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ABSTRACT
In this paper, we address the problem of continuously maintaining
a concise, diversified summary of the contents of a sliding window
over a stream of geotagged posts. Selecting posts to include in the
summary takes into account both the criteria of coverage and diver-
sity, and the summary is updated dynamically when the window
slides. Our proposed strategy provides a trade-off between infor-
mation quality and performance. An experimental evaluation of
our method is presented using two real-world datasets containing
spatio-textual posts from Twitter and Flickr.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Infor-
mation retrieval diversity; Data streaming;
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1 INTRODUCTION
A large number of spatio-textual posts, such as geotagged tweets
and photos, are generated constantly by users in social media.
Combining textual content with geospatial information provides
a valuable source for analysis, e.g., for identifying and monitoring
trending events or topics at various locations, studying the spatial
distribution of opinions and sentiments associated with various
entities. However, given the high rate at which this content is pro-
duced, it can easily become overwhelming for the user to keep track
of the whole stream of information. Moreover, there is typically a
high degree of repetition and redundancy in the contents of the
streams. Thus, it is often desirable to compute and maintain a more
concise, aggregate summary of relatively few, representative posts.

The seminal work of [2] studied the problem of document sum-
marization and formulated it as an instance of the diversification
problem, which has been extensively studied in the fields of infor-
mation retrieval and web search [3, 5, 11]. Constructing a document
summary that is more diverse can increase the coverage of different
topics, aspects, opinions or sentiments, thus reducing repetition and
bias. Several formulations exist for defining the objective of search
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results diversification [3, 5, 11]. According to the most well-known
[5], given a set of relevant documents, the goal is to select a much
smaller subset that maximizes an objective function, which com-
bines: (a) a relevance score, assessing how relevant each document
is, and (b) a diversity score, measuring how diverse the documents
in the subset are. Under these formulations, finding the exact re-
sult set that maximizes the diversification objective is NP-hard.
Thus, approximate solutions are proposed, relying either on greedy
heuristics, which build the diversified set incrementally, or on in-
terchange heuristics, which gradually improve upon a randomly
selected initial set by swapping its elements with other ones that
improve its diversity.

Most of the existing approaches address static settings, with very
few considering a streaming context. In [4], continuous diversifi-
cation under a sliding window model is studied. The algorithm,
however, is impractical for massive, frequently updated streaming
data, as it needs to maintain a cover tree storing all posts in the cur-
rent window. The work in [9] assumes a landmark window model,
i.e., a window over the stream that spans from a fixed point in
the past until the present. The online algorithm checks every new
incoming post against those in the current result set, and performs
a substitution if it increases the objective score of the set.

In this paper, we focus on computing and maintaining spatially
and textually diversified summaries over a stream of spatio-textual
posts. We adopt the sliding window model by examining successive
chunks of the incoming stream and incrementally updating the
resulting summary to reflect recently trending posts. We formally
define the problem of summarizing a stream of spatio-textual posts
over a sliding window, defining specific spatio-textual criteria of
coverage and diversity.We observe that our formulation is related to
the max-sum diversification problem, and thus we adapt the method
from [9] so as to operate under the sliding window model, a task
which requires handling post expirations. Finally, we present an
experimental evaluation of our approach using real-world datasets
from Twitter and Flickr.

2 SUMMARY DEFINITION
Our goal is to continuously maintain a summary of the contents of
a sliding window over a stream of spatio-textual posts. We formally
define these concepts below.

Definition 1. A spatio-textual post p = ⟨Ψ, ℓ, t⟩ consists of a set
of keywords Ψ from a vocabulary V , and was generated at location ℓ
(a pair of coordinates (x ,y)) at timestamp t . !

Definition 2. A time-based sliding window W comprises: (a) a
range spanning over the most recent ω timestamps backwards from



current time tc , and (b) a slide step of β timestamps. Upon each
slide,W moves forward and provides all messages posted during time
interval (tc −ω, tc ]. These messages comprise the current state of the
window, i.e.,

W = {p : p.t ∈ (tc − ω, tc ]} (1)
Posts with timestamps earlier than tc − ω are called expired. !

Given a constraint on the maximum summary size, our objective
is to construct a summary that covers as much as possible the entire
set of posts in the current windowwhile at the same time containing
diverse information as much as possible. Formally, we capture these
two requirements using the two measures defined next.

Definition 3. The coverage cov(S) of a summary S captures the
degree to which the posts in the summary approximate the spatial
and textual information in the window. We use a weight α to capture
the relative importance of the two information facets:

cov(S) = α · covT (S) + (1 − α) · covS (S). (2)
!

Similar to [7], we define the textual coverage of a summary as

covT (S) =
∑

pi ∈W

∑
pj ∈S

simT (pi ,pj ) (3)

where simT (·, ·) is a textual similarity metric between posts.
For our purposes, we consider the vector space model, and de-

fine sim(·, ·) as the cosine similarity of the vector representations
of the posts. Specifically, each space coordinate corresponds to a
keyword, and the vector’s coordinate contains a weight represent-
ing the importance of the corresponding keyword relative to the
window. While any tf-idf weighing scheme [8, 10] is possible, here
we simply use term frequency and normalize the vectors to unit
norm. Therefore, the textual coverage is computed as the sum over
each pair of posts (one from the window and another from the
summary) of the inner product of their vector representations:

covT (S) =
∑

pi ∈W

∑
pj ∈S

∑
ψ

pi [ψ ] · pj [ψ ], (4)

where keywordψ is used to index the vector and thus p[ψ ] denotes
the normalized weight of keywordψ of post p.

For the spatial coverage, we follow a similar formulation and
define it as cosine similarity in a (different) vector space. Instead
of keywords from a vocabulary, we have a set of regions from a
predetermined spatial partitioning ρ (e.g., regions could represent
cells of a uniform grid). Intuitively, such a coarse partitioning allows
for a macroscopic view of the posts in the window, where exact
post locations are not important and thus coalesced into broader
regions. As each post is always associated with a single region, the
spatial content of a post is simply represented as a vector having
a single weight 1 at the vector coordinate representing the region
containing the post’s geotag. Thus, the spatial coverage is computed
as:

covS (S) =
∑

pi ∈W

∑
pj ∈S

""ρ(pi .ℓ) = ρ(pj .ℓ)
"" , (5)

where ρ(ℓ) is the region associated with location ℓ, and |ρ(pi .ℓ) =
ρ(pj .ℓ)| returns 1 if locations pi .ℓ, pj .ℓ reside in the same region.

Next, we define the diversity of a summary.

Definition 4. The diversity div(S) of a summary S captures the
degree to which the posts in S carry dissimilar information. As before,
diversity is defined as the weighted sum of a textual and spatial term:

div(S) = α · divT (S) + (1 − α) · divS (S) (6)

!

Textual diversity is definedwith respect to the vector spacemodel.
Specifically, textual diversity is the sum of cosine distance between
all pairs of posts in the summary:

divT (S) =
∑

{p,p′ }:p!p′ ∈S

#$
%
1 −

∑
ψ

pi [ψ ] · pj [ψ ]&'
(

(7)

On the other hand, spatial diversity is defined based on a spatial
distance (e.g., Euclidean, haversine) between summary posts’ exact
locations:

divS (S) =
∑

{p,p′ }:p!p′ ∈S
dist(p.ℓ,p′.ℓ) (8)

Based on the definitions of these two quality measures of a
summary, we are now ready to state our problem.

Problem 1. For each sliding window W over a stream of posts,
determine the summary S∗ of size k that maximizes the objective
function:

S∗ = argmax
S ⊆W, |S |=k

f (S),

f (S) = λ · cov(S) + (1 − λ) · div(S)
where λ is a weight parameter for coverage and diversity. !

3 SUMMARY CONSTRUCTION
If we consider any individual instantiation of the sliding window,
our problem formulation is identical to the max-sum diversification
problem [5]. Thus, one can apply the adaptation of the greedy algo-
rithm in [1] to summarize the contents of each window. However,
such an approach is impractical because the sliding window can be
arbitrarily large, thus storing its entire contents is not an option.
Instead, we need to devise an efficient solution that operates on
limited memory.

To achieve this we need to address two tasks. The first is how
to compute the coverage of posts without storing the window’s full
contents. Recall that the coverage of a single post is computed
as the sum of its cosine similarity with each post in the window.
The second task is how to construct the summary, again without
having the window’s full contents. We address each of these tasks
next. Note that, while this problem has been studied for landmark
windows with limited memory [9] and for sliding windows without
memory restrictions [4], to the best of our knowledge it has not
been addressed for sliding windows under limited memory.

3.1 Computing Coverage
To compute the coverage without keeping the entire window con-
tents, we exploit the linearity of the inner product (the cosine
similarity of two normalized vectors is their inner product). In what



follows, we use the term coverage to refer both to textual and spatial
coverage, as they are both defined as a sum of inner products.

Our approach is based on the notion of window pane (or sub-
window) [6]. For ease of presentation, we assume that the size of
the window ω is a factor of its slide step β , e.g., a window of 24
hours sliding every one hour. The window is thus naturally divided
intom = ω/β panes. Each time the window slides, all tuples within
the oldest pane expire, while new tuples arrive in the newest pane,
termed current.We denote asW the current and asW ′ the previous
window instantiation. We also denote asW− the expired pane of
the previous window, and refer to the current pane as W+, i.e.,
W− =W ′ !W and W+ =W !W ′. We enumerate the panes
of the window by simply using the notation W1 through Wm . For
each pane Wi , we define its information contentWi as the vector:

Wi =
∑

p∈Wi

p. (9)

It is then easy to see that the coverage of a post p can be efficiently
computed using the information contents of them panes:

cov(p) =
m∑
i=1

∑
τ
Wi [τ ] · p[τ ], (10)

where τ represents either a keyword or a region. This implies a
simple solution to computing the coverage. Instead of requiring
the set of all posts within a window, it suffices to store only a few
vectors, that is the information content of each pane. When the
window slides, we just throw away the information content of the
expired pane, and begin aggregating posts in the current pane to
form its information content.

3.2 Building the Summary
We first present a Baseline (BL), which requires storing the entire
contents of the window. Thus, this strategy is impractical, serving
only as a benchmark to the quality of the summary. The algorithm
for this method is an adaptation of the GA algorithm [1]. BL builds
the summary incrementally, starting with an empty set. Then, at
each step it inserts the post that maximizes the marginal gain of
the objective function. Given a summary S , the marginal gain of a
post p is:

ϕ(p) = λ · cov(p) + (1 − λ) · div(p, S).
Note that GA initializes the summarywith a randompost because

it cannot differentiate among posts when the summary is empty.
Since BL can differentiate among posts, it selects instead as the first
post the one that has the largest coverage.

Next, we describe the Online Interchange (OI) algorithm. This is
inspired by [9], where an online algorithm for solving the max-sum
diversification problem on an ever increasing stream of posts is
presented. The proposed technique solves the problem for a land-
mark window, which spans from a fixed point in the past until the
present. For our purposes, we adapt this algorithm to our problem
involving sliding windows, where both the start and the end point
of the window slide.

The key idea of OI is to construct the summary of the current
window by making incremental changes to the summary of the
previous window. Thus, initially the summary is the previous sum-
mary excluding any expired posts. Then, each newly arrived post

is examined in sequence. If the summary is not yet full, the post is
simply inserted. Otherwise, the algorithm identifies the best post
to evict from the summary in favor of the current examined post. If
such a replacement results in an increase of the objective function,
the algorithm applies it.

4 EXPERIMENTAL EVALUATION
We use two real-world datasets. The first comprises 20 million
geotagged images extracted from a publicly available dataset by
Yahoo Labs and Flickr1. The contained images have worldwide
coverage and span a time period of 4 years, from 2010 to 2013.
Each image is associated with about 6 keywords on average. The
second dataset comprises 20 million geotagged tweets, and is also
available online2. It has worldwide coverage, and it spans a period
of 9 months during 2012. The average number of keywords per post
is 5.7.

We process each dataset in a streaming fashion, using the sliding
windowmodel, setting the default pane size to β = 4 hours.We have
chosen a rather large value so that the number of posts contained
in the resulting panes is in the order of a few thousands, thus
essentially compensating for the fact that these datasets are small
samples of the actual stream of posts in these sources. The average
number of objects per pane is about 2,000 for Flickr and 12,000 for
Twitter. Moreover, we set the default window size tom = 12 panes,
and the default summary size to k = 15 objects. Finally, both weight
parameters α (Equation 2) and λ (Definition 1) are set to 0.5, thus
weighting equally the spatial and textual dimensions, as well as the
two criteria of coverage and diversity.

We compare the two methods presented in Section 3.2, namely
Baseline (BL) and Online Interchange (OI). To compare their per-
formance, we examine two criteria. Firstly, we investigate their effi-
ciency, which is measured as the average execution time required to
update the summary every time the window slides. Secondly, we in-
vestigate the quality of the summaries they produce, by measuring
their objective score (see Definition 1). We compute this objective
score for each summary a given method produces at every slide
of the window, and we take their average over the entire stream.
Since computing the optimal summary (i.e., the one that maximizes
the objective function) is practically infeasible, we use the objective
score achieved by BL as a reference value, and we measure the score
of OI as a ratio to that. The algorithms are implemented in Java,
and the experiments were conducted on a server with 64 GB mem-
ory and an Intel® Xeon® CPU E5-2640 v4 @ 2.40GHz processor,
running Debian GNU/Linux 9.0.

We first examine the execution time of the two methods, varying:
(a) the size of the window (numberm of panes it contains); (b) the
size of each pane (duration β); and (c) the size of each summary
(number k of objects). The respective results are shown in Figures
1(a), 2(a) and 3(a) for Flickr and 1(b), 2(b) and 3(b) for Twitter.
Notice that, in these plots, logarithmic scale is used on the y axis.
As expected, OI outperforms BL in all cases. This is because, in BL,
the previous summary is discarded and the new one is computed
from scratch, taking into account all posts in the window. Instead,
OI constructs the new summary incrementally, discarding only

1https://code.flickr.net/category/geo/
2http://www.ntu.edu.sg/home/gaocong/datacode.htm
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Figure 1: Results for window size (m).
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Figure 2: Results for pane size (β).
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Figure 3: Results for summary size (k).

the expired posts from the previous one, and considering only the
newly arrived posts as candidates.

Next, we investigate the objective score achieved by the sum-
maries computed by each method. As explained above, we use the
objective score of BL as reference. We examine how the results
vary for different values of the window sizem, pane duration β ,
and summary size k . The results are shown in Figures 1(c), 2(c) and
3(c) for Flickr and 1(d), 2(d) and 3(d) for Twitter. Interestingly, OI
appears to surpass the score of BL. Yet, the observed differences are
rather marginal, not exceeding 1%. Essentially, this indicates that OI
not only does not suffer a penalty for not rebuilding the summary
from scratch, but instead the summary produced by interchanging
posts on this basis has a similar, or even slightly higher, quality
than the former. Subsequently, OI is clearly the best choice overall
considering both performance measures.
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