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ABSTRACT
Social-based recommenders seek to exploit the mechanisms of ho-
mophily and influence observed in social networks in order to pro-
vide more accurate recommendations. The way they achieve this is
by enforcing similar preferences among users that are socially con-
nected. It is thus reasonable to question whether such approaches
lead to the formation of echo chambers, i.e., social groups with a
narrow set of preferences and which receive recommendations with
low diversity and novelty. This work studies this research question
and quantifies the diversity and novelty of existing methods. An
important finding is that it is possible to increase accuracy without
sacrificing diversity and novelty.
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1 INTRODUCTION
Social connections play a crucial role in guiding our choices and
decisions. The mechanisms of homophily and social influence ob-
served in social networks [21], suggest that our preferences and
tastes tend to become similar to those of whom we interact with in
our everyday life [6, 12, 25]. Based on this premise, several social-
based recommender systems [8, 13–19, 28, 29] seek to exploit social
connections in order to improve the recommendation accuracy, but
also increase coverage, and address the cold-start user problem.

The vast majority of social-based recommenders apply collabo-
rative filtering (CF) under the notion that a user’s model should be
similar not only to that of her neighborhood but also to that of her
social circle. The prevalent way to implement this in model-based
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CF is to constrain each user’s model (e.g., the latent factors in ma-
trix factorization) to be similar to those of her friends, a technique
called social regularization [13, 17, 29].

While social-based recommenders may increase the accuracy
of recommendations, one reasonable concern is about their role
in creating echo chambers [4]. When the system explicitly forces
one’s preferences to be alike her friends’, we can expect even more
pronounced manifestations of filter bubbles compared to those
observed in conventional recommenders [22].

This work studies the effect of social-based recommendations in
terms of the novelty and diversity experienced by users, and makes
the following contributions.

• We present simple definitions of novelty and diversity that
better capture how users perceive recommendations with
respect to the social groups they belong to.

• We present a novel social-based recommender that considers
the similarity of users in terms of the structure of the social
network.

• We present an experimental study that evaluates the accu-
racy, diversity, and novelty of social-based recommenders.
We find that our proposed recommender improves on accu-
racy, while exhibiting similar diversity and novelty with the
state of the art.

2 RELATEDWORK

Social-Based Recommenders. Social-based recommender sys-
tems make use of information from two sources, the user-item
rating matrix R ∈ Rm×n , and the social matrix S ∈ Rm×m corre-
sponding to the adjacency matrix of the social network.

Early work on social-based recommenders assumed that social
connections conveyed trust between users of the system. In [18, 19],
the authors propose amemory-based CF technique to integrate trust
into recommendations, which is called Trust-aware Recommender
System (TaRS). Matrix factorization (MF) techniques first appear in
[16] and in [15].

The SocialMF model introduced in [8] attempts to account for
the effects of selection and homophily observed in social networks.
The former indicates that users tend to connect to like-minded peo-
ple, while the latter says that two friends develop similar interests
over time. The key idea in SocialMF is that the user feature vectors
of two friends in a MF model should be similar reflecting exactly
selection and homophily. The authors call this effect trust propa-
gation, although there is actually no propagation of trust values
in the social graph. The predicted rating is as in standard MF, i.e.,
R ≈ UTV . However, theUu feature vectors should additionally en-
code the social relationships of each user u. The assumption is that
the estimate of the latent feature vector of user u is the weighted
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average of those of his direct neighbors, i.e., Ûu ≈ USu ; here vector
Su contains the [0, 1] trust values of usersu. Therefore, the objective
function should minimize the error between predicted and actual
rating, but also the discrepancy between the user feature matrixU
and the aggregate matrix composed of the features of neighbors
expressed in matrix form asUS .

In [17] the authors emphasize the difference between trust rela-
tionships and friendships, making the argument that trust-based
approaches are not suitable for social recommendations. Their in-
put is matrix S which is the binary (un-weighted) adjacency matrix
of a given social network. However, in their models they weigh
each edge by the Pearson Correlation Coefficient (PCC) similarity
of the common ratings between the adjacent users. Therefore, one
can construct a new matrix S ′ = S ◦Q that contains the similarities
of friends, instead of 0/1 values, where Quv is the PCC between
users u, v , and ◦ denotes the elementwise (Hadamard) product for
matrices. Similar to the idea in [8], the goal is to constraint the
feature vector of each user to be similar to those of its friends. The
first model, which we call average social regularization, is essentially
identical to [8], and makes the assumption that the users’ feature
matrix is similar to the average feature matrix inferred from friends
given the modified matrix S ′, i.e., Û ≈ US ′. This is somewhat re-
strictive as it forces each user’s features to be similar to the average
features of her friends. The second model, which we call pairwise
social regularization, relaxes this and assumes that the feature vec-
tor of a user is similar to the feature vector of her friend to the
degree indicated by their rating similarity. Hence, for each pair of
friends u,v there is a regularization term constraining ∥Uu −Uv ∥
with a strength equal to the rating similarity S ′uv between them.

Seveal variations on the basic idea of social regularization have
been proposed since then [5, 13, 23, 29]. The current state of the art
method extends the local low-rankmatrix approximation (LLORMA)
ensemble method [11] in two ways: (1) the users and items compris-
ing a local model are determined by the social network structure,
instead of user-user and item-item rating similarities, and (2) pair-
wise social regularization is employed.

Diversity and Novelty.Measuring the accuracy in capturing the
user’s historical preferences conveys only one aspect of the quality
of a recommender system [20]. Many researchers call for aiming
towards other aspects such as unexpectedeness [1], serendipity [7],
diversity [30], and novelty [27]. Such aspects are closely related
to each other and can be classified as conveying either a notion of
diversity or of novelty. As nicely posed in [3], the former relates to
differences within parts of the experience (e.g., a recommendation
list), while the later to differences between present and past expe-
riences (e.g., between a recommendation list and the historically
rated items).

Crucial to the concepts of diversity and novelty is a measure
of similarity between items. This can be computed based on item
content [30], or in a pure CF setting, based on the users that have
interacted with these items [24], or even based on the latent factors
of items computed by a model-based method such as MF.

As both concepts relate to lists of items, whereas many recom-
menders are trained in a pointwise or a pairwise manner (e.g.,
seeing one or two historical interactions at a time), including diver-
sity and novelty objectives in the training process is not possible.

Instead, techniques resort to post-processing, or reranking, of the
items in order to achieve better diversity or novelty [2], often at the
expense of degrading accuracy. We note that although the trade-off
between accuracy and diversity/novelty in recommendations has
been recently studied, e.g., [10, 26], to the best of our knowledge
there is no related work in the context of social-based recommender
systems.

3 SOCIAL-BASED DIVERSITY AND NOVELTY
METRICS

In this section, starting from standard concepts [3], we introduce
definitions of diversity and novelty that are suitable for social-
based recommender systems. For the following, assume there exists
a function d(i, j) that measures the distance (dissimilarity) between
items i and j — its exact definition is orthogonal to our aim.

We define individual diversity for a particular user u as the av-
erage pairwise distance among the recommended items Pu , also
called intra-list diversity [30]:

IDIVu =
1

|Pu |(|Pu | − 1)

∑
i ∈Pu

∑
j ∈Pu

d(i, j).

In a similar spirit, we define individual novelty for a user u as
the average pairwise distance between a recommended item and
an item the user has interacted with (e.g., rated, purchased) in the
past:

INOVu =
1

|Pu | |Ru |

∑
i ∈Pu

∑
j ∈Ru

d(i, j),

where Ru is the set of items user u has interacted with.
The previous definitions consider the diversity and novelty of

recommendations with respect to users individually. Naturally, we
can report the individual novelty and diversity averaged across
all users, to obtain an overall sense of how diverse and novel are
the recommendations. To better capture the effect of social-based
recommendations on diversity and novelty, however, we need to
define these concepts for sets of users that form a connected com-
ponent of the social network; we refer to such a set of users as a
social group.

We can then define group diversity for a social group д as the
average pairwise distance among the items recommended to any
user in the group:

GDIVд =
1

|Pд |(|Pд | − 1)

∑
i ∈Pд

∑
j ∈Pд

d(i, j),

where Pд = ∪u ∈дPu is the set of recommendations to the entire
social group.

Similarly, we define group novelty for group д as the average
pairwise distance between an recommended to some groupmember
and an item a group member has interacted with in the past:

GNOVд =
1

|Pд | |Rд |

∑
i ∈Pд

∑
j ∈Rд

d(i, j),

where Rд = ∪u ∈дRu is the joint interaction history of all group
members.

These metrics are useful in different manners. To generate an
overall view of group diversity and novelty, we may select a set
of groups of interest and then report the average values of these



metrics. To assess fairness of the social-based recommender, we
may compare diversity and novelty across social groups.

4 EVALUATION
Section 4.1 describes our experimental setup, while Section 4.2
presents our findings.

4.1 Setup

Dataset. The dataset we use for our evaluation, called Douban,
concerns a popular Chinese social networking service1 that allows
users to connect to each other and provide content and ratings to
movies, books, music, and events. The dataset is a subset2 of the data
compiled and published by the authors of [17], and includes ratings
of movies on a scale of 1 through 5. There are 1,048,575 ratings given
by 8,890 users on 23,185 movies, and 7,908 bidirectional connections
among the users.

Recommenders. In our evaluation, we compare the following
recommenders.

• MF: This is the base matrix factorization model used by all
social-based recommenders. It performs a decomposition of
the ratings matrix, including bias terms, in 50 latent factors.

• S: This model, introduced in [8], extends MF by including
average social regularization based on the adjacency matrix
S of the social graph. Specifically, the regularization term is:∑

u
∥Uu −

1
|{v ∈ Su }|

∑
v ∈Su

Uv ∥
2,

where Su denotes the friends of u.
• Sp: This is pairwise social regularization based on S . The
regularization term is:∑

u

∑
v ∈Su

∥Uu −Uv ∥
2.

• SQ: This model, introduced in [17], includes average so-
cial regularization based on matrix S where each term is
weighted by the PCC similarity between a pair of users. The
regularization term is:∑

u
∥Uu −

1∑
v ∈Su Quv

∑
v ∈Su

QuvUv ∥
2,

where Quv is the PCC between users u and v .
• SQp: This model, also introduced in [17], includes pairwise
social regularization based on the PCC-weighted adjacency
matrix S ◦Q . The regularization term is thus:∑

u

∑
v ∈Su

Quv ∥Uu −Uv ∥
2.

• SX: This model is our contribution and includes average
social regularization based on matrix S where each term
is weighted by the SimRank node similarity [9] between a
pair of users. SimRank computes the similarity of a pair of
nodes in a spirit analogous to how PageRank computes the
importance of a node. Therefore, SimRank encapsulates a
more global view of the social structure compared to the

1http://www.douban.com
2The original dataset is no longer publicly available.

local view conveyed by the social (adjacency) matrix S . The
regularization term is:∑

u
∥Uu −

1∑
v ∈Su Xuv

∑
v ∈Su

XuvUv ∥
2,

where Xuv is the SimRank between users u and v .
• SQp: This model is our contribution and includes pairwise
social regularization based on the SimRank-weighted adja-
cency matrix S ◦ X . The regularization term is:∑

u

∑
v ∈Su

Xuv ∥Uu −Uv ∥
2.

For all tested methods, we fix the set of hyperparameters (batch
size, learning rate, regularization strength) to the values that op-
timize the performance (in terms of RMSE) of the base matrix
factorization model.

Methodology. We perform 5-fold cross validation, splitting the
dataset into train and test subsets with a ratio of 4:1. We train the
recommender on the train subset and ask it (1) to predict the ratings
for the user-item pairs in the test subset, and (2) to rank for each
user her unrated (i.e., not in the train dataset) items. Then, based
on (1) we measure the prediction accuracy in terms of root mean
square error, denoted as RMSE; based on (2) we measure the mean
NDCG per user at various ranking prefixes, when only the top-k
recommendations are considered, which we denote as NDCG@k.

Moreover, based on (2), we compute the diversity and novelty
metrics introduced at Section 3 for certain groups of users in the
social network. Specifically, we identify the most socially active
users that have more than 10 connections; there are 48 such users.
Then for each such user, we identify her ego network (i.e., that
includes herself and her friends) which forms a social group. Over-
all, the 48 social groups cover 1,394 users. We request the top-10
recommendations for each of these users, and compute their aver-
age individual diversity and novelty. In addition, we measure the
average group diversity and novelty over these 48 social groups.

4.2 Results
Table 1 presents the evaluation results on all tested recommenders.
We report prediction accuracy (RMSE; lower values are better),
ranking accuracy (NDCG@k at five cut-off levels; higher values
are better), and individual and group diversity and novelty (higher
values are better). For each metric, we report the average value over
35 executions: 5 test datasets, and 7 randomly initialized training
sessions per test dataset. We also present the standard deviation of
the observed values as error terms. For each metric, i.e., column, the
best value, including those that are statistically indistinguishable
from the best, are shown in bold.

Regarding accuracy metrics, we observe that prediction and
ranking accuracy metrics agree. The base MF method has the worst
accuracy, while among social-based recommenders, SX is the best
with more than 12% improvement in RMSE and up to 5% improve-
ment in NDCG. In general, average appears to work better than
pairwise social regularization (S/SQ/SX vs. Sp/SQp/SXp). The use of
PCCweights in the social matrix does not seem to bring a significant
benefit (S vs. SQ). On the other hand, weighing the social matrix
by SimRank (SX) results in much more accurate recommendations.

http://www.douban.com


Table 1: Accuracy, Diversity, and Novelty metrics

RMSE NDCG@1 NDCG@2 NDCG@5 NDCG@10 NDCG@20 I-Diversity G-Diversity I-Novelty G-Novelty

MF 0.952±0.011 0.802±0.002 0.798±0.002 0.794±0.001 0.792±0.001 0.801±0.002 0.370±0.015 0.380±0.014 0.403±0.006 0.413±0.005
S 0.867±0.001 0.829±0.001 0.822±0.001 0.819±0.001 0.817±0.001 0.826±0.000 0.412±0.003 0.404±0.004 0.425±0.001 0.426±0.001
Sp 0.890±0.003 0.810±0.002 0.807±0.001 0.805±0.001 0.804±0.001 0.813±0.001 0.317±0.015 0.288±0.014 0.387±0.005 0.396±0.004
SQ 0.868±0.002 0.827±0.002 0.822±0.001 0.818±0.001 0.816±0.001 0.825±0.001 0.415±0.003 0.407±0.003 0.425±0.001 0.426±0.001
SQp 0.884±0.004 0.812±0.002 0.808±0.001 0.805±0.001 0.805±0.001 0.814±0.000 0.358±0.016 0.328±0.015 0.402±0.007 0.409±0.006
SX 0.835±0.002 0.838±0.001 0.831±0.001 0.826±0.000 0.825±0.000 0.833±0.000 0.410±0.003 0.403±0.002 0.422±0.001 0.425±0.001
SXp 0.934±0.005 0.807±0.004 0.801±0.003 0.797±0.003 0.795±0.002 0.803±0.002 0.297±0.013 0.286±0.013 0.381±0.003 0.390±0.002
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Figure 1: Trade-off between Accuracy and Diversity/Novelty

Regarding the diversity and novelty metrics, we also observe
an agreement across metrics. The important observations here
are the following. First, average social regularization, contrary to
what one might expect, results in increased diversity and novelty,
compared to base MF. It is only pairwise social regularization that
suffers in this regard. Given that pairwise social regularization does
not greatly improve accuracy, and at the same time degrades di-
versity/novelty, we conclude that average social regularization is
preferable. Second, among the average social regularization recom-
menders (S, SQ, SX), there is no clear winner as all exhibit statisti-
cally indistinguishable values of diversity and novelty.

Figure 1 illustrates the trade-off between accuracy and diver-
sity/novelty. Note that the axis for RMSE is reversed with better
(lower) values on the right. Therefore, in all figures, the best rec-
ommender is the one that is closer to the upper right corner of the

plane. It is evident that SX offers the best accuracy by a considerable
margin, while having diversity/novelty on par with the best.

5 CONCLUSION
Social-based recommenders exploit the effects of homophily and
social influence among users to improve the accuracy of standard
collaborative filtering. This work has studied the effect of such
systems in the diversity and novelty of the recommendations they
make. Our results indicate that a certain approach (average social
regularization) can actually increase the diversity and novelty of
users whenmeasured individually, andwhen examinedwith respect
to the social groups to which users belong. Moreover, our proposed
social-based recommender results in significantly more accurate
recommendations while not sacrificing diversity and novelty.
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