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ABSTRACT
Thousands of posts are generated constantly by millions of users

in social media, with an increasing portion of this content being

geotagged. Keeping track of the whole stream of this spatio-textual

content can easily become overwhelming for the user. In this paper,

we address the problem of selecting a small, representative and

diversified subset of posts, which is continuously updated over a

sliding window. Each such subset can be considered as a concise

summary of the stream’s contents within the respective time in-

terval, being dynamically updated every time the window slides

to reflect newly arrived and expired posts. We define the criteria

for selecting the contents of each summary, and we present several

alternative strategies for summary construction and maintenance

that provide different trade-offs between information quality and

performance. Furthermore, we optimize the performance of our

methods by partitioning the newly arriving posts spatio-textually

and computing bounds for the coverage and diversity of the posts in

each partition. The proposed methods are evaluated experimentally

using real-world datasets containing geotagged tweets and photos.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; Data
streaming; Information retrieval diversity;
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1 INTRODUCTION
Millions of users generate content daily in social media and other

online platforms. A large portion of this content is geotagged, and

can thus be modeled as a stream of spatio-textual posts, comprising

a geolocation and a set of keywords (e.g., tags, hashtags). Typical
examples include geotagged tweets and photos, news articles with

location references, user check-ins at certain places, reviews and
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spatial region

Figure 1: Running example of spatio-textual posts.

comments about various Points of Interest (POI), etc. This combina-

tion of textual content with geospatial information can be a valuable

source for a variety of tasks, such as identifying and monitoring

events at various locations [14], recommendation systems based

on spatial-keyword subscriptions [31], mining trending topics in

different areas [24], studying the spatial distribution of opinions

and sentiments associated with various POIs, and more.

Nevertheless, keeping track of the entire stream is impractical,
since it can easily become overwhelming for the user. It is also un-
desirable, as such content is typically characterized by a high degree
of redundancy, e.g., due to identical news articles or similar stories

being published by several outlets [32], same posts re-tweeted by

multiple users, or similar opinions and comments being expressed.

Instead, it is easier and often sufficient to draw conclusions and

to identify interesting trends, behaviors and patterns by only ex-

amining a much smaller, representative subset of the stream. Since

new content is continuously being produced, while past items lose

their significance with time, such summaries need to be continu-

ously maintained and updated as the underlying content evolves.

Being able to do so efficiently and incrementally in a scalable man-

ner can benefit search and recommendation engines as well as

publish/subscribe systems, since users can obtain a concise and

summarized overview of the underlying information, including

appropriately selected anchor posts for further exploration.

In this paper, we consider four criteria for effectively summa-

rizing a set of spatio-textual posts. Specifically, a summary should

have (a) high textual coverage, i.e., capture the most representative

textual information; (b) high spatial coverage, i.e., capture the most

representative spatial information; (c) high textual diversity, i.e.,
include posts textually dissimilar to each other; and (d) high spatial
diversity, i.e., include posts with locations far from each other.

Example 1.1. Figure 1 depicts a running example used through-

out the paper to illustrate the described concepts and our approach.

Consider four posts p1, p2, p3, p4, drawn as point locations on the

https://doi.org/10.1145/3221269.3221290
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2D space, which is partitioned using a uniform grid. Every post is as-

sociated with a set of keywords. We assume that each post contains

three keywords, drawn from a vocabulary {ψ1,ψ2,ψ3,ψ4,ψ5}. Now,
assume that the goal is to summarize these posts by selecting only

two of them. In terms of textual coverage, summary S1 = {p1,p3}
is better than S2 = {p2,p3}, because S1 covers all five keywords,
whereas S2 covers only four. Similarly, with respect to spatial cov-

erage, summary S1 covers two cells in the grid compared to one

cell covered by S2. Regarding textual diversity, summary S1 is more

dissimilar than S2, as the two posts in S1 share only one keyword,

as opposed to two shared by posts in S2. Finally, summary S1 also
exhibits higher spatial diversity than S2, as the spatial distance

between posts in S1 is larger than that of posts in S2. □

On the one hand, certain parts of the textual and spatial infor-

mation may be deemed more relevant or significant than others

depending on application-specific criteria (e.g., frequency, popular-

ity). This can be reflected in the summary by favoring selection of

posts that contain such attributes. In our approach, this is achieved

via the criterion of coverage. Intuitively, the aim of textual and spa-

tial coverage is to ensure that the summary reflects as much as

possible the current textual and spatial content of the stream.

On the other hand, Web and user-generated content is inherently

repetitive and redundant, which makes a coverage-based summary

prone to biases, and thus less useful for exploratory search and

browsing. Diversifying search results is an established and well-

studied concept in information retrieval and web search, and can

significantly improve the quality of produced results and thus in-

crease user satisfaction in several practical applications [8, 12, 30].

In our approach, this is achieved via the criterion of diversity. In-
tuitively, the aim of textual and spatial diversity is to increase the

variety within the summary, favoring a mixture of differing topics,

aspects, opinions or sentiments, and thus reducing bias.

Note that the criteria of coverage and diversity can be contra-

dictory. Yet, it is possible to account for both of them and allow

for different tradeoffs, using various diversification models and for-

malisms proposed in the literature. Finding the optimal diversified

subset of posts under these formulations is NP-hard problem. In

practice, heuristics are employed to compute approximate solutions

more efficiently [12]. Nonetheless, existing approaches are either

inapplicable to or inefficient for our problem setting.

First, almost all existing approaches only address static settings
(i.e., computing a diversified subset of a given document collection

or of the result set of a given query), whereas very few ones have

considered a dynamic or streaming context [9, 23]. Moreover, those

that work over streams typically employ various restrictions and

assumptions that simplify the problem, making it easier to tackle,

but at the expense of restricting flexibility and generality.

Second, regardless of static or streaming context, the particu-

lar type of contents in the handled objects (posts in our case) is

considered an orthogonal issue. Thus, proposed solutions concern

only the generic diversification algorithm itself, without further

optimizing the process with specific coverage/relevance scores and

dissimilarity measures taking into account the type of posts.

In this paper, we attempt to fill these gaps by computing and

continuously updating textually and spatially diversified summaries

over streams of spatio-textual posts. Our approach adopts the sliding

window model, and is based on examining successive chunks of the

incoming stream to incrementally update the summary as new posts

arrive and old ones expire. First, we present several diversification

strategies that provide different trade-offs between maximizing

the quality (i.e., combined coverage and diversity) of the resulting

subset and minimizing computational cost. Then, we focus on the

specific case of spatio-textual posts, proposing optimizations that

can be applied to enhance the efficiency of those diversification

strategies. To the best of our knowledge, our work is the first to

address the problem of maintaining a diversified summary of posts

over a stream of spatio-textual posts.

Our approach is well-suited for exploratory search. The user

is not required to select a specific location or to specify a set of

relevant keywords. Instead, the goal is to provide an overview of

the whole content in such a way that both reflects most popular and

frequent items while still providing a sufficient degree of variety

to facilitate further exploration. This is particularly useful when

browsing social media content, where the user seeks to find inter-

esting events, trends and topics, but without knowing a priori what

this information is about or where it occurs or refers to. Note that

a preliminary investigation of this problem has been presented in

[26]. In this paper, we further elaborate on this problem, providing

an in depth investigation, suggesting and evaluating more advanced

summarization techniques.

Our main contributions can be summarized as follows:

• We formally define the problem of summarizing a stream of

spatio-textual posts over a sliding window, defining specific

spatio-textual criteria of coverage and diversity.

• We show how our formulation is related to the max-sum

diversification problem, and we remark that there exists a

simple greedy algorithm that can provide a 2-approximate

solution to the general static problem in linear time, instead

of a well-known quadratic time algorithm.

• We propose different streaming summarization strategies

that can trade result quality against computational cost.

• Weoptimize our proposed strategieswith light-weight spatio-

textual structures, which are used to update the result set

efficiently upon each window slide.

• We present an experimental evaluation to study and compare

the performance trade offs of our proposed methods and the

resulting performance gains of our algorithms.

The rest of the paper is organized as follows. Section 2 reviews re-

lated work on summarization and diversification methods. Section 3

formally defines the problem and the criteria for spatio-textual cov-

erage and diversity. Section 4 relates our problem to max-sum diver-

sification and introduces a simple algorithm for the static problem.

Section 5 presents our solution to the continuous summarization

problem, while Section 6 discusses optimizations based on spatio-

textual partitioning. Section 7 presents an experimental evaluation

of our methods, and Section 8 concludes the paper.

2 RELATEDWORK
We first present an overview of document summarization focusing

on diversification-based techniques on static data, and then discuss

the case of diversification over streaming data.
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2.1 Summarization via Diversification
The seminal work in [3] studied the problem of document sum-

marization and formulated it as an instance of the diversification

problem, which was later studied in various incarnations. Diversifi-

cation generally aims at reducing repetition and redundancy in the

result set presented to the user by selecting the final set of results

based not only on each document’s relevance to the query, but also

on the dissimilarity amongst the selected results. This increases

the variety and novelty of information included in the diversified

result set, which is particularly important for queries inherently

ambiguous or targeting different subtopics, perspectives, opinions

and sentiments. In such cases, diversification allows to better cover

and represent these different aspects in the result set.

Different formulations for search results diversification exist (see

[8, 12, 30] for an overview). According to the framework proposed

in [12], given a query Q and an initial result set R containing all

documents relevant to Q , the goal is to select a relatively small

subset R∗ of R, with |R∗ | = k . Set R∗ should maximize an objective

function ϕ that combines: (a) a relevance score assessing how rele-

vant each document in R∗ is to the given query, and (b) a diversity
score measuring how diverse the documents in R∗ are to each other.

Function ϕ can take different forms, such as max-sum, max-min,
and mono-objective diversification. For instance, in the max-sum
variant, ϕ is defined as the weighted sum of (a) the total relevance

of the documents in R∗ to Q , and (b) the sum of pairwise distances

among the documents in R∗.
Typically, finding the exact result set that maximizes the diversi-

fication objective is NP-hard. Thus, approximate solutions usually

rely either on greedy heuristics, which build the diversified set in-

crementally, or on interchange heuristics, which gradually improve

upon a randomly selected initial set by swapping its elements with

other ones that improve its diversity. In a recent work [4], the no-

tion of approximate, composable core-sets has been used to address

the k-diversity maximization problem in general metric spaces for

Streaming and MapReduce processing models. A core-set is a small

set of items that approximates some property of a larger set [17].

We note that other types of diversification problems have also

been studied, such as taxonomy/classification-based diversification

[1, 29] or multi-criteria diversification [7].

Moreover, summarization has also been studied in the context

of coverage alone, without a notion of diversity [20, 28]. For the

coverage problem in [10], the goal is to select the minimum subset

of documents that have distance to each other at least ϵ , and cover

the whole dataset, i.e., each non-selected document lies within

distance at most ϵ from a selected one. However, the size of the

summary is not fixed, but depends on the distance threshold ϵ .
Finally, the work in [32] aims at selecting k relevant and diverse

posts in a spatio-temporal range. In this case, the spatial relevance

of a post is defined by its proximity to the user’s location. Instead,

we define spatial importance in terms of spatial coverage, i.e., how

many other posts exist in a post’s neighborhood. In our view, this

formulation is better suited for summarization, since a post may be

spatially important even if it is far from the center of the studied

spatial range (e.g., the user’s location) as long as there are many

other posts around it. More importantly, diversity in [32] is a hard

constraint: returned posts must contain at leasth different topics, so

the result set could be empty. In contrast, we consider diversity as

an extra factor in the objective function, which increases flexibility

but also makes the problem computationally harder.

2.2 Diversification over Streaming Data
Fewworks so far have considered the problem of continuouslymain-

taining a diversified result set over streaming data. The approach

in [9] adopts the max-min objective function for diversification,

which entails maximizing the minimum distance between any pair

of documents in the result set. The proposed method relies on the

use of cover trees, and provides solutions with varying accuracy and

complexity for selecting items that are both relevant and diverse.

Moreover, it introduces a sliding window model for coping with the

continuous variant of the problem against streaming items. How-

ever, a cover tree needs to be incrementally updated by keeping all

raw items within the current window, which can have a prohibi-

tive cost in space and time when dealing with massive, frequently

updated streaming data. In our case, we rely on much more light-

weight aggregate information to speed up the computation of the

new result set every time the window slides.

The work presented in [23] assumes a landmark window model,

i.e., a window over the stream that spans from a fixed point in the

past until the present. The proposed online algorithm checks every

fresh document against those in the current result set, and performs

a substitution if it increases the objective score of the set. Thus, this

method addresses the diversification problem on an ever increasing

stream of objects. However, it is restricted by the fact that it always

considers exactly one incoming document, and does not handle

document expirations. In Section 5.2.2, we revisit this algorithm

and introduce its adaptation involving sliding windows, i.e., where

both the start and the end points of the window slide.

Recently, there has been an increasing interest in publish/subscribe

systems. In this setting, users subscribe to queries, and the system

has to deliver incoming messages to all users for which the incom-

ing message matches their query. The main goal is to group similar

subscriptions together, in order to minimize the computations re-

quired to identify all users relevant to each incoming message.

Diversifying delivered messages to users applies also to this setting.

Nevertheless, to the best of our knowledge, the criterion of diversity

has so far been considered only in [5]. This work addresses the

problem of diversity-aware top-k subscription queries over textual

streams. Qualifying documents are ranked by text relevance, tem-

poral recency, and result diversity according to respective score

functions. Although very efficient, the proposed method is rather

restrictive, as each new document is compared only to the oldest

one in the current result set. If it improves the objective score, the

replacement is made, otherwise the document is discarded. More-

over, the considered documents do not have a spatial attribute. In

contrast, there exist some recent works on spatial-keyword pub-

lish/subscribe systems, which however do not consider diversity as

a criterion [6, 16, 18, 31].

3 PROBLEM DEFINITION

Spatio-Textual Stream. We consider geotagged messages posted

by users of social networks or microblogs (e.g., Facebook, Twitter,

Flickr, Foursquare) in a streaming fashion, as defined next.
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Figure 2: Time-based sliding window over a stream of posts.

Definition 1. A spatio-textual post p = ⟨Ψ, ℓ, t⟩ contains a set
of keywords Ψ from a vocabulary V , and was generated at location ℓ
(with coordinates (x ,y)) at timestamp t . □

We assume that posts become available as a stream of tuples, and

we adopt a time-based sliding window model [19] over the stream.

Definition 2. A time-based sliding windowW is specified with
two parameters: (a) a range spanning over the most recent ω times-
tamps backwards from current time tc , and (b) a slide step of β
timestamps. Upon each slide, windowW moves forward and pro-
vides all posts generated during time interval (tc −ω, tc ]. These posts
comprise the current state of the window, i.e.,

W = {p : p.t ∈ (tc − ω, tc ]} (1)

Posts with timestamps earlier than tc − ω are called expired. □

Such a window is illustrated in Figure 2. Once this window slides

forward to current time, fresh posts are admitted into the state,

while expired posts get discarded.

Spatio-Textual Summary. Our goal is to select an appropriate

subset S of posts in windowW to form an informative summary.

In accordance with work on document summarization [11, 20],

given a constraint on the maximum summary size, our objective is

to construct a summary that covers as much as possible the entire set

of posts in the current window while at the same time containing

diverse information as much as possible. Formally, we capture these

two requirements using the two measures defined next.

Definition 3. The coverage cov(S) of a summary S captures the
degree to which the posts in the summary approximate the spatial
and textual information in the window. We use a weight α to balance
the relative importance of the two information facets:

cov(S) = α · covT (S) + (1 − α) · covS (S). (2)

□

Similar to [20], we define the textual coverage of a summary as

covT (S) =
∑

pi ∈W

∑
pj ∈S

simT (pi ,pj ) (3)

where simT (·, ·) is a textual similarity metric between posts.

For our purposes, we consider the vector space model, and define

sim(·, ·) as the cosine similarity of the vector representations of the

posts. Specifically, each space coordinate corresponds to a keyword,

and the vector’s coordinate contains a weight representing the

importance of the corresponding keyword relative to the window.

While any tf-idf weighing scheme [22, 27] is possible, here we

simply use term frequency and normalize the vectors to unit norm.

p1 p2 p3 p4
p1 1 1/3 1/3 2/3

p2 1/3 1 2/3 1/3

p3 1/3 2/3 1 1/3

p4 2/3 1/3 2/3 1

(a) Textual Content

p1 p2 p3 p4
p1 1 0 0 1

p2 0 1 1 0

p3 0 1 1 0

p4 1 0 0 1

(b) Spatial Content

Figure 3: Content similarities of posts in Figure 1.

p1 p2 p3 p4
p1 0 2/3 2/3 1/3

p2 2/3 0 1/3 2/3

p3 2/3 1/3 0 2/3

p4 1/3 2/3 1/3 0

(a) Textual Content

p1 p2 p3 p4
p1 0 0.15 0.20 0.05

p2 0.15 0 0.05 0.15

p3 0.20 0.05 0 0.25

p4 0.05 0.15 0.25 0

(b) Spatial Content

Figure 4: Content distances of posts in Figure 1.

Therefore, the textual coverage is computed as the sum over each

pair of posts (one from thewindow and the other from the summary)

of the inner product of their vector representations:

covT (S) =
∑

pi ∈W

∑
pj ∈S

∑
ψ

pTi [ψ ] · p
T
j [ψ ], (4)

where keywordψ is used to index the vector and thuspT [ψ ] denotes
the normalized weight of keywordψ of post p.

Example 3.1. Consider the vector space model for the five key-

words in the example of Figure 1. Each post can be represented by a

5D normalized vector. For example, pT
1
= (1/

√
3, 1/
√
3, 1/
√
3, 0, 0),

and pT
3
= (1/

√
3, 0, 0, 1/

√
3, 1/
√
3). Then, the textual similarity of

two posts is given by the cosine similarity of their vectors, e.g.,

simT (p1,p3) = 1/
√
3 · 1/
√
3 = 1/3. Figure 3a lists the cosine similar-

ity for each pair of posts. Consider now the summary S = {p1,p3}
of the window W = {p1,p2,p3,p4}. Its coverage can be com-

puted as the sum of entries in the first and third rows of Figure 3a:

covT (S) =
∑
pi ∈W simT (p1,pi ) +

∑
pi ∈W simT (p3,pi ) = 14/3. □

For the spatial coverage, we follow a similar formulation and

define it as cosine similarity in a (different) vector space. Instead

of keywords from a vocabulary, we have a set of regions from a

predefined spatial partitioning ρ (e.g., regions could represent cells

in a uniform grid). Intuitively, such a coarse partitioning allows for

a macroscopic view of the posts in the window, where exact post

locations are not important and thus coalesced into broader regions.

As each post is always associated with a single region, the spatial

content of a post is simply represented as a vector having a single

weight 1 at the vector coordinate signifying the region containing

the post’s geotag. Thus, the spatial coverage is computed as:

covS (S) =
∑

pi ∈W

∑
pj ∈S

��ρ(pi .ℓ) = ρ(pj .ℓ)�� , (5)

where ρ(ℓ) is the region associated with location ℓ, and |ρ(pi .ℓ) =
ρ(pj .ℓ)| returns 1 if locations pi .ℓ, pj .ℓ reside in the same region.

Example 3.2. Consider the vector space model for the nine spa-

tial regions in the example of Figure 1. Each post is then rep-

resented as a 9-dimensional one-hot vector. For example, pS
1
=

(0, 0, 1, 0, 0, 0, 0, 0, 0), and pS
3
= (0, 0, 0, 0, 1, 0, 0, 0, 0). Then the spa-

tial similarity of two posts is 1 if the two posts reside in the same

region, and 0 otherwise, e.g., simS (p1,p3) = 0. Figure 3b shows
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S covT covS divT divT f
p1 , p2 14/3 4 2/3 0.15 2.37

p1 , p3 14/3 4 2/3 0.2 2.38

p1 , p4 15/3 2 1/3 0.05 1.85

p2 , p3 14/3 2 1/3 0.05 1.76

p2 , p4 15/3 4 2/3 0.15 2.45

p3 , p4 15/3 4 1/3 0.25 2.40

Figure 5: Individual and objective scores for all 2-post sum-
maries of the example in Figure 1.

the spatial similarity for each pair of posts. Similar to the case of

textual coverage, the spatial coverage of summary S = {p1,p3} can
be computed as the sum of the entries in the first and third rows of

Figure 3b: covS (S) = 4. □

Definition 4. The diversity div(S) of a summary S captures the
degree to which the posts in S carry dissimilar information. As before,
diversity is defined as the weighted sum of a textual and spatial term:

div(S) = α · divT (S) + (1 − α) · divS (S) (6)

□

Textual diversity is definedwith respect to the vector spacemodel.

Specifically, textual diversity is the sum of cosine distance between

all pairs of posts in the summary:

divT (S) =
∑

{p ,p′ }:p,p′∈S

©­«1 −
∑
ψ

pTi [ψ ] · p
T
j [ψ ]

ª®¬ (7)

On the other hand, spatial diversity is defined based on a spatial

distance (e.g., Euclidean, haversine) between summary posts’ exact

locations:

divS (S) =
∑

{p ,p′ }:p,p′∈S

dist(p.ℓ,p′.ℓ) (8)

Example 3.3. Returning to the example of Figure 1, consider

again the windowW = {p1,p2,p3,p4}. Figure 4a shows the textual
(cosine) distance, while Figure 4b the spatial distance for each pair

of posts. For summary S = {p1,p3}, its textual diversity is computed

as divT = 1 − simT (p1,p3) = 2/3, and its spatial diversity is simply

divS = dist(p1,p3) = 0.20. □

Based on the definitions of these two quality measures of a

summary, we are now ready to state our problem.

Definition 5. For each sliding windowW over a stream of posts,
determine the summary S∗ of size k that maximizes the objective
function:

S∗ = argmax

S ⊆W, |S |=k
f (S),

f (S) = λ · cov(S) + (1 − λ) · div(S)

where λ determines the tradeoff between coverage and diversity. □

Example 3.4. Figure 5 shows the coverage and diversity scores

for each possible 2-post summary. Assuming parameter values

α = 0.5 and λ = 0.5, the objective score of each summary, depicted

as the last column in the figure, is simply the average of the four

individual scores. For example, summary {p1,p3} has a total score
of about 2.38. The best 2-post summary, however, is {p2,p4} with a

score of about 2.45. □

4 RELATION TO MAX-SUM
DIVERSIFICATION

Our problem formulation for a single instantiation of the window

is an instance of the max-sum diversification problem as defined in

[12]. To see this, recall that coverage and diversity are defined as

a summation over posts, and as summation over all pairs of posts,

respectively. Thus the objective function can be rewritten as:

f (S) = λ ·
∑
p∈S

cov(p) + (1 − λ) ·
∑

{pi ,pj }:pi,pj ∈S

div(pi ,pj ). (9)

It is well known that the static version of this problem can be

approximated with a factor of 2 using a simple quadratic-time

greedy algorithm (see [12]). In the following, we show that based

on previous work one can devise an even simpler linear-time greedy

algorithm that has the same approximation ratio. Although a simple

observation, this is an important result which has gone undetected

in the past few years.

As observed in [12], max-sum diversification is related to the

maximum dispersion problem [15, 25]. Given a set O of objects and

a distance function d(oi ,oj ) between objects, determine a set S of

k objects such that the sum of pairwise distances

g(S) =
∑

{oi ,oj }:oi,oj ∈S

d(oi ,oj ) (10)

is maximized. The most interesting case is when distance d satisfies

the triangle inequality.

A 4-approximation for this problem is constructed in [25], intro-

ducing a quadratic time greedy algorithm. Initially, the two objects

that have the largest distance are selected, and are inserted in the

result (note that this step is responsible for the quadratic time).

Then, the following is repeated k − 1 times: insert the object o′

which maximizes the marginal gain:

max

o′∈O∖S

∑
o∈S

d(o′,o). (11)

Later, another quadratic time greedy algorithm was devised in

[15], which results in a 2-approximation. As before, the algorithm

starts with the two objects having the largest distance. Then, the fol-

lowing is repeated k/2−1 times: insert into the result set the two ob-

jectsoi ,oj having the largest distancemax{oi ,oj }:oi,oj ∈O∖S d(oi ,oj ).

Note that every step of this algorithm requires quadratic time. An

adaptation of this algorithm was popularized by [12] as the state-

of-the-art solution for the max-sum diversification problem.

However, the maximum dispersion problem was revisited in

[2], termed the remote clique problem. There the authors observed

that the simple greedy heuristic from [25] can give a linear time 2-

approximation. We call this algorithm GA— introduced as 1-Greedy
Augment in [2]. GA starts with a random object in the result set

(as opposed to the two farthest objects in [25]). Then, exactly like

[25], it iteratively appends to the result the object maximizing the

marginal gain (Equation 11).

We finally show how GA can be adapted to our problem, simi-

lar to how [12] adapted the algorithm of [25]. The first step is to

rewrite function f (S) (Equation 9) so as to match function g(S)
(Equation 10). By setting

d(pi ,pj ) =
2 · λ

k · (k − 1)
·
(
cov(pi ) + cov(pj )

)
+ (1 − λ) · div(pi ,pj ),
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we can rewrite f (S) =
∑
{pi ,pj }:pi,pj ∈S d(pi ,pj ).

The idea behind the transformation is easier to understand in

terms of a complete graph having as nodes the posts in S , node
weights equal to λ · cov(p) and edge weights equal to (1 − λ) ·
div(pi ,pj ). Then, Equation 9 sums the weights over all nodes and all

edges. However, we want to have a sum only over edge weights as

in Equation 10. Thus, the transformation pushes the node weights to

the edge weights, accounting for the fact that they will be included

a total of
k ·(k−1)

2
times (once for every edge adjacent to a node).

The final step for making GA applicable to our problem is to

guarantee that the newly defined distance function d(pi ,pj ) is non-
negative and satisfies the triangle inequality. For the former, non-

negativity holds because all multiplying terms are non-negative,

whereas coverage and diversity are by definition also non-negative.

Regarding the latter, we only need to consider whether div(·, ·)
satisfies the triangle inequality, because the coverage terms disap-

pear from the inequality and factor 1 − λ is positive. While spatial

distance (Euclidean or great-circle distance) is a metric, the cosine

distance used in Equation 6 is not. A simple fix is to define dis-

tance in terms of the angle between vectors, instead of its cosine.
1

Then, because div(·, ·) is a non-negative linear combination of met-

rics, it also observes triangle inequality (the direction of a sum of

inequalities is preserved).

5 ALGORITHMIC APPROACH
As previously discussed, if we consider any individual instantiation

of the sliding window, our problem formulation is identical to the

max-sum diversification problem. Thus, we can apply the adap-

tation of the greedy algorithm in [2] (discussed in Section 5.2.1)

to summarize the contents of each window. However, such an ap-

proach is impractical since the sliding window can be arbitrarily

large, hence storing its entire contents is not an option. So, we need

to devise an efficient solution that operates on limited memory.

To achieve this, we need to address two tasks. The first (Sec-

tion 5.1) is how to compute the coverage of posts without having
the entire window’s contents. Recall that the coverage of a single

post is computed as the sum of its cosine similarity with each post

in the window. The second task (Section 5.2) is how to construct
the summary without having the entire window’s contents. While

the problem has been studied for landmark windows with limited

memory [23], as well as sliding windows without memory restric-

tions [9], to the best of our knowledge it has not been addressed

for sliding windows under limited memory.

5.1 Computing Coverage
To compute the coverage without keeping the entire window con-

tents, we exploit the linearity of the inner product — the cosine

similarity of two normalized vectors is their inner product. Note

that in the following discussion, we use the term coverage to refer

to both textual and spatial coverage, as they are both defined as a

sum of inner products.

Our approach is based on the notion of window pane (or sub-
window) [19]. We assume that the size of the window ω is a factor

of its slide step β , e.g., a window of 24 hours sliding every one hour.

1
We chose not to change the definition of textual diversity, because of people’s greater

familiarity with cosine distance.

The window is thus naturally divided intom = ω/β panes. Each

time the window slides, all tuples within the oldest pane expire,

while new tuples arrive in the newest pane, termed current.
In what follows, we denote asW the current and asW ′ the

previous window instantiation. We also denote asW− the expired

pane of the previous window, and refer to the current pane asW+,

i.e.,W− =W ′∖W andW+ =W∖W ′. To enumerate the panes

in the window, we simply use the notationW1 throughWm .

For each paneWi , we define its information contentWi as the

vector:

Wi =
∑

p∈Wi

p. (12)

It is then easy to see that the coverage of a post p can be efficiently

computed using the information contents of them panes:

cov(p) =
m∑
i=1

∑
τ
Wi [τ ] · p[τ ], (13)

where τ represents either a keyword or a region. This implies a

simple solution to computing the coverage. Instead of requiring

the set of all posts within a window, it suffices to store only a few

vectors, that is, the information content of each pane. Therefore,

the cost of computing the coverage of a post is essentially constant.

When the window slides, we throw away the information content

of the expired paneW−, and begin aggregating posts in the current

paneW+ to form its information content.

Example 5.1. Returning to the example of Figure 1, assume that

the four posts appear at timestamps as depicted in Figure 2. The

current windowW contains all posts, while the previous window

instantiation contains the first three, i.e.,W ′ = {p1,p2,p3}. We

next explain how the coverage can be efficiently computed as the

window slides fromW ′ toW.

The window consists of 4 panes, which we enumerate from older

to newer asW1, . . . ,W4, withW4 ≡ W
+
being the current pane.

PaneW1 is empty, while paneW2 contains post p1 and thus its

(textual and spatial) information content coincides with that of

p1:W
T
1
= (1/

√
3, 1/
√
3, 1/
√
3, 0, 0) andW S

1
= (0, 0, 1, 0, 0, 0, 0, 0, 0).

PaneW3 contains posts p2, p3, and thus has textual contentWT
3
=

pT
2
+ pT

3
= (1/

√
3, 1/
√
3, 0, 2/

√
3, 2/
√
3), and spatial contentW S

3
=

pS
2
+ pS

3
= (0, 0, 0, 0, 2, 0, 0, 0, 0). Finally, the information content of

the current paneW4 coincides with the single post p4 it contains:

WT
4
= (1/

√
3, 0, 1/

√
3, 1/
√
3, 0) andW S

4
= (0, 0, 1, 0, 0, 0, 0, 0, 0).

As the window slides, we first compute the information content

of the current paneW+. Then, to compute the coverage of a post

with respect to the windowW after the slide, we can simply sub-

tract the coverage due to the expired paneW− and add the coverage

due to the current paneW+. So, for example, the textual coverage

of post p3 is updated by adding simT (W +,p3) − sim
T (W −,p3) =

(1/
√
3, 0, 1/

√
3, 1/
√
3, 0) · (0, 1/

√
3, 0, 1/

√
3, 1/
√
3) = 1/3. □

5.2 Building the Summary
In this section, we describe several strategies for building a sum-

mary over the sliding window of posts. All approaches (except the

baseline) operate without storing the entire contents of the win-

dow. They differ in what (limited) information they store across

the window panes and in the way they construct the summary or
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update the previous one. In all strategies, we describe the oper-

ation necessary in a single window. That is, we assume that the

information content for the current pane has been constructed as

per the previous section, and thus the coverage of any post can be

computed using Equation 13.

5.2.1 Baseline Strategy. The baseline strategy (BL) stores the

entire contents of the window and is thus impractical, serving

only as a benchmark to the quality of the summary. The method

described here is the adaptation of the GA algorithm [2] discussed

in Section 4. BL builds the summary incrementally, starting with

an empty set. Then, at each step it inserts the post that maximizes

the marginal gain of the objective function. Given a summary S ,
the marginal gain of a post p is:

ϕ(p) = λ · cov(p) + (1 − λ) · div(p, S). (14)

Note that GA initializes the summary with a random object

because it cannot differentiate among objects when the summary

is empty. On the other hand, BL can differentiate among posts, and

thus it selects as initial the post that has the largest coverage.

Example 5.2. Consider the posts of Figure 1 and the window

of Figure 2. We show how BL constructs a 2-post summary for

the current windowW, assuming α = 0.5, λ = 0.5. Recall that

BL knows all posts in the window. The algorithm first inserts p1
in the summary, picking it randomly among the posts as they all

have the same coverage, equal to 1. Then it computes the marginal

gain of each post p using Equation 14. For our purposes though,

we can use the equivalent definition ϕ(p) = f ({p1,p}) − f ({p1}) =
f ({p1,p}) − 0.5, and refer to the last column of Figure 5 that gives

the values for the first term. We can see that post p3 maximizes the

marginal gain, and is thus picked by BL to construct the summary

{p1,p3}. Notice that the greedy strategy of BL does not result in the

optimal summary {p2,p4}; yet, the constructed summary achieves

about 97% of the optimal score. □

If we assumem panes in the window, each with an equal number

n of posts, we see that the memory footprint of BL is O(k +m · n).
BL performs k passes over all posts computing for each post its

diversitywith respect to atmostk summary posts. Thus, BL requires

timeO(k2 ·m · n) to construct the summary of a window. Note that

coverage is computed only once for each post at a constant cost,

and thus its total cost O(m · n) is subsumed by that of building the

summary. The running time can be improved in practice using the

techniques described in Section 6.

5.2.2 Online Interchange Strategy. The work in [23] describes an
online algorithm for solving the max-sum diversification problem

on an ever increasing stream of objects. This approach essentially

solves the problem for a landmark window, which spans from a

fixed point in the past until the present. For our purposes, we adapt

this algorithm to our problem involving sliding windows, where

both the start and the end point of the window slide. We refer to

this algorithm as OI.

OI constructs the summary S of the current window by making

incremental changes to the summary S ′ constructed for the previ-

ous window. Initially the summary is constructed as the previous

summary excluding any expired posts contained in that summary,

i.e., S ← S ′ ∖W−. Then, each newly arrived post p is examined

in sequence. If the summary is not yet full (|S | < k), the post is
simply inserted. Otherwise, the algorithm identifies the best post

p− to evict from the summary in favor of the currently examined

post p. Specifically, p− is the post maximizing the objective score of

the summary S ∖ {p′} ∪ {p}. If the eviction of p− and the insertion

of p results in an increase of the objective function, the algorithm

proceeds with the replacement.

Example 5.3. Consider the posts of Figure 1 and the window of

Figure 2, and assume that the summary for the previous window

is {p1,p3}. Strategy OI will consider substituting either p1 or p3
for fresh post p4 at the current pane. Specifically, it will calculate
the objective scores of the two possible summaries: {p1,p4} and
{p3,p4}. From Figure 5, we can see that the latter achieves a better

score of about 2.40. Moreover, this score is higher than that of the

existing summary {p1,p3}. Hence, OI will discard p1 and choose to

keep p4 along with p3. Observe that OI constructs a better summary

than the static algorithm because, in this example, BL makes a bad

first choice by picking p1, which cannot later undo. In contrast, OI

is allowed to evict p1, constructing a better summary. □

The OI algorithm operates on limited memory, requiring space

of O(k + n). For each post in the current pane, OI computes the

objective score of k possible sets (one for each possible substitution

of the post in the summary). Because these examined sets have

significant overlap with each other, the computation of the objective

score for each set can be efficiently implemented in O(k) time by

some clever bookkeeping [23]. Thus, the running time of OI is

O(k2 · n). Note that OI needs to also compute the coverage of k + n
posts, but since this incurs constant cost per post, its total cost

contributions is subsumed. Unfortunately, OI cannot take advantage

of the optimization discussed later in Section 6.

5.2.3 Oblivious Summarization. The oblivious summarization

(OS) strategy, in contrast to OI, does not try to improve on the

existing summary. Rather, it rebuilds the summary from scratch se-

lecting among the posts in the current pane and those (not expired)

in the previous summary. Therefore it applies the GA algorithm

on the set (S ∖W−) ∪W+. Naturally, the difference with BL is in

the posts considered for inclusion in the summary; BL considers all

window posts, whereas OS has fewer options.

Example 5.4. As in the example for the OI algorithm, assume that

the previous summary is {p1,p3}. OS knows only about those two

posts, plus the post p4 in the current pane. Hence OS will construct

a summary among those three posts using the GA algorithm. As

in BL, the first pick is post p1. Then among p3 and p4, the former

has a higher marginal gain, which we can compute using equation

ϕ(p) = f ({p1,p}) − 0.5 and the objective scores in Figure 5. Thus,

OI constructs the current window summary {p1,p3}. □

The OS strategy requires space O(k + n), and makes k passes

over all n posts in the current pane. For each post, it computes

its diversity with respect to at most k summary posts. Thus, the

running time of OS is O(k2 · n), which also subsumes the O(k + n)
cost for computing coverage. The OS strategy can also benefit from

the optimization of Section 6.

5.2.4 Intra-Pane Summarization. The key idea of intra-pane (IP)
summarization is to store a brief summary over each pane, and then
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use these sub-summaries to derive a summary for current window.

Therefore at each window, IP constructs a local summary of size k ′

of the current pane using the GA algorithm. This summary is then

stored along the pane unaltered until its expiration. To compute

the window summary, IP once again employs the GA algorithm,

but this time over the summary posts of each pane.

Example 5.5. Consider the same setting as for the OI and OS

strategies. Furthermore, assume that IP creates local pane sum-

maries by keeping a single post per pane (i.e., k ′ = 1), and let p2 be
the selected post for paneW3 = {p2,p3}; the local summaries for

the other panes are trivial. So, IP is aware of posts p1, p2, p4, and
uses the GA algorithm to construct a 2-post summary among them.

As before, let p1 be the first pick. Then among p2 and p4, IP picks

the former as it has a higher marginal gain (refer to Figure 5). Thus,

IP constructs the current window summary {p1,p2}. □

IP needs k ′ space per pane, in addition to storing the contents of

the current pane. Therefore it requires space O(k ′ ·m). For a given
window, IP invokes GA twice: once to construct the current pane’s

local summary with a running time of O(k ′2 · n), and another to

construct the window summary over the pane summaries (a total

of k ′ ·m posts) with a cost of O(k2 · k ′ ·m). This incurs a running
time ofO(k ′2 ·n+k2 ·k ′ ·m). In addition, IP computes the coverage

(at a constant cost) of every post it stores. Since IP stores k ′ · (m− 1)
old posts, and n fresh posts, the total cost of computing coverage is

lower than that of constructing the summary. Furthermore, IP can

benefit from the optimization discussed in Section 6.

6 SPATIO-TEXTUAL OPTIMIZATIONS
The main bottleneck in all methods described above is that each

post has to be evaluated individually regarding its eligibility for

the summary. However, in practice, many posts may be similar to

each other. In that case, it is possible to group such similar posts

together and then make a decision collectively for the group, i.e.,

whether any post among those should be included in the summary.

In the following, we elaborate on this idea and present a process

in two stages for achieving this purpose. The first stage (Section 6.1)

involves partitioning the available posts into groups. The second

stage (Section 6.1), given a group of posts and a summary, estab-

lishes upper and lower bounds for the coverage and the diversity

of each post in the group with respect to the given summary.

6.1 Spatio-Textual Partitioning
Partitioning the posts in each pane is based on both their spatial and

textual information. Given that each post belongs to exactly one

region ρ, we adopt a spatial-first partitioning, e.g., in a uniform grid

partitioning into cells or a planar tessellation into non-overlapping

tiles [21]. Let P denote a set of posts contained within the same

spatial partition. Then, the next step is to further partition P tex-

tually, so that the resulting subsets of posts are as homogeneous

as possible with respect to the keywords they contain. The latter

condition is helpful for deriving tighter bounds. Based on this, we

formulate next the criterion for the textual partitioning.

Let ΨP denote the union of the keyword sets of the posts in

P. Assume also a partitioning Γ of P into the subsets P1, P2, . . . ,

P |Γ | . We define the gain g(P,Pi ) of each subset Pi w.r.t. P as the

reduction rate of the size of the corresponding keyword set, i.e.:

g(P,Pi ) =
|ΨP | − |ΨPi |

|ΨP |
(15)

This implies that the gain is higher for partitions that have a lower

number of distinct keywords. Then, the overall gain resulting from

partitioning Γ is defined as:

g(P, Γ) =

∑
Pi ∈Γ

g(P,Pi )

|Γ |
(16)

Using this gain function, we can partition the initial set of posts

recursively, applying a greedy algorithm. At each iteration, the

algorithm selects one keyword for splitting, and partitions the

initial set into two subsets, according to whether each post contains

that keyword or not. Selecting the keyword on which to split is

based on finding the keyword which results in the partitioning

with the maximum gain. Then, each of the resulting subsets is

partitioned recursively, until the desired number of partitions is

reached or until there is no significant gain by further partitioning.

Nevertheless, performing the above check over all the candidate

keywords during each iteration is time consuming. A compromise

is to perform this computation offline, at a lower rate or using a

subset of the stream, to identify a set of keywords that are good

candidates for partitioning, and then apply these ones, updated

periodically, to partition the posts in each pane. An even simpler

alternative is to rely on the most frequent keywords for partitioning,

since the keyword frequencies are already known for each previous

pane in the window, thus requiring no additional overhead. Notice

that regardless of the way the partitioning is done, the correctness

of the bounds presented in the next section is not affected.

6.2 Coverage and Diversity Bounds
In what follows, we focus on a particular partition P of our spatio-

textual partitioning and describe the necessary aggregate informa-

tion we need to store and how to derive upper bounds on coverage

and diversity. We abuse notation and also denote by P the set of

posts indexed in any sub-partition below the examined.

We associate with P the following information:

• a vector P .p+, which stores at each coordinate the highest

weight seen among all posts in P;

• a vector P .p−, which stores at each coordinate the lowest

weight seen among all posts in P;

• the set P .Ψ of all keywords appearing in a post in P.

Using this information, we next discuss how to derive the bounds.

Coverage. We firstly compute an upper bound to the possible

textual coverage of a post in P with respect to the information

contentW of the window or the current pane. In other words, we

seek an upper bound to

max

p∈P

∑
ψ

W [ψ ] · p[ψ ]. (17)

We construct two bounds, and select the tighter one. The first

trivially uses the P .p+ vector to upper bound a post from P:

covT (p ∈ P)+I =
∑
ψ

W [ψ ] · P .p+[ψ ], (18)
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The second bound is based on the property that the cosine of two

vectors is maximized when the vectors are parallel to each other. In

our case, this translates to constructing a unit vector x parallel to

W (unit because vectors in P are normalized). However, the inner

product ofW with this x would overestimate the coverage of posts

in P. As a matter of fact, vector x is constructed independently of

the posts within partition P, and thus such an upper bound trivially

applies to all partitions. A tighter bound can be derived if we first

projectW to the dimensions corresponding to keywords in P and

then take the unit vector parallel toW . Therefore, the second upper

bound is:

covT (p ∈ P)+I I =
1

∥W ′∥
·
∑
ψ

W [ψ ] ·W ′[ψ ] = ∥W ′∥, (19)

whereW ′ is the aforementioned projection ofW , i.e.,

W ′[ψ ] =

{
W [ψ ] ifψ ∈ P .Ψ

0 otherwise.

(20)

We thus have the following result.

Lemma 6.1. The previously defined covT (p ∈ P)+I and covT (p ∈
P)+I I are upper bounds to the coverage of any post p in partition P.

Regarding the spatial coverage, observe that all posts in the par-

tition have the same coverage (they fall in the same region), which

is computed exactly as covS (p ∈ P) =
∑
p′∈W |ρ(p

′.ℓ) = ρ(P .ℓ)|.

Diversity. Next, our goal is to compute an upper bound to the

possible textual diversity of a post in P with respect to summary S ,
i.e., we seek an upper bound to

max

p∈P

∑
p′∈S

©­«1 −
∑
ψ

p′[ψ ] · p[ψ ]
ª®¬ = |S | − min

p∈P

∑
p′∈S

∑
ψ

p′[ψ ] · p[ψ ].

Similar with the case of coverage, we can derive a diversity upper

bound in two ways and employ the tighter. The first is by using the

P .p− vector to lower bound the inner products:

divT (p ∈ P, S)+I = |S | −
∑
p′∈S

∑
ψ

p′[ψ ] · P .p−[ψ ].

The second is again based on a geometric property of the inner

product. In general, the inner product between two vectors is mini-

mized when the vectors are parallel but in opposite directions. In

the case of non-negative vectors, given a vector p′ the non-negative
unit vector x that maximizes their inner product must be parallel

to one of the axes (intuitively in a direction as far away from p′

as possible), and in particular the axis where p′ has its smallest

coordinate. To construct a tighter bound in our setting, we need

to consider only the axes (dimensions) corresponding to keywords

present in posts of P. Therefore, the second upper bound is:

divT (p ∈ P, S)+I I = |S | −
∑
p′∈S

min

ψ ∈P .Ψ
p′[ψ ].

Lemma 6.2. The previously defined divT (p ∈ P, S)+I and divT (p ∈
P, S)+I I are upper bounds to the diversity of any post p in partition P
to summary S .

Proof. The proof for the first upper bound follows from p[ψ ] ≥
P .p−[ψ ].

For the second bound, we use the following inequality:

min

p

∑
i
x[i] · p[i] ≥ min

i :p[i],0
x[i],

which holds for any unit vector p with positive coordinates.

Applying the inequality for vector x =
∑
p′∈S p

′[ψ ] we get that∑
p′∈S p

′[ψ ] ≥ minψ ∈P .Ψ p′[ψ ], where conditionψ ∈ P .Ψ is equiv-

alent to ψ : p[ψ ] , 0. The lemma follows after multiplying the

resulting inequality with -1 and adding |S |. □

Regarding spatial diversity, we can upper bound it using the max-

imum possible distance between summary posts and the minimum

bounding rectangle (MBR) of all posts in P.

divS (p ∈ P, S)+ =
∑
p′∈S

maxdist(p′,P),

where maxdist(p′,P) returns the maximum distance of the P’s

MBR to point p′.

7 EXPERIMENTAL EVALUATION
In this section, we describe our experimental setting and we present

the results of our experiments.

7.1 Experimental Setup
We present the datasets, the parameterization, and the performance

criteria used to evaluate the various methods.

Datasets.We conducted tests against two real-world datasets from

Flickr and Twitter. The first comprises 20 million geotagged im-

ages extracted from a publicly available dataset by Yahoo Labs and

Flickr
2
. The contained images have worldwide coverage and span

a time period of 4 years, from 01/01/2010 to 31/12/2013. Each im-

age is associated with about 6 keywords on average. The second

dataset comprises 20 million geotagged tweets, available online
3

and also used in [6]. It has worldwide coverage and spans a period

of 9 months, from 01/04/2012 to 28/12/2012. The average number

of keywords per post is 5.7.

Parameters. To compare the performance of our methods, we

process both datasets in a streaming fashion, using the sliding

windowmodel, as explained in Section 3. In our experiments, we set

the default pane size to β = 4 hours. We have chosen a rather large

value so that the number of posts contained in the resulting panes

is in the order of a few thousands, thus essentially compensating for

the fact that these datasets are small samples of the actual stream of

posts in these sources. Specifically, the average number of objects

per pane is about 2,000 for Flickr and 12,000 for Twitter. Moreover,

we set the default window size tom = 12 panes, and the default

summary size to k = 15 objects.

Unless otherwise specified, the default value for both weight

parameters α (Equation 2) and λ (Definition 5) is set to 0.5, thus

weighting equally the spatial and textual dimensions, as well as the

two criteria of coverage and diversity. For the IP method, we set the

size of each intra-pane summary to k ′ = 15 objects. Finally, for the

spatial partitioning used both in computing the spatial coverage

2
https://code.flickr.net/category/geo/

3
http://www.ntu.edu.sg/home/gaocong/datacode.htm

https://code.flickr.net/category/geo/
 http://www.ntu.edu.sg/home/gaocong/datacode.htm
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(Equation 5) as well as in spatio-textual partitioning (Section 6.1),

we use a uniform grid with resolution 64 × 64 cells.

Performancemeasures. In our experiments, we compare all meth-

ods presented in Section 5.2, namely Baseline (BL), Online Inter-

change (OI), Oblivious Summarization (OS) and Intra-Pane Summa-

rization (IP). In addition, for BL, OS and IP, we also consider their

optimized versions as described in Section 6. These are designated

by a plus sign (e.g., BL+).

To compare the performance of these methods, we examine two

criteria. Firstly, we investigate their efficiency, which is measured

as the average execution time required to update the summary

every time the window slides. Secondly, we investigate the quality

of the summaries they produce, by measuring their objective score

(see Definition 5). More specifically, we compute this objective

score for each summary a given method produces at every slide of

the window, and we take their average over the entire stream. As

explained in Section 4, computing the optimal summary (i.e., the

one that maximizes the objective function) is practically infeasible.

Thus, to compare the methods to each other, we use the objective

score achieved by BL as a reference value, and we measure the

scores of the rest of the methods as a ratio to that.

All algorithms were implemented in Java, and experiments were

conducted on a server with 64 GB RAM and an Intel
®
Xeon

®
CPU

E5-2640 v4 @ 2.40GHz processor, running Debian GNU/Linux 9.0.

7.2 Results

Execution time.We first examine the execution time of the inves-

tigated methods. In these tests, we vary: (a) size of the window, in

terms of the numberm of panes it contains, Figure 6, (b) size of

each pane, in terms of its duration β , Figure 7, (c) the size of each
summary, in terms of the number k of objects it comprises, Figure 8

(d) tradeoff parameter α , Figure 9, and (e) tradeoff parameter λ,
Figure 10. Note that logarithmic scale is used on the y axis in all

plots, and that the strategy symbols are defined once in Figure 6.

A common observation is that with respect to the different strate-

gies, BL appears to have the worst performance in most cases. This

is because BL discards the previous summary and computes a new

from scratch, taking into account all posts in the window. The OI

and OS methods outperform BL, having a similar performance to

each other. This is because OI constructs the new summary in-

crementally, discarding only the expired posts from the previous

one, and considering only the newly arrived posts as candidates.

Similarly, in OS, the benefit results from the fact that, although the

summary is built from scratch, this is done by only considering

the contents of the new pane and the non-expired posts in the

previous summary. Yet, IP achieves an even better performance,

outperforming all other methods in all experiments. In the case of

IP, although all panes are considered, the candidates from the new

summary are only drawn from the individual summaries of each

pane, i.e., from a significantly smaller pool of posts. Due to this fact,

the execution time of IP reduces significantly.

Another thing to notice is the performance of the methods with

respect to their optimized versions, employing the spatio-textual

partitioning and pruning presented in Section 6. The differences

become more apparent in the case of Twitter, where the amount of

0.001

0.01

0.1

1

10

0 0.25 0.5 0.75 1

Ex
ec
ut
io
n
tim

e
(s
ec
)

BL BL+ OI OS OS+ IP IP+

 0.01

 0.1

 1

 10

 8  10  12  14  16

E
x
e
c
u
tio
n

 
tim

e
 
(s
e
c
)

Window size (panes)

(a) Flickr

 0.1

 1

 10

 100

 8  10  12  14  16

E
x
e
c
u
tio
n

 
tim

e
 
(s
e
c
)

Window size (panes)

(b) Twitter

Figure 6: Execution time vs. window sizem.
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Figure 7: Execution time vs. pane size β .
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Figure 10: Execution time vs. weight parameter λ.

posts per pane is about 6 times larger. In this case, the partitioning

and pruning technique offers a clear benefit to all methods in which

it is applicable, achieving a speedup of about 2 to 5 times.

A final remark concerns the behavior as we vary the tradeoff

parameters. Specifically, when α = 0, the textual information of
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the posts is ignored, both when computing coverage and diversity.

Figure 9 shows that in this setting all strategies become faster, with

the optimized versions enjoying a larger benefit. The reason is that

these optimized versions use spatial-first indices, which, in this

setting, translate into spatial indices and thus are the most appro-

priate to have. On the other hand, the setting α = 1 of no spatial

information, does not reduce the running times, meaning that the

summarization of the textual information of posts is the dominant

cost. This is attributed to the fact that posts can have multiple pieces

of textual content (keywords), compared to only a single piece of

spatial content (location). Regarding the coverage/diversity tradeoff,

note that the extreme settings λ = 0 (no coverage) and λ = 1 (no

diversity), generally result in reduced running times. The effect is

more pronounced for the case of no diversity, because constructing

a summary that optimizes coverage alone is a simpler task; recall

that the coverage of a post does not depend on the current summary

and can be computed once per window.

Summaryquality.Next, we investigate the objective score achieved
by the different summaries computed by each method. In this set of

experiments, we only consider the four different strategies without

distinguishing between the optimized and non-optimized versions

of each one, since the optimization applied in a strategy only af-

fects its execution time and not the contents of the summary it

produces. Moreover, as explained earlier, in each experiment we

use the objective score of BL as reference, and we measure the

objective scores of the rest of the methods as ratios to that. We vary

the same parameters (m, β , k , α , λ) using the same defaults and

along the same ranges as in the experiments regarding execution

time. Results are shown in Figures 11–15.

In Flickr, IP achieves the highest score, followed by OI, and both

of them surpass the score of BL. However, all observed differences

are rather marginal, often not exceeding 1%, except in the case of

a small summary (k = 5 in Figure 13), where the benefits reach

3%. In fact, the situation changes in Twitter, with IP having the

lowest score, whereas OI still being slightly better than BL. This

noted difference for IP is attributed to the fact that the panes in

the case of Twitter contain a much larger number of objects, thus

relying on the intra-pane summaries to select the candidates for the

new summary incurs some loss. Nevertheless, again the differences

are marginal, implying that in terms of the objective score neither

of these strategies appears to have a clear and significant benefit

over the others. Subsequently, this leads to the conclusion that one

can use the methods offering the lowest execution time without

sacrificing the quality of the maintained summary over the stream.

Under this reasoning, IP would be the preferred method as it is at

least one order of magnitude faster than OI across all settings.

A final observation concerns behavior with respect to the trade-

off parameters. As the relative weight of textual to spatial informa-

tion grows (α increases), all methods tend to produce rather similar

summaries. This is because a post contains multiple pieces of tex-

tual information, which are shared across many other posts. As the

emphasis on textual content increases, more posts become similar

to each other, which increases the number of options available

when building a summary. Thus, it becomes more likely for two

different summaries to have the same quality. A last remark worth

making is that when diversity is not required (λ = 1), no method
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Figure 11: Summary quality vs. window sizem.
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Figure 12: Summary quality vs. pane size β .
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Figure 13: Summary quality vs. summary size k .
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Figure 14: Summary quality vs. weight parameter α .
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Figure 15: Summary quality vs. weight parameter λ.

can beat the static baseline BL, which in this case constructs the

optimal, most representative summary. Nonetheless, all methods

construct close to optimal summaries, particularly in Twitter.
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Comparisonwith other summarization approaches.Our frame-

work offers the flexibility to obtain summaries at any point along

the coverage and diversity, and the spatial and textual content di-

mensions. To demonstrate its effectiveness, we test two simple

alternatives. The first is based on k-means clustering. The algo-

rithm assigns a post p to the cluster whose centroid has the highest

spatio-textual similarity with p. The cluster centroid is updated

by averaging the (spatial and textual) vectors of its member posts

and normalizing them. The process is repeated several times with

different initial clusters, and we choose the clustering with the best

total similarity. Finally, the post with the highest spatio-textual

coverage (Eq. 13) is chosen from each cluster; the resulting k posts

constitute the summary. This solution achieves objective scores

around 40% - 45% lower than BL for both Flickr and Twitter, while

being almost 100 times slower. In contrast, our strategies achieve

scores at most 0.7% worse than BL and are at least 10 times faster.

The second summarization approach adapts the singular value

decomposition (SVD)-based algorithm of [13] for the case of spatio-

temporal posts. This iterative method requires linear space, i.e.,

storing the entire contents of the window, so it again applies to the

static case. We define a post-term matrix A, where each column

is the vector representation of a post, and each row corresponds

to a term (keyword or spatial region). Applying SVD on matrix A
yields a vector matrix V ⊺ , whose columns correspond to posts and

represent their weighted term-frequency. At its ith iteration, the

algorithm inspects the ith row of V ⊺ to identify the post (column)

that is not included in the summary and has the largest value at its

ith coordinate. This post is added to the summary, and the algorithm

proceeds to its next iteration until i = k . In our tests, this approach

also fared worse than our strategies, yielding objective scores nearly

22.5% and 33% lower than BL against the Flickr and Twitter datasets,

respectively, while its running time was prohibitively large.

8 CONCLUSIONS
In this work, we addressed the problem of continuously maintain-

ing a spatially and textually diversified summary over a stream of

spatio-textual posts, under the sliding window model. We formally

defined the problem, formulating the criteria for spatio-textual

coverage and diversity over the stream of posts, and investigated

different strategies that aim at minimizing the computational cost

without sacrificing quality. Moreover, we proposed specific spatio-

textual optimizations that further enhance the efficiency of those

methods. Finally, we experimentally validated the performance of

our methods using two real-world datasets from Flickr and Twitter,

showing that the proposed optimizations, especially the Intra-Pane

Summarization method, can achieve important performance bene-

fits without decreasing the quality of the summary.
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