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Selecting Services for Multiple Users:
Let’s Be Democratic

Karim Benouaret, Dimitris Sacharidis, Djamal Benslimane and Allel Hadjali

Abstract—Service selection is a challenging task, and a lot of effort has been devoted to tools that assist the user in choosing the service
whose non-functional parameters better match her/his preferences. In many practical situations, the responsibility to decide which is
the appropriate service is shared among multiple parties. A standard approach to this service selection problem is to discard services
that are unanimously considered inappropriate and focus on the rest. However, as the involved parties may have colliding interests,
only a few services may be eliminated. This work addresses this shortcoming and enables users to reach a “democratic” decision by
means of a majority vote: a service is eliminated if the majority of the parties find it inappropriate. We formulate the problem using
dominance relationships, and propose algorithms that return an appropriate subset of services for the parties, while being more efficient
than standard techniques. Moreover, we consider the problem of defining an appropriate ranking for the non eliminated services, and
formulate it as an instance of a group recommendation problem. Finally, we demonstrate the effectiveness and the efficiency of our
approach through extensive experimental evaluation on real-based and synthetic datasets.

Index Terms—Service Selection, Preferences, Pareto Dominance, Group Recommendation
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1 INTRODUCTION

S ERVICE Oriented Computing [1] and Cloud Computing
[2] are dominant technologies in software and Internet-

based applications, which present distinct advantages to
end users, whether they are individuals, private or public
organizations [3]. As this market sees high demand, service
providers compete with each other and offer services at differ-
ent price and performance levels [4]. Consequently, end users
are often faced with a huge number of candidate services
for fulfilling a desired task. For instance, a popular service
directory1 classifies almost 20,000 application programming
interfaces, with the most popular categories containing a
few thousands of entries. Therefore, non-functional properties
of services, such as quality of service (QoS), constitute an
important differentiating factor [5].

When the number of services providing equivalent func-
tionality is very large, browsing all competing services to find
the most interesting service is impractical, time consuming,
and costly. Therefore, service selection has become important
for helping users identify desirable services according to
their preferences on non-functional parameters. Several
approaches have been proposed for the problem of selecting
services according to users’ preferences; see [6], [7] for a
survey on them. While most of the proposed studies seek
to satisfy the preferences of a single user, in many practical
situations the responsibility to decide which is the appro-
priate service is shared among multiple parties, e.g., among
departments in an organization. A similar problem arises
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TABLE 1: User Preferences

User Response Time (ms) Redundancy

u1 ≤ 400 2×
u2 ≤ 350 4×
u3 ≤ 300 3×

TABLE 2: Relevant Services

User Response Time (ms) Redundancy

s1 [150, 450] 3×
s2 [150, 300] 2×
s3 [200, 450] 4×
s4 [300, 800] 2×
s5 [100, 400] 2×
s6 [300, 800] 2×
s7 [250, 800] 2×
s8 [300, 600] 1×
s9 [400, 800] 1×

when the same service is to be used in multiple use-cases
with differing requirements, e.g., by different applications
[8]. In such settings, service selection for multiple users is
required.

Example 1. As a running example, consider an organization,
consisting of three departments, that wishes to purchase
cloud storage service license among several options. The
services are described by their response time (in ms) and
level of data redundancy they offer. The users, in this case
the department chairs, have different preferences with
respect to the service parameters, as depicted in Table 1.
For instance, user u1 prefers a service with response time
no more than 400ms, offering at least 2× redundancy.

Preference-based service selection is a two-phase process.
First, given the users’ preferences on service description
attributes, the degrees of match between a requested and
available services are computed; see e.g., [9], [10], [11], [12].
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TABLE 3: Matching Degrees of Services w.r.t. Users

Service User

u1 u2 u3

s1 (0.83, 1) (0.67, 0) (0.50, 1)
s2 (1.00, 1) (1.00, 0) (1.00, 0)
s3 (0.80, 1) (0.60, 1) (0.40, 1)
s4 (0.20, 1) (0.10, 0) (0.00, 0)
s5 (1.00, 1) (0.83, 0) (0.67, 0)
s6 (0.20, 1) (0.10, 0) (0.00, 0)
s7 (0.27, 1) (0.18, 0) (0.09, 0)
s8 (0.33, 0) (0.17, 0) (0.00, 0)
s9 (0.00, 0) (0.00, 0) (0.00, 0)

Example 2. Consider the set of relevant services depicted
on Table 2. Each service is shown along with its non-
functional parameters. For instance, service s1 exhibits a
response time in the range of [150, 450] ms and offers up
to 3× redundancy.
Based on the set of relevant services in Table 2 and
the users’ preferences in Table 1, the service selection
process computes the matching degrees between each
user’s specified preference and the corresponding service
characteristic. Assume that matching degrees for response
time are computed as the probability that the service will
match the desired user preference. Let si.p1 represent
the range of response times for service si, and ux.p1
the desired response time of user ux; then the matching
degree is computed as µxi .p1 = |si.p1∩[0,ux.p1]|

|si.p1| , i.e., the
ratio of the service’s response time range that is desirable.
The matching degrees for redundancy are boolean and
simply indicate whether the service satisfies the user’s
preference. All matching degrees are shown in Table 3.

The second phase of preference-based service selection
is to identify the most interesting services with respect to
users’ preferences. Considering a user independently, most
of service selection approaches focus on computing a score
for each service as an aggregate of its individual matching
degrees. Various approaches for aggregating the matching
degrees exist. A common direction is to assign weights over
different preference attributes; e.g., [10], [13], [14], [15].

When all users are taken into consideration, applying a
similar method, as done in [16], [17], enforces an additional
level of aggregation, the first being across attributes, and
the second across users. This can obscure and blur the
individual preferences per attribute of each user. In addition,
as the number of involved parties increases, it becomes
more difficult to make tradeoffs between different weights
as conflicting preferences are more likely to appear.

To overcome these limitations, the natural option is the
use of the skyline operator to determine the Pareto optimal
set of services [18]. We refer to this set as the unanimous service
skyline, and it contains all services which are not unanimously
dominated. A service unanimously dominates another, if the
former has matching degrees as good as or better than the
latter regarding all users’ preferences, and better on at least
one user’s preference.
Example 3. Service s1 unanimously dominates services s4,

s6, s7, s8 and s9. Likewise, service s2 unanimously
dominates service s5. Note that services s1, s2, and s3
are not unanimously dominated, hence they comprise the
unanimous service skyline.

The unanimous service skyline eliminates services which
all users agree they are not interesting. Nonetheless, when a
large number of parties is involved, the number of services
in the skyline becomes very large and no longer offers any
interesting insights. As the number of users’ preferences
increases, for any pair of services, it becomes more likely
that they are incomparable, being better than each other
at different matching degrees. In such settings, it becomes
imperative to further reduce the number of returned services.

To address this drawback, we proposed in [19] to relax
the requirement for unanimity, and follow the majority
rule. Informally, a service majority dominates another, if the
former has matching degrees as good or better than the latter
regarding the majority of users. Then, we naturally define
the majority service skyline, as the set of services which are
not majority dominated. Thereby, we allow users to make a
“democratic” decision on which services are not appropriate,
so as to exclude them.

To compute the majority service skyline, we make the ob-
servation that conventional skyline computation algorithms,
with the exception of the methods proposed in [20], cannot be
adapted, due to the intransitivity of the majority-dominance
relationship (see Section 4). Motivated by this fact, in [19]
we adapted the algorithms in [20] to form the baseline (BA)
solutions to our problem. Moreover, we proposed a novel
method, termed Sort-Based Algorithm (SBA), that features
additional pruning criteria to optimize the extraction of the
majority service skyline.

In this paper, we go one step forward and propose a
novel method, termed Bounds-Based Algorithm (BBA), that
computes bounds on the matching vectors and employs a
new dominance check. Based on these bounds, BBA is able to
perform fewer comparisons between services, and also check
for an early termination condition, so as to avoid examining
certain services that are definitely majority dominated.

We then turn our attention to a related problem, that of
providing a ranking among services. This is an important
presentation task, because users need an effective way to
examine the results even if they are much fewer than those
returned by conventional (not majority-based) methods.
For this task, one can apply the current state-of-the-art
in group recommendation techniques [21], [22], which try
to construct an optimal ranking that satisfies all group
members at the same time. Our contribution consists of
fusing the concept of majority service skyline, which by
itself does not induce any relative order, with current group
recommendation techniques, resulting in a method that
produces more effective ranking of services compared to
state-of-the-art group recommenders.

The main contributions of our line of work are: We
introduce a new concept for service selection when multiple
users with different preferences are involved, based on
majority rule, and called majority service skyline. We present
two baseline methods by adapting prior work, and also
propose two novel algorithms to efficiently compute the
majority service skyline. We show how to address the
problem of returning a ranked list of services that satisfies all
parties involved. We evaluate the effectiveness of the majority
service skyline and our ranking mechanism using real-based
semi-synthetic datasets. Specifically, we find that filtering
with majority dominance consistently improves the quality
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of the ranking list w.r.t. the ground truth, when compared to
lists produced without filtering or filtering with unanimous
dominance. We evaluate the efficiency and scalability of all
proposed algorithms through a comprehensive experimental
study on synthetic datasets. We find that BBA is up to 34%
faster than the current state-of-the-art SBA, and up to 2 orders
of magnitude more efficient than the baselines.

The remainder of this paper is structured as follows.
Section 2 reviews the related work. Section 3 formally defines
the problem of majority service skyline. Section 4 describes
the majority service skyline computation algorithms. Then,
Section 5 introduces our methodology for ranking services.
Section 6 presents our experimental study. Section 7 con-
cludes the paper and supplies some future work directions.

2 BACKGROUND AND RELATED WORK

Web services are an established technology for enabling
applications to exchange data and integrate with one another.
The description of a service enables users and machines to
identify the most appropriate service for a particular task.
Such a description should comprise two main parts [23].
The functional description describes the operational charac-
teristics of the service, while the non-functional description
focuses on the supply of the non-functional capabilities of the
service through the supply of respective constraints on corre-
sponding Non-Functional Parameters (NFP), including Quality
of Service (QoS) aspects, such as response time, reliability,
availability. The process of identifying services that satisfy
the functional requirements of a task is called functional match-
making (e.g., [24]), and involves examining the functional
description of services. The process of identifying the most
appropriate service among functionally equivalent or similar
services is called service selection, and involves examining the
non-functional descriptions of services. Service selection can
either correspond to the local problem of selecting a single
service from a set of candidate functionally similar candidate
services, or to the global problem of selecting appropriate
services to compose so as to satisfy the requirements of the
whole application [25]. Our work concerns the local service
selection problem. In the following, we review relevant work.
QoS-based Service Selection. Once functionally equivalent
services are identified, the next step differentiates among
them using non-functional descriptions, such as QoS.

For the local problem, [26] proposes an extensible QoS
computation model distinguishing generic quality criteria
and domain related criteria so that new specific criteria can
be added and used to evaluate the QoS of web services
without changing the computation model. The work in [27]
introduces QoS-based selection of semantic services, pre-
senting a QoS ontology and selection method using an
optimum normalization algorithm. In [10], a QoS-based
service contracting framework is proposed. The work in [14]
presents a model where users are allowed to specify their QoS
requirements on each QoS parameter as a range of acceptable
values along with an importance weight and uncertainty,
rather than a single value indicating the required QoS.
In [28], a model for service selection using the QoS history is
proposed. Specifically, the QoS history is partitioned into
several time slots and for each of these slots a service

selection decision is made. Then, all decisions are aggregated
to determine the overall optimal service.

For the global problem, [29] proposes a selection model,
based on linear programming, to find the optimal selection of
component services. The work in [30] considers an extended
linear programming model that is able to fulfil constraints at
runtime through adaptive reoptimization under varying QoS
characteristics. In [31], the authors propose two models for
the QoS-based service composition problem, a combinatorial
model and a graph model, and introduce a heuristic algo-
rithm for each. In [32], the authors propose a hybrid approach
that combines global optimization with local selection so
as to find a close-to-optimal selection efficiently. First, the
authors use mixed integer programming to find the optimal
decomposition of global into these local QoS constraints.
Second, they use distributed local selection to find the best
web services that satisfy these local constraints.
Estimating QoS for Services. A related line of work deals
with determining or estimating QoS values for services. The
idea is to use historical QoS values from other services and
other users in order to predict the expected QoS values for
a target service and user. Therefore, collaborative filtering
techniques that exploit similarities between services and
users are employed. In [33], the authors propose a mea-
sure which identifies similar users (or web services) more
accurately and leads to better QoS value prediction. [34]
proposes a localization-based approach assuming that users
in the same geographic area will have the same QoS values
to predict the best quality and recommend services to the
user. [35] predicts the QoS ranking instead of predicting the
QoS values. We note that our methodology, similar to these
methods, borrows ideas from recommender systems, but
uses a different technique (aggregation of preferences) and
applies it to a different problem (preference-based service
selection for multiple users).

In contrast to the previous methods, where the goal is
to predict the expected QoS a user will experience from
a given service, another line of work tries to determine a
single objective QoS value (or description) for a given service.
Therefore, methods for reaching a consensus are employed.
Lin et al. provide in [36] a clustering-based approach for QoS
consensus decision making, while allowing consumers to
express fuzzy opinions. In [37], the authors propose to use
the power of crowdsourcing to assess the QoS of candidate
services and facilitate the process of service selection. They
adopt a group decision making technique to guarantee
that the assessment does not suffer from subjective and
dishonest evaluations. In [38], the authors use interval-valued
intuitionistic fuzzy numbers for modeling the subjectivity
and imprecision of the assessment, and develop an algorithm
based on the TOPSIS method and the Choquet integral
operator for evaluating cloud services. We note that these
methods share similar ideas with our approach (namely,
preference aggregation and multi-objective analysis), but are
focused on a different problem.
Preference-based Service Selection. Another stream of
work focuses on modeling richer user preferences on the non-
functional aspects of services. Once preferences are expressed,
they are matched to functionally similar services and a degree
of match (utility) is determined. Then, services are ranked in
decreasing order of their utility.
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For the local selection problem, [13] models service
configurations and preferences using utility function poli-
cies, which allows drawing from multi-attribute decision
theory methods to develop an algorithm for optimal service
selection. The authors also present the OWL ontology for
the specification of configurable service offers and requests,
and a flexible and extensible framework for optimal service
selection that combines declarative logic-based matching
rules with optimization methods, such as linear program-
ming. [39] uses a qualitative graphical representation of
preference, CP-nets, to deal with services selection in terms
of user preferences. This approach can reason over a user’s
incomplete and constrained preferences. [40] proposes a
system for conducting qualitative service selection in the
presence of incomplete or conflicting user preferences, using
CP-nets to model user preferences. The system utilizes the
history of users to amend the preferences of active users,
thus improving the results of the service selection.

For global selection, [41] proposes an approach for an
automated selection of services for service composition,
where preferences are modeled as fuzzy if-then rules. A
fuzzy rule describes which combination of attribute values a
user is willing to accept and to which degree, where attribute
values and degree of acceptance are fuzzy sets. [12] proposes
an approach to automatically compose services, while taking
into account the user preferences. User preferences are
modeled using fuzzy sets. Different methods are investigated
to compute the relevance degrees of discovered services
w.r.t. user’s preferences. To select the most relevant services,
a fuzzy dominance relationship is proposed to rank-order
services. The selected services are then used to find the top-k
service compositions. A method to improve the diversity of
returned compositions is also proposed.
Skyline-based Service Selection. Some preference-based
service selection methods employ methods that are based
on the concept of skyline, a.k.a. Pareto optimality, and its
variants. A service is in the skyline if there is no other service
that dominates it, i.e., be at least as good on all attributes
of interest, and strictly better on one. The concept has been
heavily studied in the data management community, where
efficient methods have been proposed, e.g., [42], [43]. In the
context of service descriptions, the attributes of interest are
NFP values (typically QoS). Our work borrows ideas from
this line of work, but differs in that: (1) the attributes of
interest are the degrees of match of user preferences to NFP
values (instead of the NFP values directly), and (2) multiple
users with distinct preferences are considered.

For the local selection problem, the number of services
that belong to a QoS-based skyline can be quite large. Several
approaches attempt to control or reduce the number of
returned services. [44] uses the concept of representative
skyline [45] to select services based on their QoS; briefly,
a skyline service is representative if it is similar to a large
number of other skyline services. We note that a similar
skyline-based method is adopted in [11], but for the problem
of service matchmaking according to functional descriptions.
[46] and [47] use the k-dominance relationship of [20] to filter
services; briefly, an service is said to k-dominate another if
there are k dimensions on which dominance holds. These
approaches are similar to ours, in that they also employ
relaxed dominance relationships. However, in our work, we

apply similar ideas to a different problem, that of selecting
services for multiple users. Moreover, we note that the
algorithms we present here are more efficient than the
adaptation of the methods in [20].

For the global selection problem, [48] computes the
skyline service execution plans. They propose indexing
service operations to compute the skyline more efficiently.
In [49], the authors propose a preference order based on a set
of fuzzy linguistic predicates. Then, they present a weighting
procedure for transforming the preference relations into nu-
merical weights, which is used to identify preferred skyline
solutions. In [50], the authors develop strategies to select
the skyline composite services efficiently. They show that it
is sufficient to compute the local service skylines without
generating all possible service compositions. The work in [51]
applies the MapReduce computation model for parallel
skyline service selection. Specifically, they employ an angle-
based data space partitioning approach to deliver services to
different nodes. The work in [52] focuses on computing the
composite service skyline in the presence of QoS correlations.
Different pruning techniques are investigated to accelerate
the computing process.
Service Selection for Multiple Users. The problem is to
identify services that are appropriate to a set of users, each
expressing one’s own preferences in terms of NFPs. In [17],
the authors refer to the AHP (Analytical Hierarchy Process)
approach to transform both user qualitative preferences and
users’ priorities into user weights, which are then used to
rank services. In [53], the authors propose an approach
for resolving conflicting service requests using Euclidean
distance with weights to calculate the matching degree
between a request and a web service, a global optimal web
service selection model has been developed based on 0-1
integral programming. Wang et al. [54] first predicts the
missing multi-QoS values according to the historical QoS
experience from different users, and then selects the global
optimal solution for multi-user. In [16], services are first
ranked individually per user, and user weights are then used
to merge the ranked lists. Similarly, [8] propose to merge the
ranked lists adopting a consensus-based approach.

These approaches resort to performing a weight-based
aggregation of services. We argue that this approach obscures
and blurs the individual user preferences per NFPs. In our
previous work [19], we propose to discard services that
are majority dominated, i.e., a majority of users agree that
there are better alternatives. This way, individual preferences
on what constitutes non-desirable services, are not ignored
by the aggregation mechanism, ensuring thus a level of
fairness across all users. In this work, we go further than
[19], in that we consider the problem of ranking services for
multiple users, and show how our majority dominance-based
approach can be integrated with existing ranking approaches.

3 PROBLEM DESCRIPTION

In this section, we supply the basic notions used in this
paper, and formalize the notion of majority service skyline.
Table 4 summarizes the frequently used symbols and their
description.

Given a set of functionally equivalent services S =
{s1, s2, . . . , sn}, where each is defined over a set of NFPs
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TABLE 4: Notation

Symbol Description

S, si Set of services, a specific service
P , pa Set of NFPs, a specific NFP
n, m, d Number of services, users, NFPs
si.pa Value of pa for si
U , ux Set of users, a specific user
ux.pa Preference of ux on pa
µxi Matching vector of si to ux
µxi .pa Matching degree of si to ux w.r.t. pa
µ−i .pa Lower bound of matching degrees of si on pa
µ+
i .pa Upper bound of matching degrees of si on pa
µ−i Lower bound of the matching vectors of si
µ+
i Upper bound of the matching vectors of si
si �x sj si weakly dominates sj w.r.t. ux
si �x sj si dominates sj w.r.t. ux
si �U sj si unanimously dominates sj
si �M sj si majority-dominates sj
si �W sj si Widely dominates sj
USS Unanimous service skyline
MSS Majority service skyline

P = {p1, p2, . . . , pd}, we use si.pa to denote the value
of parameter pa for service si. Further, assume a set of
users U = {u1, u2, . . . , um}, where each specifies her/his
preferences on the set of parameters P , and we use ux.pa to
denote the preference of ux on parameter pa.

Given a service si and a user ux, the matching vector of
si to ux, denoted as µxi , is a d-dimensional point in [0, 1]

d,
where its a-th coordinate is the matching degree with respect
to parameter pa, i.e., µxi = (µxi .p1, µ

x
i .p2, . . . , µ

x
i .pd). The

matching degree µxi .pa is defined by a matching function
µ : 2dom(pa) → [0, 1] that specifies to which extent the
service’s NFP value (or range, or set of values) pa satisfies
the users’ preference ux. We emphasize that the mechanism
of the matching function is orthogonal to our problem. For
example, the matching degree can be a utility function that
only depends on the specific user and service, or a collabora-
tive filtering mechanism that considers past interactions of
all users with all services.
Example 4. The matching degree of service s1 to user u1

with respect to response time is given by the probability
that this service satisfies the user’s preference, computed
as |[150,450]∩(0,400]|

|[150,450]| = |[150,400]|
|[150,450]| = 250/300 = 0.83.

With respect to redundancy, the matching degree is 1,
indicating that the level of the service’s data redundancy
satisfies the user. Thus, the matching vector of service s1
to user u1 is µ1

1 = (0.83, 1). All matching vectors of our
example are shown in Table 3.

We now introduce the notion of majority service skyline.
Definition 1 (Weak Dominance). Given a user ux, we say that

a service si weakly dominates another service sj w.r.t. ux,
denoted as si �x sj , iff si has better or equal matching
degrees than sj on all specified preference parameters.
i.e., si �x sj ⇔ ∀pa ∈ P : µxi .pa ≥ µxj .pa.

Definition 2 (Dominance). Given a user ux, we say that a
service si dominates another service sj w.r.t. ux, denoted
as si �x sj , iff si has better or equal matching degrees
than sj on all specified preference parameters, and strictly
better matching degree on at least one. i.e., si �x sj ⇔
∀pa ∈ P : µxi .pa ≥ µxj .pa ∧ ∃pb ∈ P : µxi .pb > µxj .pb.

Definition 3 (Unanimous Dominance). Given a set of users
U , we say that a service si unanimously dominates another

service sj , denoted as si �U sj , iff si weakly dominates
sj w.r.t. all users, and there exists at least one user uy , for
which si dominates sj . i.e., si �U sj ⇔ ∀ux ∈ U : si �x
sj ∧ ∃uy ∈ U : si �y sj .

Definition 4 (Unanimous Service Skyline). Given a set of
services S and a set of users U , the unanimous service
skyline USS comprises the set of services that are not
unanimously dominated by any other service. i.e., USS =
{si ∈ S | @sj ∈ S : sj �U si}.

Definition 5 (Majority Dominance). Given a set of users
U , we say that a service si majority-dominates another
service sj , denoted as si �M sj , iff (1) there exists a subset
U ′ ⊆ U containing more than half of the users such that
si weakly dominates sj w.r.t. all users in this subset, and
(2) there exists a user uy for which si dominates sj . i.e.,
si �M sj ⇔ (∃U ′ ⊆ U : |U ′| > b|U|/2c ∧ ∀ux ∈ U ′ si �x
sj) ∧ ∃uy ∈ U ′ : si �y sj .

Definition 6 (Majority Service Skyline). Given a set of
services S and a set of users U , the majority service skyline
MSS comprises the set of services that are not majority-
dominated by any other service. i.e., MSS = {si ∈ S |
@sj ∈ S : sj �M si}.
We note that is possible to enforce a super-majority, e.g.,

require two-thirds of the users to agree. The necessary change
is in the first requirement of majority dominance: ensure that
the user subset has the desired cardinality.
Example 5. Service s1 majority dominates service s3 accord-

ing to the majority of u1, u3. Similarly, service s2 majority
dominates s1 according to the majority of u1, u2. Service
s2 is not majority dominated by any other service, and
thus belongs to the majority service skyline.
Recall that the unanimous service skyline comprises
services s1, s2, and s3 (see Example 3), and observe that
the majority service skyline has smaller cardinality than
the unanimous service skyline. This is formally expressed
as follows.

Lemma 1. If service si unanimously dominates service sj ,
then si majority-dominates sj . i.e., si �U sj ⇒ si �M sj .

Proof: Follows from Definition 3 and Definition 5,
setting U ′ = U .
Theorem 1. The majority service skyline is a subset of the

unanimous service skyline. i.e., MSS ⊆ USS.

Proof: Assume that there exists a service si, such that
si ∈ MSS and si /∈ USS. Since si /∈ USS, there must exist a
service sj , such that sj �U si. Thus, by Lemma 1, we have
sj �M si. Which leads to a contradiction, as si ∈ MSS.

We now provide the formal definition for the majority
rule-based multiple users service selection problem.
Problem statement. Given a set of functionally similar
services S defined over a set of NFPs P , and a set of users
U along with their preferences over each parameter in P ,
compute the majority service skyline.

4 COMPUTING THE MAJORITY SERVICE SKYLINE

In this section, we first show how an adaptation of existing
algorithms can be used to compute the majority service
skyline, and we then present our proposed algorithms.
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4.1 The Baseline Algorithm
Observe thereafter that unlike the unanimous dominance
relationship, the majority dominance relationship does not
maintain the transitive property, i.e., the majority dominance
relationship is not transitive.
Theorem 2. The majority dominance relationship is not tran-

sitive. i.e., ∃si, sj , sk ∈ S : si �M sj ∧ sj �M sk ∧ si �M sk.

Proof: Consider services s1, s2, s3 from our example.
Observe that s2 �M s1 and s1 �M s3, but s2 �M s3.

The above theorem shows that the majority dominance
relationship shares the intransitivity property of the k-
dominance relationship introduced in [20]. Therefore, even
if a majority-dominated service cannot be a result, it cannot
be completely disregarded as it still might eliminate other
services. In our running example, s1 is the only service that
can eliminate s3. This observation justifies why the existing
algorithms for computing the conventional skyline are not
applicable for computing the majority service skyline. How-
ever, the one scan algorithm (OSA) and two scan algorithm
(TSA) of [20], can be adapted to compute the majority service
skyline, by exchanging k-dominance checks for majority
dominance checks (or equivalently setting k = bm/2c+ 1).

This Baseline Algorithm first computes the matching vector
µxi of each service si in S with respect to each user ux in U .
Then, the majority service skyline MSS is computed using
the adaptation of OSA or TSA. Finally, MSS is returned.
Computational Complexity. The computational cost of BA
is the sum of two stages. The first is computing the matching
degrees, which takes O(d · m · n) time. The second is
computing the majority service skyline, which involves
checking all O(n2) pairs of services in the worst case. Each
dominance check is over m users and d non-functional
parameters. So, the total cost of the second stage isO(d·m·n2)
in the worst case. Thus, BA takes in total O(d ·m · n2) time.

4.2 The Sort-Based Algorithm
Hereafter, we present the Sort-Based Algorithm (SBA), which
improves on BA by employing a number of observations;
SBA was introduced as MSA in [19]. The main idea is to sort
the services according to a monotonic function that preserves
the preferences of all users, so that the number of dominance
checks is reduced. Specifically, SBA is based on Lemma 1 and
the next two lemmas.
Lemma 2. If service si unanimously dominates service sj

and sj majority-dominates service sk, then si majority-
dominates sk. i.e., si �U sj ∧ sj �M sk ⇒ si �M sk.

Proof: Since sj majority-dominates sk, there exists a
set U ′ users with |U ′| > |U|/2 such that sj weakly dominates
sk according to them, and there also exists a user uy ∈ U ′ for
which sj dominates sk. Since si unanimously dominates sj ,
it holds that for the subset U ′ of users si weakly dominates
sj . Then, since weak dominance is a transitive relationship,
we derive that for all users in U ′, si weakly dominates sk,
and also according to uy ∈ U ′ si dominates sk. Therefore, by
definition, si majority dominates sk.
Lemma 3. Let f : S → R+ be a monotone function aggregat-

ing the matching degrees of each service for all users. If
a service si unanimously dominates another service sj ,
then f(si) ≥ f(sj). i.e., si �U sj ⇒ f(si) ≥ f(sj).

Algorithm 1: SBA
Input: set of services S; set of users U ;
Output: majority service skyline MSS;

1 begin
2 MSS← ∅;
3 USS′ ← ∅;
4 foreach si ∈ S do
5 foreach ux ∈ U do
6 compute µxi ;

7 sort S according to f ;
8 foreach si ∈ S do
9 inUSS← true;

10 foreach sj ∈MSS ∪ USS′ do
11 if sj �U si then
12 inUSS← false;
13 break;

14 if inUSS then
15 foreach sj ∈MSS do
16 if si �M sj then
17 move sj from MSS to USS′;
18 inMSS← true;
19 foreach sj ∈MSS ∪ USS′ do
20 if sj �M si then
21 inMSS← false;
22 break;

23 if inMSS then
24 insert si into MSS;
25 else
26 insert si into USS′;

27 return MSS;

Proof: The fact that si unanimously dominates sj
means that si is better than or equal to sj with respect
to all preference parameters of all users. This implies that a
monotone aggregate function over the matching degrees of
si has a greater or equal value than that function over the
matching degrees of sj . Hence, f(si) ≥ f(sj).

Lemma 1 and Lemma 2, suggest that it is sufficient to
compare each service against the unanimous skyline services
to detect if it is part (or not) of the majority service skyline.
This essentially reduces the number of dominance checks
(comparisons). Specifically, if a service si is unanimously
dominated, then discard it as (1) it is not part of the majority
service skyline (Lemma 1), and (2) it is unnecessary for
eliminating other services (Lemma 2).

Lemma 3 helps further reduce unnecessary comparisons.
To exploit this property, we sort the services in non-ascending
order of the sum of their matching degrees. i.e., for a service
si, f(si) =

∑
ux∈U

∑
pa∈P µ

x
i .pa. The implication is that a

service si can only be unanimously dominated by a service
that has appeared before si in the examined order. Thus,
checks for unanimous dominance can be reduced. This is
the idea behind the SFS algorithm [55], which we apply for
cyclic dominance relationships.

SBA is depicted in Algorithm 1. Based on Lemma 1 and
Lemma 2, SBA maintains two sets MSS and USS′, containing
respectively the set of intermediate majority skyline services
and the set of intermediate unanimous skyline services that
are not in MSS. Thus, MSS∪USS′ constitutes the intermediate
unanimous service skyline. Initially, both sets MSS and USS′

are empty (lines 2–3). Then, the matching vector µxi of each
service si in S with respect to each user ux in U is computed
(lines 4-6). After that, the services are sorted in the descending
order of f (line 7). Afterwards, the algorithm iterates over
the sorted services (loop in line 8). At each iteration, a service
si from S is compared against services in MSS ∪USS′ (loop
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TABLE 5: Lower and Upper Bounds of the Matching Vectors

Service Lower Bound Upper Bound

s1 (0.50, 0) (0.83, 1)
s2 (1.00, 0) (1.00, 1)
s3 (0.40, 1) (0.80, 1)
s4 (0.00, 0) (0.20, 1)
s5 (0.67, 0) (1.00, 1)
s6 (0.00, 0) (0.20, 1)
s7 (0.09, 0) (0.27, 1)
s8 (0.00, 0) (0.33, 0)
s9 (0.00, 0) (0.00, 0)

in line 10), i.e., the set of services that may unanimously
dominate si (as the other services cannot dominate si from
Lemma 3), to check if si is part (or not) of the unanimous
service skyline. If si is unanimously dominated by any
service in MSS∪USS′, then SBA breaks out of inner for-loop
(i.e., loop in line 10); in other words, service si is discarded
since it is not part of the majority service skyline (Lemma 1),
and it is unnecessary for discarding other services (Lemma 2).
Otherwise, i.e., service si is a unanimous skyline service, if si
majority-dominates any service sj in MSS (i.e., sj is not part
of the majority service skyline), then sj is moved from MSS
to USS′, as it is a unanimous skyline service, thus useful for
eliminating other services (lines 15–17). For the same reason,
if si is majority-dominated by any service in MSS ∪ USS′,
it is inserted into USS′. Else, si is an intermediate majority
skyline service and is inserted into MSS (lines 19–26). Once
all services in S are examined, MSS is returned (line 27).

Example 6. For SBA, the services are sorted, in the for-
mat 〈si, f(si)〉, as follows: 〈s3, 4.8〉, 〈s1, 4.0〉, 〈s2, 4.0〉,
〈s5, 3.5〉, 〈s7, 1.5〉, 〈s4, 1.3〉, 〈s6, 1.3〉, 〈s8, 0.5〉, 〈s9, 0.0〉.
Then, service s2 is inserted into MSS as it is not majority-
dominated, while, services s1 and s3 are inserted into
USS′ since they are both majority-dominated, but they
are unanimous skyline services. On the other hand, all
other services are discarded since they are unanimously
dominated. Thus, the SBA correctly returns service s2 as
the majority service skyline.

Computational Complexity. Compared to BA, SBA takes
an additional step of sorting the services. As this takes
O(n · log n) time, the worst-case time complexity of SBA
is identical to BA, O(d ·m · n2).

4.3 The Bounds-Based Algorithm

In the following, we present our new algorithm, termed
Bounds-Based Algorithm (BBA), for efficiently computing the
majority service skyline. The key idea of BBA is to establish
lower and upper bounds for the matching vectors of services
in order to: (1) reduce the cost of dominance checks; and (2)
minimize the number of dominance checks.

Given a service si ∈ S and a parameter pa ∈ P , let
µ−i .pa, and µ+

i .pa be respectively the lower bound and
upper bound of the matching degrees of si on pa, i.e.,
µ−i .pa = minux∈U µ

x
i .pa, and µ+

i .pa = maxux∈U µ
x
i .pa.

Then, the lower bound and the upper bound of the matching
vectors of si are µ−i = (µ−i .p1, µ

−
i .p2, . . . , µ

−
i .pd), and

µ+
i = (µ+

i .p1, µ
+
i .p2, . . . , µ

+
i .pd), respectively.

Example 7. Table 5 shows the lower bounds and the upper
bounds of the matching vectors of each service.

Moreover, our algorithm leverages an important concept
called wide dominance, which offers a key property that can
be used to quickly discard inappropriate services. We define
the wide dominance relationship as follows.
Definition 7 (Wide Dominance). A service si widely dominates

another service sj , denoted as si �W sj , iff the lower
bounds of the matching degrees of si are better than or
equal to the upper bounds of the matching degrees of
sj on all parameters, and strictly better on at least one.
i.e., si �W sj ⇔ ∀pa ∈ P : µ−i .pa ≥ µ+

j .pa ∧ ∃pb ∈ P :

µ−i .pb > µ+
j .pb.

Example 8. Service s3 widely dominates service s4, as the
lower bounds of the former (0.40, 1) are better than the
upper bounds of the latter (0.20, 1) (see Table 5).

To compute the majority service skyline efficiently, BBA
exploits the following properties, in addition to those previ-
ously defined.
Lemma 4. If service si widely dominates service sj , then si

unanimously dominates sj . i.e., si �W sj ⇒ si �U sj .

Proof: Assume that si �W sj and si �U sj . Given that
si �U sj , there must exist a user ux and a parameter pa such
that µxj .pa > µxi .pa. This leads to a contradiction as si �W sj
means that the lower bounds of the matching degrees of si
are better or equal than the upper bounds of the matching
degrees of sj on all parameters, and strictly better on at least
one.

Note that the inverse direction does not hold, i.e, if si
unanimously dominates sj , then the former might not widely
dominate the latter. This is exhibited in our example: s1
unanimously dominates, but does not widely dominate, s4.
Lemma 5. Let f : S → R+ be a monotone function aggre-

gating the matching degrees of each service for all users
such that f(si) ≥ maxpa∈P µ

+
i .pa. Given two services si

and sj , if minpa∈P µ
−
i .pa > f(sj), then si unanimously

dominates sj . i.e., minpa∈P µ
−
i .pa > f(sj)⇒ si �U sj .

Proof: As f(sj) ≥ maxpa∈P µ
+
j .pa, minpa∈P µ

−
i .pa >

f(sj) implies that minpa∈P µ
−
i .pa > maxpa∈P µ

+
j .pa. Thus,

si �W sj . Hence, by Lemma 4, si �U sj .
Similar to SBA, BBA exploits Lemmas 1 and 2 to compare

each service against only the unanimous skyline services.
Moreover, as in SBA, BBA employs Lemma 3 to avoid

unnecessary comparisons. To exploit this property, we sort
the services in non-ascending order considering for each
of them the sum of the upper bounds of their matching
degrees. We denote this function as f , and thus for a service
si, f(si) =

∑
pa∈P µ

+
i .pa. In case of ties, the sum of their

matching degrees for all users is used. We denote this func-
tion as g, i.e., for a service si, g(si) =

∑
ux∈U

∑
pa∈P µ

x
i .pa.

Therefore, given a service si, searching for services by which
si is unanimously dominated can be limited to the part
of the service before si. Note that function f satisfies the
requirement of Lemma 5.

Lemma 4 allows us to avoid iterating over all users when
checking if a service si unanimously dominates another
service sj by first comparing their corresponding lower
bound and the upper bound of their matching vectors,
i.e., µ−i and µ+

j . Thereby, reducing the cost of a number
of unanimous dominance checks from O(d ·m) to O(d).
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Algorithm 2: BBA
Input: set of services S; set of users U ;
Output: majority service skyline MSS;

1 begin
2 MSS← ∅;
3 USS′ ← ∅;
4 µstop ← 0;
5 foreach si ∈ S do
6 foreach ux ∈ U do
7 compute µxi ;
8 compute µ−i ;
9 compute µ+

i ;
10 sort S according to f , then g in case of ties;
11 foreach si ∈ S do
12 if µstop > f(si) then
13 break;
14 else
15 inUSS← true;
16 foreach sj ∈MSS ∪ USS′ do
17 if sj �W si then
18 inUSS← false;
19 break;
20 else
21 if sj �U si then
22 inUSS← false;
23 break;

24 if inUSS then
25 µstop ← max(µstop,minpa∈P µ

−
i .pa);

26 foreach sj ∈MSS do
27 if si �M sj then
28 remove sj from MSS to USS′;
29 inMSS← true;
30 foreach sj ∈MSS ∪ USS′ do
31 if sj �M si then
32 inMSS← false;
33 break;

34 if inMSS then
35 insert si into MSS;
36 else
37 insert si into USS′;

38 return MSS;

Furthermore, Lemma 5 provides a termination condition.
Specifically, given two services si and sj , if minpa∈P µ

−
i .pa >

f(sj) =
∑
pa∈P µ

+
j .pa then si unanimously dominates sj as

well as all services after sj (since services are sorted in non-
ascending order, f(si) > f(sk) for any service sk after sj).

BBA, shown in Algorithm 2, leverages the observations
made above to compute efficiently the majority service
skyline. Based on Lemma 1 and Lemma 2, BBA maintains
two sets MSS and USS′, containing respectively the set
of intermediate majority skyline services and the set of
intermediate unanimous skyline services that are not in MSS.
Thus, MSS ∪ USS′ constitutes the intermediate unanimous
service skyline. Also, based on Lemma 5, BBA uses variable
µstop, which maintains the maximin matching degrees of
the examined services, i.e., maxsi∈MSS∪USS′ minpa∈P µ

−
i .pa;

observe that the maximin strategy offers the earliest termi-
nation position. Initially both sets MSS and USS′ are empty
(lines 2–3), and µstop is set to 0 (line 4); since no service is
examined up to now. Then, the matching vector µxi of each
service si in S with respect to each user ux in U is computed,
and the lower bound µ−i and the upper bound µ+

i of the
matching vectors of each service si is deduced (lines 5–9).
After that, the services are sorted in non-ascending order of
f , then g in case of ties (line 10). Afterwards, the algorithm
iterates over the services (loop in line 11). Each time a new
service si from S is examined. If µstop > f(si) (line 12),
i.e., the algorithm has reached the sufficient condition to

conclude that no additional service in S can be part of the
majority service skyline (Lemma 5), then BBA breaks out of
for-loop and the result MSS is returned (line 38). Otherwise,
service si is compared against services in MSS ∪USS′ (loop
in line 16), i.e., the set of services that may unanimously
dominate si (as the other services cannot dominate si from
Lemma 3), to check if si is part (or not) of the unanimous
service skyline. From Lemma 4, BBA first checks if service si
is widely dominated, then if it is unanimously dominated. If
si is widely dominated or unanimously dominated by any
service in MSS ∪USS′ then BBA breaks out of inner for-loop
(i.e., loop in line 16); in other words, service si is discarded
since it is not part of the majority service skyline (Lemma 1),
and it is unnecessary for discarding other services (Lemma 2).
Otherwise, i.e., service si is a unanimous skyline service,
µstop is updated (line 25), and if si majority-dominates any
service sj in MSS (i.e., sj is not part of the majority service
skyline), then sj is removed from MSS to USS′, as it is a
unanimous skyline service, thus useful for eliminating other
services (lines 26–28). For the same reason, if si is majority-
dominated by any service in MSS ∪USS′, it is inserted into
USS′. Else, si is an intermediate majority skyline service and
is thus inserted into MSS (lines 30–37). In the case that all
services in S are examined, this means that the termination
condition (lines 12–13) is not reached, the result MSS is
returned (line 38).
Example 9. For BBA, the services are sorted, in the for-

mat 〈si, f(si)〉, as follows: 〈s2, 2.0〉, 〈s5, 2.0〉, 〈s1, 1.8〉,
〈s3, 1.8〉, 〈s7, 1.3〉, 〈s4, 1.2〉, 〈s6, 1.2〉, 〈s8, 0.3〉, 〈s9, 0.0〉.
Then, service s2 is inserted into MSS as it is not majority-
dominated, while, services s1 and s3 are inserted into
USS′ since they are both majority-dominated, but they are
unanimous skyline services. On the other hand, service
s5 is discarded since it is unanimously dominated by
service s2. Also, service s4 is discarded as it is widely
dominated by service s3. Moreover, services s8 and s9
are not considered since BBA will reach the termination
condition (µstop = 0.4 > f(s8) > f(s9)). BBA correctly
returns service s2 as the majority service skyline.

Computational Complexity. The cost of BBA is the sum of
three stages. The first is computing the matching degrees, and
lower/upper bounds of the matching vectors at O(d ·m · n)
time. The second is sorting the services at O(n · log(n)) time.
The last is computing the majority service skyline, which
performs O(d ·m · n2) comparisons in the worst case. Thus,
BBA takes in total O(d ·m · n2) time.

5 RANKING SERVICES FOR MULTIPLE USERS

The motivation for computing the majority service skyline is
to reduce the number of services returned by keeping only
the most interesting ones. However, as the number of users
and the number of NFPs increase, it becomes more likely that
the users express very different and conflicting preferences,
leading to a large cardinality of the majority service skyline.
Hence, the task of identifying an appropriate service may still
be cumbersome. In this section, we address the problem of
providing a ranking among services in the majority skyline
such that it takes into account users’ preferences.

It is possible to pose the service ranking problem as
a group recommender task: given available services and
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a group of users, where for each user we know her/his
individual preferences, what is an appropriate ranking of
services? As we explicitly know the preferences of individual
users as well as the characteristics of services, we can already
compute matching degrees per user as in Section 3. Therefore,
for each user individually we can compile a ranked list of
recommended services, e.g., by ranking based on the average
matching degrees across all service parameters. The challenge
is to come up with a single ranked list satisfying all users.

The literature on group recommenders is rich (see [21],
[22]). The most appropriate line of work is the combination of
individual recommendations for group members. Specifically,
in rating aggregation, an item is explicitly assigned a group
rating determined by an aggregation over the predicted mem-
ber ratings. The aggregation strategies are mostly inspired
by social choice theory, which deals with techniques for
combining individual preferences (see [56] for an overview).

The additive strategy (Add) adds the individual matching
degrees and produces an overall desirability among users.
The multiplicative strategy (Mult) takes the product of
individual matching degrees. The minimum strategy (Min)
considers the minimum of individual matching degrees and
reflects thereby the fact of not strongly displeasing any user
(least misery principle). Under these two last aggregation
rules, unsatisfied users have a higher impact on the final
decision than satisfied ones. The maximum strategy (Max)
considers the maximum of individual matching degrees for
offering the maximum pleasure among users.

Translated to our problem, the baseline approach fol-
lowing standard practice from group recommenders entails
the following steps. For each service and user, compute
their total (i.e., average) matching degree. Then, for each
service compute the group matching degree, by applying
an aggregation strategy, Add, Mult, Min or Max. Then
recommend to the group a ranked list of services, ordered
decreasingly by their group matching degree.

Observe that the aforementioned procedure can be ap-
plied to all services, or to one of their subsets. For instance,
one can select the services in the unanimous service skyline,
or those in the majority service skyline. Our proposal is to
compute group matching degrees only for services that are
in the majority skyline, independently of the aggregation
strategy adopted. As a final remark, let us note that several
impossibility results have been proven in social choice theory
with respect to optimal rankings, e.g., Arrow’s impossibility
theorem [57]. Essentially, they suggest that no ranking
mechanism can be appropriate in all cases. Hence, we do
not advocate one strategy over another. In the experimental
evaluation we have investigated several ranking mechanisms,
and the consistent finding is that majority-based filtering
leads to more informative rankings.

6 EXPERIMENTAL EVALUATION

In this section, we first describe the experiment setup and
then we present and discuss the respective results.

6.1 Evaluation Setup

We first discuss the objectives of the evaluation, and then
present the datasets used and the methodology followed.

6.1.1 Research Questions

Our evaluation answers the following questions.
Q1: Is MSS more effective than USS in identifying relevant

services?
Q2: Is MSS more effective than USS in ranking services?
Q3: How do MSS algorithms scale?

6.1.2 Datasets

To answer our research questions, we use three datasets.
The first two are based on real datasets, while the third is
synthetic. Note that we were unable to find a real dataset
that contains all necessary ingredients for our evaluation, i.e.,
service non-functional parameter values, user preferences,
and ground truth services for the users.
CLOUD. We manually compile a list of 70 services offering
cloud storage, and which are described by two parameters,
(monthly) Cost and Storage Size. As the ground truth, we use
three lists, denoted as CLOUD List A, B, C, each containing
the top-10 cloud storage services as evaluated by different
websites. The lists and all services are included in the
supplementary material.

Based on each list, we generate a set of user preferences.
Specifically, for each user, we assign a preferred value for
the two service non-functional parameters, Cost and Storage
Size, by selecting uniformly at random among the values
of services in the top-10 list. The matching degrees between
users’ preferences and services’ parameters are computed
using the Jaccard coefficient [58].
QWS. We use the publicly available dataset QWS2, with
measurements of 9 QoS parameters for 2507 real-world web
services. To allow for a uniform measurement of service
qualities independent of units, we normalize the QoS values
to [0, 1], where 0 indicates the worst value and 1 the best.

Users’ preferences on each QoS parameter are gener-
ated uniformly at random taking a value between the
50th overall best normalized QoS value and the maximum
possible normalized QoS value (1), meaning that users
require the best QoS values. The matching degrees between
users’ preferences and services’ parameters are computed as
follows. If the value of a given QoS parameter is greater
than or equal to that of the user’s preference then the
matching degree is 1, meaning that the QoS parameter
is completely satisfied; otherwise, the matching degree is
penalized by how much the preference deviates from the
service’s parameter value. Concretely, for service si, user ux,
and QoS parameter pa, the degree of match is computed as
µxi .pa = 1−max{ux.pa − si.pa, 0}.

The ground truth contains the top-250 services (∼10% of
dataset) according to the average normalized QoS value.
SYNTH. We synthetically generate datasets to greatly vary
the problem parameters, so as to study their effect on the
efficiency of the majority service skyline algorithms, as well
on the effectiveness of the various approaches. In particular,
the services and users’ preferences are generated following
two distributions: (1) similar, where users’ preferences are
almost similar, i.e., a good match of a given service to some
user increases the possibility of its good match to the other
users; (2) conflicting, where users’ preferences are diversified,

2. www.uoguelph.ca/∼qmahmoud/qws/

www.uoguelph.ca/~qmahmoud/qws/
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i.e., for a given service, good matches (or bad matches) to all
users are less likely to occur.

6.1.3 Methodology
To answer Q1, we consider two ways. First, we examine the
size of MSS and USS. Fewer services means that the users
will decide among fewer alternatives, which is desired. We
would like to see how much smaller is the MSS compared to
USS. Second, when we have a ground truth, we quantify the
quality of the returned services with respect to it. Specifically,
we measure precision, recall, and F1 score, which is the
harmonic average of the first two. These three metrics take
values in the range [0, 1], with higher values being better.

To answer Q2, we use the ground truth to quantify the
quality of a ranked list containing all services (All), the
majority service skyline (MSS), and the unanimous service
skyline (USS).

The way services are ranked is orthogonal to our ap-
proach. Therefore, we consider various aggregation strate-
gies, namely, the four mentioned in Section 5, namely,
additive (Add), maximum (Max), multiplicative (Mult), and
minimum (Min), as well as the consensus-based approach
(Cons) described in [8]. Each aggregation strategy is paired
with a set of services to rank, either All, MSS, or USS, for a
total of 15 distinct rankings.

The quality of a ranked list with respect to the ground
truth is measured in terms of its normalized discounted
cumulative gain at rank k (NDCG@k). Let σ denote the
ranking returned by an approach, with σ[i] representing
the service at the i-th rank. Moreover, let score(σ[i]) denote
the Borda score of service σ[i] according to the ground truth.
Then, the discounted cumulative gain (DCG) at rank k is
defined as: DCG@k =

∑k
i=1

2score(σ[i])−1
log(i+1) .

The ideal discounted cumulative gain (IDCG) is defined
as the DCG achieved when the relevant items are ranked as
in the ground truth. The normalized discounted cumulative
gain at position k is then computed as the ratio of DCG over
IDCG: NDCG@k = DCG@k

IDCG@k . NDCG take values in the range
[0, 1], with higher values being better.

To answer Q3, we investigate, the performance of four
methods: BA-OSA and BA-TSA which are the two baseline
variants (Section 4.1), SBA (Section 4.2), and BBA (Section 4.3).
We measure performance by the amount of time required
to produce the MSS on SYNTH, and investigate different
problem settings by varying: (1) the number n of services
available to choose from, (2) the number m of users to
satisfy, and (3) the number d of parameters describing a
service. The involved parameters and their examined values
are summarized in Table 6. In all experimental setups, we
investigate the effects of one parameter, while we set the
remaining ones to their default values. All experiments were
conducted on a 2.5 GHz Intel Core i7 processor with 16 GB
1600 MHz DDR3 Memory, running macOS Sierra. Reported
metric values are averages over one thousand instances.

6.2 Q1: MSS vs. USS in Identifying Relevant Services
Size of the Results Set. In the first set of experiments, we
compare the size of the majority service skyline with that of
the unanimous service skyline. Having a more manageable
result size is beneficial, as it reduces the effort required

TABLE 6: Parameters and Examined Values of SYNTH

Parameter Values Default

Number of services (n) 10K, 50K, 100K, 500K, 1M 100K
Number of users (m) 4, 7, 10, 13, 16 10

Number of parameters (d) 2, 3, 4, 5, 6 4

to manually examine services in order to select the most
appropriate. Here, we are using all datasets.

Figure 1 depicts the result set size for the three instances
of CLOUD, and the QWS datasets, as we vary the number of
users. The results across all datasets are similar. Observe that
the size of MSS is significantly smaller than USS. Moreover,
as the number of users increases, the size of USS increases,
while that of MSS decreases slightly. For 16 users, MSS
eliminates up to 85% services from the USS. Fig. 2 repeats
this experiment on the SYNTH datasets. The result set size is
the smallest in Similar and largest in Conflicting. Again, the
size of USS increases with the number of users, while that of
MSS remains relatively constant.

The reason for the difference in the sizes of MSS and USS
is the following. A service is unanimously dominated if all
m users agree. Clearly, increasing m means that it becomes
harder for all users to agree, hence we see an increase in
the size of USS. On the other hand, a service is majority
dominated if any bm/2c+1 users say so. The key observation
is that there exist O(m2) possible subsets of bm/2c+1 users,
and it suffices that only one of them agrees that a service
should be dominated. Therefore, when m increases, two
opposing phenomena occur: it becomes harder for a service
to be dominated by a particular subset of bm/2c+ 1 users,
and at the same time there exist many more such subsets and
thus more opportunities for a service to be dominated.

Next in Fig. 3, we investigate the effect of the number of
services on the result set size, using the SYNTH dataset. In
all cases, the result set size increases, but at a smaller rate for
MSS. Increasing n means more services have a chance of not
being dominated. A similar trend appears when we increase
the number of non-functional parameters in Fig. 4. Increasing
d means it becomes harder for a service to be dominated.
Precision and Recall. We now investigate how good the
returned services are with respect to the ground truth; hence,
only CLOUD and QWS datasets are used. Fig. 5 shows the
precision of MSS and USS, as we vary the number of users.
A general observation is that precision of USS reduces with
the number of users. This is because the size of the returned
results increases, and thus more unfavorable services have
the chance to be included in the result. However, precision
of MSS is rather stable, as it always returns a similar result
set size with equally good services.

On the other hand, Fig. 6 shows that USS has better
recall than MSS. Clearly, returning more results can increase
recall, at the expense of precision. Indeed, any approach that
randomly selects a large number of services is able to achieve
a good recall. Thus, recall alone is not a good indication of
effectiveness in this case.

A more appropriate measure is the F1 score, which
balances recall and precision. Fig. 7 depicts the F1 score,
where MSS clearly outperforms USS, with the gap widening
as m increases.
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Fig. 3: Size of Result Set vs. Number of Services (n) on SYNTH

6.3 Q2: MSS vs. USS in Ranking Services

This research question investigates whether it is beneficial to
filter by USS and MSS before ranking services. Therefore, we
study the rankings produced by five methods, without any
filtering and with dominance-based (USS or MSS) filtering.
The evaluation metric is the quality of the ranked list with
respect to the ground truth, measured by NDCG.

Figure 8 shows NDCG varying the number of users. Re-
garding the ranking methods, observe that the effectiveness
improves with m for Add, Mul, and Cons, but decreases
for Max and Min. Add is the best ranking method followed
by Cons. Such results are consistent with empirical studies
of group recommender systems [22]. The most important
observation though is that, independent of the ranking
method, MSS-based filtering results in better ranked lists than
USS-based filtering, which only gives a smaller improvement
over no filtering. A similar observation holds when we
measure at NDCG at different ranks, as shown in Fig. 9.

Let us investigate this phenomenon. First, let us explain
why the ranked lists across All, USS, and MSS can differ
even in the first ranks for the various aggregation strategies
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Fig. 4: Size of Result Set vs. Number of Parameters (d) on SYNTH

(i.e., excluding Cons). At the first few ranks in All, there
are services that have very good matching degrees for all
parameters and all users. Note that these top services in All
are not likely to be unanimously dominated, as they have
high matching degrees to at least one parameter and user.
Hence, we observe that the first few ranks in All and USS
are occupied by the exact same services. On the other hand,
it is possible that these top services in All can be majority
dominated by other services, even by services ranked lower.
The reason is that there might exist a service which is highly
preferable for the majority of users, but not so for the rest,
hence ranked low. Still it is possible that this service majority
dominates a top service in All, meaning that the latter will
not appear in the USS ranking.

In the ranking produced by Cons, we observe that even
the first few ranks in All and USS are not identical. This is
because Cons computes a utility for a service that depends
on the set of competing services. Hence when dominance-
based filtering is applied, Cons derives different scores for
the same service. Overall for Cons, we still observe that MSS
is more effective than USS.

6.4 Q3: Scalability of MSS Algorithms
For this research question, we measure the total execution
time for all MSS algorithms using the SYNTH dataset. The
results varying n, m, and d are shown respectively in Fig. 10,
Fig. 11, and Fig. 12. In Fig. 10, the execution time of the
algorithms increases with the increase of n since they perform
more dominance checks. As shown in Fig. 11, when m
increases, the execution time of the algorithms increases since
the cost of dominance checks increases. Observe in Fig. 12
that execution time of the algorithms increases with the
increase of d since, on the one hand, the cost of dominance
checks increases, and on the other hand, the size of the
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Fig. 5: Precision vs. Number of Users (m)
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majority service skyline becomes larger, thus, less services
can be quickly eliminated.

Overall, the results indicate that BBA is consistently faster
than SBA (up to 34% better), and up to 2 orders of magnitude
more efficient than both BA-OSA and BA-TSA. This indicates
that the optimizations of SBA over BA variants, namely
Lemmas 2, 3, are highly effective. Improving over SBA is
a more difficult task, with Lemmas 4, 5, offering a more
modest, but still significant improvement over SBA.

7 CONCLUSION

In this paper, we studied the problem of preference-based
service selection under multiple users’ preferences. We
first introduced a novel concept for this problem based
on the concept of majority. The majority service skyline
allows users to make a “democratic” decision on which
services are inappropriate, so as to exclude them from further
consideration. For this problem, we adapt prior work, and
also propose two algorithms that are based on novel problem
properties. We then turned our attention to the problem of
extracting a ranking of non-eliminated services. We observed
the similarity of the task to the group recommendation

problem, where it is known that no single ranking can be
optimal. Therefore, our proposal is to apply any existing
method after the majority dominated services are excluded.

An extensive evaluation using real-based semi-synthetic
datasets showed that the majority based dominance can
eliminate a large number of services which are considered
non relevant. Moreover, we found that applying existing
preference-based service ranking methods after the filtering
leads to more accurate rankings, and we explained why
this interesting phenomenon occurs. We also investigated
the scalability of the proposed methods as we increased the
number of available services, users in the decision group, or
non-functional parameters. We saw that our algorithm is up
to 2 orders of magnitude more efficient than baselines. The
negative aspect of our approach, is that the running time
for extracting the majority skyline may become prohibitively
large for cases involving several hundreds of services, tens
of users, and with more than 5 NFPs.

As future work, it would be interesting to develop a
dialogue-based mechanism for service selection, that can
suggest to users changes to their preferences so that better
group decisions can be reached. A different direction is to
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Fig. 8: Normalized Discounted Cumulative Gain (NDCG) vs. Number of Users (m)
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Fig. 10: Execution Time vs. Number of Services (n)
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Fig. 11: Execution Time vs. Number of Users (m)

consider the global service selection problem under multiple
parties. We believe that our dominance-based framework
could bring useful insights to this problem.
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