem k-RIL. Given a spatial region R, return a set UkR of k
regional users that have the highest regional influence, i.e., |UkR| =
k and ∀u ∈ UkR, ∀u′ ∈ UR \ UkR it holds that IR(u) ≥ IR(u′).

Example 1. Figure 1 presents an example LASN of 9 users and
6 locations. Consider an 1-RIL instance with a spatial region R.
Figure 1a depicts the locations as diamonds, draws the region R,
and also shows the check-ins grouped by location. The locations
inside R are drawn with filled diamonds, and their corresponding
check-ins are enclosed in a box. From the check-in lists, we de-
rive that u1, u4, u5, u6 are the regional users. Without loss of
generality, we simplify formulas setting γR = 1 for all regional
users. Figure 1b depicts the social graph, where regional users are
shown as filled circles. The bottom right part of the figure contains
the propagation probabilities pij between users ui and uj . For the
sake of the example, we assume that these probabilities are given
and thus do not correspond to Jaccard similarities computed from
the check-ins. �

3. METHODOLOGY
First, in Section 3.1, we present an efficient method for com-

puting the regional influence. Next, in Section 3.2 we outline an
algorithm for solving k-RIL.

3.1 Computing the Regional Influence
We first prove the #P-hardness of k-RIL under the general Inde-

pendent Cascade (IC) propagation model.
Theorem 1. The k-RIL problem under the IC propagation model
is #P-hard.
Proof. The problem of computing the influence spread of a single
user, which we call SIS, under the IC model is shown to be #P-hard
in [9]. We reduce SIS to the k-RIL problem. Given an SIS instance,
we create a k-RIL instance where the social graph is identical, the
region R is equal to the entire space, k is equal to |U |, and the lo-
cality γR is equal to 1 for all users. Then, it is easy to determine the
answer to the SIS instance by solving the k-RIL instance. Essen-
tially, in order to rank the users, you need to compute the regional
influence of all users, which in turn means that you have solved
the SIS instance, as the influence spread of a user in SIS equals its
regional influence in the particular k-RIL instance.

This result justifies our adoption of a model more restricted than
IC, namely the MIAwoT propagation model. Under MIAwoT, it
is possible to solve k-RIL in polynomial time. To reach this con-
clusion, we first show that the regional influence of a user can be
computed exactly using a closed form deterministic formula.
Lemma 1. The regional influence of a user us under MIAwoT is:

IR(us) =
∑

ui∈UR

p(π∗si) · γR(ui)

where π∗si is the maximum influence path from us to ui.
Proof. For any user ui, let X(ui) be an indicator random variable
such thatX(ui) = 1 when ui ∈ Φ(us), andX(ui) = 0 otherwise.
Then, Equation 3 can be rewritten as:

IR(us) = E

 ∑
ui∈Φ(us)∩UR

γR(ui)

 = E

 ∑
ui∈UR

X(ui) · γR(ui)


=

∑
ui∈UR

E (X(ui)) · γR(ui)

Under MIAwoT, a user ui can be influenced by us only via the
maximum influence path π∗si from us to ui. This means that ui is

influenced with probability equal to this path’s propagation proba-
bility p(πsi). Therefore, E(X(ui)) = 1·p(π∗si)+0·(1−p(π∗si)) =
p(π∗si), and the theorem follows.

Lemma 1 shows that the regional influence of a user us can
be directly computed from the path propagation probabilities of
the maximum influence paths from us to any other regional user.
Therefore, the challenge is how to efficiently compute the propaga-
tion probabilities. Towards this goal, inspired by [9], we define a
set W of edge weights for the social graph such that weight

wij = − ln pij (4)

is assigned to edge (ui, uj). Moreover, let d(us, ut) denote the
social distance, i.e., the sum of weights of the shortest path on G
from user us to ut. We emphasize that the social distance of two
users is not related to the spatial locations of their check-ins and is
only based on their proximity on the social graph.
Example 2. Returning to our running example of Figure 1, we note
that the top right part of the figure shows the value of the edge
weights for all propagation probability values, as computed using
Equation 4. The numbers along the graph edges correspond to the
weights. For illustration purposes and easy distance computations
the weight values are rounded to one decimal place; we remark that
this rounding does not affect the correctness of the 1-RIL result in
all evaluation methods. �

The following lemma shows an alternative way for computing
path propagation probabilities using the edge weights.
Lemma 2. The path propagation probability of the maximum in-
fluence path from us to ui can be computed from the social distance
of us and ui as:

p(π∗si) = e−d(us,ui)

Proof. Let π∗si = uπ∗[1] · · ·uπ∗[m] denote the maximum influ-
ence path from us to ui. Since p(π∗si) =

∏m−1
k=1 pπ∗[k]π∗[k+1] =

exp(ln(
∏m−1
k=1 pπ∗[k]π∗[k+1])) = exp(−∑m−1

k=1 wπ∗[k]π∗[k+1]) =
exp(−d(us, ui)), the lemma follows.

Combining the results of Lemmas 1 and 2, we obtain the follow-
ing formula for the regional influence of a user us.

IR(us) =
∑

ui∈UR

e−d(us,ui) · γR(ui) (5)

Moreover, it is easy to show the tractability of the k-RIL problem
under MIAwoT.
Theorem 2. The k-RIL problem under the MIAwoT propagation
model is solvable in polynomial in |U | time.
Proof. Computing Equation 5 for each user us ∈UR, i.e., at most
|U | times, clearly solves k-RIL. Moreover, computing Equation 5
requires finding all shortest path from us according to the edge
weights on the social graph. This task is accomplished in O(|E|+
|U | log |U |) amortized time using Dijkstra’s algorithm, where |E| =
O(|U |2) is the number of edges in the graph. Hence, there exists
an algorithm that solves k-RIL in time at most cubic in |U |.

3.2 The Algorithm
The discussion in the previous section implies the following eval-

uation method to solve k-RIL, called Dijkstra-based Regional In-
fluence Computation and denoted as DRIC. The basic idea is to
compute the shortest path between any pair of regional users on
the social graph. Then, for each regional user, DRIC computes her
regional influence and finally, sorts the regional users according to
their influence and returns the k most influential.



Algorithm 1: DRIC
Input: social graph G(U,E); set of weights W ; set of locations L; set of

check-ins C; spatial region R; value k
Output: top-k list T
Variables: set of regional users UR, social distance matrix D

1 UR ← GetRegionalUsers(U,L,C,R);
2 foreach ui ∈ UR do
3 D ← Dijkstra(ui, G,W,UR);
4 IR(ui)← ComputeRegionalInfluence(ui, UR, D);
5 push ui to T ;

6 return T ;

u1 u4 u5 u6
u1 0 1 0.4 1.1
u4 1 0 0.7 1.4
u5 0.4 0.7 0 0.7
u6 1.1 1.4 0.7 0

(a) Distance matrix D

IR(u1) = 1 + 3/8 + 2/3 + 1/3 = 2.375
IR(u4) = 3/8 + 1 + 1/2 + 1/4 = 2.125
IR(u5) = 2/3 + 1/2 + 1 + 1/2 = 2.666
IR(u6) = 1/3 + 1/4 + 1/2 + 1 = 2.083

(b) Regional influence

Figure 2: DRIC computations

Algorithm 1 illustrates the pseudocode of the method. DRIC re-
ceives as inputs an LASN, i.e., a social graph G(U,E) with a set
of weights W , a set of spatial locations L and a set of check-ins
C, and a k-RIL query, i.e., a spatial region R and an integer k. It
returns the list T of the top-k most influential regional users. DRIC
utilizes two data structures: (i) the set of regional users UR and (ii),
the social distance matrixD which is a |UR|×|UR| symmetric ma-
trix that stores inside every cell D[ui][uj ] the length of the shortest
path on the social graph G(U,E) between regional users ui and
uj , i.e., D[ui][uj ] = d(ui, uj).

In the beginning, DRIC invokes the GetRegionalUsers func-
tion to define the set of regional users UR (Line 1). For every
user ui of UR the total number of her check-ins inside R is also
calculated to determine her locality γR(ui). The implementation
details of GetRegionalUsers are outside the scope of this pa-
per; any index for spatial range queries, e.g., the R-tree [5], can
be employed. Then, in Lines 2–5, the algorithm examines every re-
gional user ui inUR to calculate her regional influence IR(ui) call-
ing functions Dijkstra and ComputeRegionalInfluence,
and inserts ui into list T . Dijkstra computes the shortest path
from ui to all regional users in UR and stores its length inside the
social distance matrixD, while ComputeRegionalInfluence
computes IR(ui) using Equation 5 and matrix D.
Example 3. In the 1-RIL example of Figure 1b, there exist 4 re-
gional users, u1, u4, u5, u6. DRIC calls Dijkstra once for each
regional user to compute entries of the social distance matrix D,
one row at a time. The resulting matrix is shown in Figure 2a. Af-
ter each Dijkstra invocation, DRIC computes the regional influ-
ence of the examined user from Equation 5. Consider user u1 for
example. Her influence is IR(u1) = e0 + e−1 + e−0.4 + e−1.1 =
1+3/8+2/3+1/3 = 2.375. Finally, after all regional influences
are computed, depicted in Figure 2b, DRIC returns u5, having the
highest regional influence, as the answer to 1-RIL. �

Complexity. The DRIC algorithm performs exactly UR iterations.
Each iteration invokes Dijkstra’s algorithm, which performs |E|
edge relaxations and |U | deheap operations. Assumming a Fi-
bonacci heap, each of these operations requireO(1), andO(log |U |)
amortized time. Note that an iteration also computes the regional
influence, which however takes O(|U |) time and is thus dominated
by Dijkstra’s running time. Therefore, the total (amortized) running
time of DRIC is O(|UR||E|+ |UR||U | log |U |).

4. EXPERIMENTS AND CONCLUSIONS
We finally present a preliminary experimental evaluation of our

methodology for identifying the top-k regionally influential users.

Table 1: Datasets characteristics

Characteristic Datasets
Gowalla [2] Brightkite [2] Foursquare1 [3] Foursquare2 [4]

Users |U | 197K 58K 18K 11K
Edges |E| 950K 214K 116K 47K

Locations |L| 1.3M 773K 43K 187K
Check-ins |C| 6.4M 4.5M 2M 1.4M

Table 2: Response time (sec) varying query selectivity, k = 5

|UR|/|U | (%) Gowalla Brightkite Foursquare1 Foursquare2
0.1 140.6 9.6 0.9 0.2
0.2 262.1 17.9 2.3 0.4
0.3 432.5 26.8 3.2 0.6
0.5 590.6 42.1 5.8 0.9
1 1148.6 71.5 11.2 1.9

Our analysis involves 4 datasets from real-world LASNs. Table 1
summarizes the characteristics of these datasets. The evaluation is
carried out on an 2.67Ghz Intel Xeon CPU E5640 with 32GB of
RAM running Debian Linux and DRIC was written in C++.

To assess the performance of DRIC algorithm, we measure its
average response time over 500 k-RIL queries, varying query se-
lectivity |UR|/|U |, i.e., the number of regional users over the total
number of LASN users. Note that we choose to directly vary the
selectivity of a query instead of the size of its spatial regionR as the
most time consuming step of the method (the Dijkstra algorithm)
is related to the number of users checked-in at a location inside R
and not to how large this region is.

Table 2 reports the response time of DRIC while varying query
selectivity |UR|/|U |. The results verify the complexity analysis of
Section 3.2. The response time increases linearly to the number of
regional users |UR|. Naturally, DRIC slows down with the increase
of the size of the social graph. Note that the performance of DRIC
is not affected by the number of returned users, so k is set to 5.

DRIC can efficiently solve k-RIL in case of small size social
networks or small number of regional users. Motivated by this, in
the future we plan to devise more efficient methods that will avoid
computing the influence for all regional users by examining them
in descending order of their expected influence.
Acknowledgements This research was partially supported by the
German Research Foundation (DFG) through the Research Train-
ing Group METRIK, grant no. GRK 1324, and by the European
Union (European Social Fund – ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) – Re-
search Funding Program: Thales. Investing in knowledge society
through the European Social Fund.

5. REFERENCES
[1] A. Bavelas. Communication patterns in task-oriented groups. Journal

of the acoustical society of America, 1950.
[2] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user

movement in location-based social networks. In KDD, 2011.
[3] H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on

location-based social networks. In ICWSM, 2012.
[4] H. Gao, J. Tang, and H. Liu. gscorr: modeling geo-social correlations

for new check-ins on location-based social networks. In CIKM, 2012.
[5] A. Guttman. R-trees: A dynamic index structure for spatial searching.

In SIGMOD, 1984.
[6] P. W. O. Jr., A. G. Labouseur, and J.-H. Hwang. Efficient top-k

closeness centrality search. In ICDE, 2014.
[7] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of

influence through a social network. In KDD, 2003.
[8] G. Li, S. Chen, J. Feng, K. lee Tan, and W.-S. Li. Efficient

location-aware influence maximization. In SIGMOD, 2014.
[9] C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for

independent cascade model in large-scale social networks. Data Min.
Knowl. Discov., 25(3):545–576, 2012.


	Introduction
	Problem Definition
	Methodology
	Computing the Regional Influence
	The Algorithm

	Experiments and Conclusions
	References

