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ABSTRACT
Personalization is typically based on preferences extracted from
the interactions of users with the system. A recent trend is to also
account for the social influence among users, which may play a
non-negligible role in shaping one’s individual preferences. The
underlying assumptions are that friends tend to develop similar
taste, i.e., homophily, and that similar users tend to connect to
each other, i.e., social selection. In this work, we investigate the
conditions under which social influence has a significant impact
on the preferences of users. We find that pairs of friends, where
one is socially very active whereas the other is not, exhibit stronger
correlations in their preferences compared to other pairs of friends,
implying thus a stronger mechanism of influence.
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1 INTRODUCTION
Personalization based on collaborative filtering typically exploits
similarity patterns from historical records of interaction between
users and items [9]. A recent trend is to also consider the social
aspect, and specifically the tendency of individuals to associate and
bond with similar others, a phenomenon called social selection, and
the tendency of socially connected individuals to exhibit similar
preferences, a phenomenon called homophily [20]. In such social-
based collaborative filtering [1, 4, 14–19], a profile for a target user
is computed not only based on historical user-item interactions,
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but also based on the target user’s social connections. This is also
motivated by the way people often make decisions in real life —
choices are often governed by interpersonal influence from social
connections, besides individual preferences.

In such systems, there exist two data sources that govern per-
sonalization: the historical rating (or feedback) activity of users,
and the social connections. In our line of work [21, 22], we seek to
quantify the extent to which one source affects the other. The goal
is twofold: on the one hand, we seek to validate the assumptions
often implicitly made in the literature, and on the other hand, we
aim to understand the connections between social and feedback
activity so as to design more effective personalization strategies.

In this work, we consider pairs of friends and apply the following
methodology. Each pair can be described by edge attributes that
quantify the similarity between the two connected users. These
attributes can be computed based on either the historical rating
activity, such as the degree of similarity between the ratings given
to items, or on the social connections, such as the number of com-
mon friends between the two connected users. Our objective is
to associate attributes from one data source (feedback or social
activity) to the other, and understand what are the causes for the
observed correlations.

To this end, we compute node attributes that quantify the level
of activity a user exhibits, either in terms of her feedback provided
or in terms of her social connections. For example, a user is highly
active in terms of feedback, if she has rated many items in the past,
while a user is highly active socially, i.e., is popular, if she has a
central position in the network [22].

To explain possible correlations in edge attributes and answer
questions such as when do two friends influence each other more,
we classify friends into three groups, based on the amount of activity
(rating or social) the two connected users exhibit, i.e., their node
attributes. We consider pairs of friends that are: (LL) both of low
activity, (HH) both of high activity, or (LH) one has high and the
other low activity. We then investigate whether the rating/social
similarities, i.e., the node attributes, differ significantly among the
three groups.

The most important finding of our work are that pairs of type
LH in terms of social connection exhibit stronger correlations in
their rating behavior. This means that there is a stronger force of
influence between them. Although the direction of the force cannot
be identified using the data available, we conjecture that popular
users are the ones that exert influence on unpopular ones.

The remainder of this paper is structured as follows. Section 2
establishes the necessary background and overviews existing work
and Section 3 describes our approach. Section 4 presents experi-
mental results of our research question while Section 5 draws the
conclusions.
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2 RELATEDWORK
In personalization approaches based on Collaborative Filtering (CF),
users and items with similar feedback patterns are taken into ac-
count to compute a user profile for the target user [9]. The basic
entity in CF is the user-item ratings matrix R ∈ Rn×m that contains
the ratings given bym users ton items. Themost popular CFmethod
is the Matrix Factorization (MF) technique [10, 11, 24], which, in its
simplest incarnation, computes a low-rank approximation of the
sparse rating matrix R.

Social-aware personalization differ from CF in that they make
recommendations taking also into account the social connections
between users. The latter is conveyed by the social adjacencymatrix
S , where an entry portrays the relationship strength between the
corresponding users. Social recommenders combine information
contained in matrices R and S . In the following, we review the most
important related work; for a more complete overview refer to [23].

In trust-aware recommender systems [19], the idea is to treat the
social neighborhood of the target user in a manner similar to the
rating neighborhood in user-based CF. An experimental evaluation
of several memory-based social recommenders is provided in [2].
The authors also propose to fuse recommendations from friends
with recommendations from implicit social relations and show that
such an approach improves accuracy and increases coverage. SoRec
[17] extends the basic MF model to incorporate the social network.
The social adjacency matrix S is factorized into a user-specific
matrixU and a factor-specific matrix F , where matrixU is also part
of the factorization of the rating matrix.

Homophily in social networks refers to the notion that similar
users tend to be socially connected and vice versa. In the context of
social recommenders, the work in [4] studies homophily on two on-
line social media networks, BlogCatalog, and Last.fm by extracting
communities based on the network ties. Similarly, [1] investigates
the presence of homophily in three systems that combine tagging
social media with online social networks. The most recent works
[14, 18] apply MF combined with regularization techniques that
aim to capture the homophily in the social network.

3 RESEARCH APPROACH
In our work, we wish to investigate when social connections play
a role in shaping the preferences of users. We assume we have a
dataset consisting of (1) a history of user-item feedbacks (ratings),
similar to that typically used in collaborative filtering, and (2) a set
of social connections between these users. Our approach is based
on viewing such a dataset as a labeled social network, which has the
same structure with that implied by the social connections between
users, but additionally has attributes for the nodes (users) and the
edges (pairs of friends).

The research question we address in this work is the following.

RQ Do user attributes affect the strength of user-user similari-
ties?

In other words, if we know individual aspects about users, e.g.,
their level of activity in a personalization system, can we infer a
pairwise relationship, e.g., the similarity of their observed activities,
between friends?

The rest of the section is organized as follows. Section 3.1 presents
the augmented social network, then Section 3.2 explains ourmethod-
ology, while Section 3.3 describes the dataset used.

3.1 Augmented Social Network
We conceptually consider a social network where nodes and edges
have additional attributes as defined in the following.
Node Attributes Capturing Activity of Users.We consider one
notion of activity in terms of rating behavior, and a notion in terms
of social connections, based on the concept of node centrality [5].

RATE-NUM For the rating activity, we consider the number
of ratings a user has provided. This essentially, captures how
active a user is in the system.

NET-DEG Degree centrality is the most intuitive interpreta-
tion of social activity, counting the number of (incoming or
outgoing) social connections a user has.

Edge Attributes Capturing Similarity Between Two Friends.
We consider two notions of similarity in terms of rating behavior,
and two notions in terms of social connections.

RATE-SIM The pairwise cosine similarity metric finds the
normalized dot product of the rating vectors of two users
[25]. This simple definition, however, has some limitations.
It is known that people tend to rate on different scales. Some
people are naturally high raters which means they might
rate items highly in general, even if they do not like the item
very much. There are some people who tend to rate low, even
when they like the items very much. The traditional cosine
similarity does not consider the difference in rating scale
between different users [13]. The adjusted cosine similarity
offsets this drawback by subtracting the corresponding user
average from each co-rated pair. Formally, the similarity
denoted as RATE-SIM, we use between users u and v is
given by:

sim(u,v) =

∑
i ∈Iu∩Iv (rui − r̄u ).(rvi − r̄v )√∑

i ∈Iu (rui − r̄u )2.
√∑

i ∈Iv (rvi − r̄v )2
,

where Iu and Iv are the sets of items rated by user u and v ,
rui is the rating user u gave to item i and r̄u the average of
all ratings given by u.

RATE-PCC Pairwise similarity (RATE-PCC) is the rating simi-
larity when only the common rated items between two users
are considered:

sim(u,v) =

∑
i ∈Iu∩Iv (rui − r̄u ).(rvi − r̄v )√∑

i ∈Iu∩Iv (rui − r̄u )2.
√∑

i ∈Iu∩Iv (rvi − r̄v )2
,

where Iu and Iv are the sets of items rated by user u and v ,
rui is the rating user u gave to item i and r̄u the average of
all ratings given by u. The

∑
i ∈Iu∩Iv is the sum of the items

that both users have rated in common.
NET-SIM The idea behind SimRank is simple: two users are

similar if they are referenced by similar users [3, 8]. Each user
is considered to be completely similar to herself, which gives
it a similarity score of 1. The similarity SR(u,v) between
users u and v takes values in [0, 1], and satisfies a recursive



equation. If u = v then SR(u,v) is defined to be 1. Otherwise,

SR(u,v) =
C

|N (u)| |N (v)|

∑
u′∈N (u)

∑
v ′∈N (v)

SR(u ′,v ′),

where C is a constant between 0 and 1, and u ′,v ′ are in-
neighbors of users u and v , belonging to the sets N (u) and
N (v), respectively. A detail here is that either u or v may
not have any in-neighbors. Since there is no way to assume
any similarity between u and v in this case, SimRank is
set to SR(u,v) = 0, which makes the addition of the main
equation to be 0 when N (u) = ∅ or N (v) = ∅. NET-SIM can
be considered as a global pairwise similarity measure.

NET-LHN The Leicht Holme Newman index [7, 12] counts the
expected number of common neighbors between two users.
For users u and v the NET-LHN is computed as:

LHN (u,v) =
|N (u) ∩ N (v)|

du × dv
,

where N (u) is the neighborhood of user u, and du is the
degree of u. Intuitively, NET-LHN assigns a high similarity
score to pairs of users that have many common neighbors
[26]. NET-LHN, in contrast to NET-SIM, can be considered
as a local pairwise similarity measure.

3.2 Methodology
Previous work that exploits social influence between users [2, 22,
23] has demonstrated that there exist correlations between the sim-
ilarities in terms of the social network and the observed feedback.
In terms of our augmented social network, this translates into cor-
relations of the various edge attributes. In this work, we seek to
understand when these correlations are stronger. Specifically, we
want to see if node attributes can help identify these instances.

Therefore, we define classes of pairs of friends, based on their
node attributes, and then measure whether similarities among edge
attributes become stronger or weaker across classes. More con-
cretely, a user is assigned a label L when her activity (node attribute
RATE-NUM or NET-DEG) is below some threshold L, label H when
her activity is above another threshold H, and no label otherwise;
we consider various values for these thresholds. In this way, two
friends are classified into four classes:

LL when both have label L,
HH when both have label H,
LH when one has label L and the other label H,
– when one has no label.

This essentially induces a partition on the edges of the aug-
mented social network. We examine the three classes LL, HH, and
LH, to see if for some class we measure stronger/weaker edge-based
similarities. As a first step, we plot the distribution of an edge at-
tribute (RATE-SIM, RATE-PCC, NET-SIM, NET-LHN) within the
class, and visually explore if any differences across classes appear.
Then, we focus on the mean edge attribute for a class, and perform
statistical tests (ANOVA followed by pairwise post hoc analysis)
to see whether the visual differences across classes are actually
significant.
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(c) NET-SIM vs. NET-DEG
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(d) NET-LHN vs. NET-DEG

Figure 1: Classes based on NET-DEG

3.3 Data
In our study, we use a publicly available dataset, FilmTrust [6], col-
lected from traces of user interaction in social-based collaborative
filtering. The data contain feedback history, i.e., a rating matrix R,
as well as information about the social connections among users,
i.e., an adjacency matrix S . In total, there are 740 users with 1576
social connections. Across all users, mean NET-DEG is 18, and mean
RATE-NUM is 43.5. Across all pairs of friends, mean RATE-PCC
is 0.181, mean RATE-SIM is 0.049, mean NET-SIM is 0.0186, while
mean NET-LHN is 0.0056.

4 EXPERIMENTAL EVALUATION
Section 4.1 presents the results of our evaluation, while Section 4.2
summarizes the findings.

4.1 Results

Does RATE-PCC depend on NET-DEG?We first consider parti-
tioning pairs of friends based on the NET-DEG.We explore different
definition of low (L) and high (H) NET-DEG, based on which we
assign pairs of friends into classes LL, LH, and HH. For each class,
we compute the mean RATE-PCC. The results are shown in Table 1,
where we see that RATE-PCC varies significantly across different
classes.

We then fix L and H to their default values of L=10 and H=20,
and look deeper into the three classes they induce. Specifically, LL
contains pairs of friends where each has less than 10 friends in total;
HH contains pairs of friends where each has more than 20 friends
in total; LH contains pairs of friends, where one has few (≤ 10) and
the other has many (≥ 20) other friends. There are 873 number of
pairs examined in total; HH contains 142 pairs, LH has 157 pairs,
and LL 574 pairs. The mean RATE-PCC within the classes is 0.162,
0.293 and 0.137 respectively.



Table 1: Mean RATE-PCC of NET-DEG classes

H 5 10 15 20 30 40 50
HH 0.18 0.162 0.166 0.162 0.121 0.27 -0.17

L LL LH
5 0.152 0.188 0.212 0.28 0.275 0.27 0.27 0.193
10 0.153 0.201 0.235 0.28 0.29 0.27 0.26 0.201
15 0.132 0.185 0.204 0.258 0.265 0.258 0.27 0.164
20 0.14 0.19 0.201 0.251 0.257 0.25 0.248 0.157
30 0.16 0.192 0.201 0.248 0.255 0.246 0.246 0.154
40 0.17 0.19 0.195 0.23 0.233 0.22 0.233 0.15
50 0.18 0.192 0.2 0.227 0.23 0.214 0.232 0.151

Figure 1a shows the distribution of RATE-PCC between pairs of
friends in each of the three classes. While not immediately apparent,
the distributions have different means and shape. To quantify this,
we perform ANOVA analysis, which shows that the mean RATE-
PCC across the classes is significantly different (p-value of 0.00235).
Then, post hoc analysis of the results, presented in Table 2, finds
that the RATE-PCC similarity of LH pairs of friends is considerably
and significantly higher than other pairs of friends. This implies
that a pair of friends that is formed by a popular H user and a less
popular L user tend to influence each other’s rating behavior.

Table 2: RATE-PCC differences across NET-DEG classes

Pair Diff. of Means 95% CI

LL - LH −0.1551 [−0.254, −0.0562]
LL - HH −0.0253 [−0.0129,0.0786]
LH - HH 0.1297 [0.0056,0.2539]

Does RATE-SIM depend on NET-DEG? We repeat the previous
setup, this time looking at the RATE-SIM between two friends.
Table 3 shows the mean RATE-SIM for various definitions of L and
H in terms of NET-DEG. Differences exists but are not as dramatic
as in the case of RATE-PCC.

Table 3: Mean RATE-SIM of NET-DEG classes

H 5 10 15 20 30 40 50
HH 0.05 0.037 0.03 0.025 0.025 0.019 -0.013

L LL LH
5 0.06 0.05 0.042 0.06 0.06 0.06 0.07 0.039
10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.027
15 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.026
20 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.026
30 0.05 0.05 0.044 0.05 0.05 0.05 0.05 0.023
40 0.05 0.05 0.044 0.05 0.05 0.05 0.05 0.023
50 0.05 0.05 0.044 0.05 0.05 0.04 0.05 0.023

Fixing the definition of L and H to their default values, in Fig-
ure 1b, we plot the distribution of RATE-SIM within the three
classes. Class HH has a mean RATE-SIM of 0.025, LH of 0.05, and
LL of 0.05. That is, mean RATE-SIM is roughly equal for LH and LL
categories and higher than HH which has the lowest mean. How-
ever, ANOVA results show that the differences are not significant
(p-value of 0.148). We conclude that no safe conclusions can be
drawn from this experiment.

Does NET-SIM depend on NET-DEG? In this experiment we
measure friend similarity in terms of their global network similarity
quantified as NET-SIM. Table 4 presents the mean NET-SIM for the
various classes previously explored, where we do not observe any
meaningful trends.

Table 4: Mean NET-SIM of NET-DEG classes

H 5 10 15 20 30 40 50
HH 0.02 0.02 0.02 0.02 0.016 0.013 0.002

L LL LH
5 0.03 0.013 0.014 0.014 0.014 0.01 0.01 0.01
10 0.02 0.015 0.016 0.014 0.014 0.012 0.01 0.01
15 0.02 0.016 0.018 0.017 0.017 0.016 0.014 0.01
20 0.02 0.016 0.019 0.018 0.017 0.017 0.014 0.01
30 0.02 0.018 0.02 0.02 0.02 0.018 0.014 0.01
40 0.02 0.018 0.02 0.02 0.02 0.017 0.015 0.01
50 0.02 0.018 0.02 0.02 0.02 0.017 0.014 0.01

We next fix L and H to their default values, and plot the distri-
bution of NET-SIM within the three induced classes in Figure 1c.
Classes LL and HH have a mean of 0.02, while LH has a mean
of 0.014, i.e., they are roughly equal. ANOVA finds they do not
significantly differ (p-value of 0.466). Any differences in terms of
NET-SIM across NET-DEG classes are not significant.
Does NET-LHN depend on NET-DEG? In the last experiment
with classes defined on NET-DEG, we measure pairwise similarities
in terms of the local network similarity NET-LHN. Table 5 presents
the mean NET-LHN for the studied classes.

Table 5: Mean NET-LHN of NET-DEG classes

H 5 10 15 20 30 40 50
HH 0.005 0.007 0.008 0.007 0 0 0

L LL LH
5 0.011 0.001 0.001 0.0007 0.0008 0 0 0
10 0.006 0.004 0.005 0.001 0.001 0.001 0 0
15 0.007 0.004 0.005 0.003 0.003 0.003 0.002 0
20 0.007 0.004 0.006 0.004 0.003 0.004 0.002 0
30 0.007 0.005 0.007 0.006 0.006 0.004 0.001 0
40 0.007 0.005 0.006 0.006 0.006 0.003 0.001 0
50 0.007 0.005 0.006 0.006 0.005 0.003 0.001 0

We fix L and H to their default values for NET-DEG, and drawn
the distribution of NET-LHN across the three classes in Figure 1d.
ANOVA reports no significant differences for the mean NET-DEG
values.
Does RATE-PCC depend on RATE-NUM? In the following set
of experiments, we classify pair of friends based on their number of
provided ratings, RATE-NUM. First, we consider pairwise similarity
in terms of RATE-PCC. Table 6 includes the mean RATE-NUM for
different definitions of L and H in terms of RATE-NUM. Except
when L=5, we note that the mean RATE-PCC is roughly the same
across classes.

We fix L and H to their default values L=10 and H=30, and exam-
ine the three classes they define. We have 576 pairs in total, with
class HH containing 444 pairs, class LH has 94 pairs, and class LL
has 38 pairs. The mean value of RATE-PCC for each class is 0.156,
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(c) NET-SIM vs. RATE-NUM
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(d) NET-LHN vs. RATE-NUM

Figure 2: Classes based on RATE-NUM

Table 6: Mean RATE-PCC of RATE-NUM classes

H 5 10 20 30 50 70 100
HH 0.157 0.162 0.152 0.156 0.191 0.134 0.124

L LL LH
5 0.93 0.68 0.66 0.743 0.705 0.613 0.573 0.49
10 0.322 0.233 0.236 0.273 0.257 0.302 0.355 0.254
20 0.19 0.201 0.208 0.217 0.204 0.206 0.24 0.192
30 0.2 0.19 0.19 0.191 0.192 0.21 0.216 0.182
50 0.19 0.172 0.176 0.17 0.174 0.18 0.191 0.164
70 0.176 0.167 0.171 0.17 0.17 0.182 0.198 0.164
100 0.185 0.17 0.172 0.172 0.174 0.185 0.193 0.164

0.257, 0.322, respectively, and Figure 2a draws the distribution of
RATE-PCC within the classes. ANOVA shows that the three classes
do not differ significantly in terms of their mean RATE-PCC (p-
value of 0.068). The conclusion is that classes based on RATE-NUM
do not differ substantially in terms of their RATE-PCC.
Does RATE-SIM depend on RATE-NUM? We next consider
whether there are differences across RATE-NUM classes in terms of
the RATE-SIM, instead of RATE-PCCs. Table 7 presents the mean
RATE-SIM for different definition of classes.

Table 7: Mean RATE-SIM of RATE-NUM classes

H 5 10 20 30 50 70 100
HH 0.045 0.045 0.047 0.048 0.042 0.033 0.0077

L LL LH
5 0.91 0.075 0.065 0.093 0.097 0.077 0.057 0.032
10 0.167 0.049 0.057 0.037 0.033 0.04 0.041 0.01
20 0.08 0.05 0.048 0.042 0.039 0.031 0.034 0.028
30 0.07 0.048 0.046 0.042 0.041 0.035 0.035 0.029
50 0.06 0.048 0.047 0.045 0.045 0.035 0.036 0.03
70 0.054 0.048 0.048 0.047 0.047 0.038 0.038 0.031
100 0.052 0.047 0.047 0.047 0.047 0.039 0.036 0.032

We fix L and H to their default values, and plot the distribution
of RATE-SIM for each class in Figure 2b. In addition, we perform
ANOVA and find that the means of classes differ significantly (p-
value of < 10−5). However, post hoc analysis, shown in Table 8,
finds that the magnitude of the differences is not significant. Hence,
we cannot draw any safe conclusions in this experiment.

Table 8: RATE-SIM differences across RATE-NUM classes

Pair Diff. of Means 95% CI

LL - LH 0.1333 -0.0560,0.3226]
LL - HH 0.1195 [-0.0595,0.2984]
LH - HH -0.0138 [-0.0515,0.0239]

DoesNET-SIMdependonRATE-NUM?Next, we consider global
network pairwise similarity between friends. Table 9 shows mean
NET-SIM for the different definitions of RATE-NUM-based classes.

Table 9: Mean NET-SIM of RATE-NUM classes

H 5 10 20 30 50 70 100
HH 0.017 0.016 0.018 0.015 0.01 0.011 0.003

L LL LH
5 0.35 0.02 0.02 0.021 0.022 0.023 0.02 0.0009
10 0.12 0.03 0.016 0.016 0.016 0.015 0.011 0.001
20 0.03 0.02 0.015 0.016 0.016 0.016 0.017 0.018
30 0.02 0.02 0.016 0.018 0.016 0.016 0.015 0.014
50 0.02 0.02 0.017 0.018 0.016 0.016 0.017 0.012
70 0.02 0.02 0.017 0.018 0.016 0.016 0.016 0.011
100 0.02 0.02 0.017 0.018 0.017 0.016 0.016 0.011

Again, we fix L and H to their defaults, and plot NET-SIM distri-
butions for the three induced classes in Figure 1c. As before, while
ANOVA shows that the means are not equal with high significance
(p-value of < 10−13), post-hoc analysis, presented in Table 10, shows
non-significant differences.

Table 10: NET-SIM differences across RATE-NUM classes

Pair Diff. of Means 95% CI

LL - LH 0.1034 -0.0302,0.2369]
LL - HH 0.1047 [-0.0234,0.2328]
LH - HH 0.0013 [-0.0088,0.0114]

Does NET-LHN depend on RATE-NUM? The last experiment
studies local network pairwise similarity between friends. Table 11
shows mean NET-LHN for the different definitions of RATE-NUM-
based classes.

For fixed L and H, Figure 2d plots the distribution of NET-LHN
in the three classes. ANOVA finds that they all have roughly equal
means, and thus we conclude that no dependence on RATE-NUM
is exhibited.

4.2 Discussion
In our evaluation, we have divided pairs of friends in multiple ways
into LL, HH, and LH classes, and examine if pairwise similarities
across classes show significant differences. The main conclusions



Table 11: Mean NET-LHN of RATE-NUM classes

H 5 10 20 30 50 70 100
HH 0.005 0.005 0.006 0.003 0.004 0.0008 0

L LL LH
5 0.125 0.004 0.004 0.005 0.005 0.008 0.005 0
10 0.09 0.015 0.003 0.003 0.004 0.003 0.003 0
20 0.015 0.007 0.002 0.003 0.004 0.006 0.007 0.013
30 0.009 0.007 0.004 0.005 0.003 0.004 0.005 0.008
50 0.008 0.006 0.005 0.006 0.004 0.004 0.005 0.005
70 0.006 0.007 0.004 0.005 0.004 0.004 0.005 0.004
100 0.006 0.006 0.004 0.005 0.004 0.004 0.005 0.004

drawn are the following. In all definitions of classes, we observe
some differences in how pairwise similarities are distributed. How-
ever, not all of them are significant. When classes are defined ac-
cording to network activity NET-DEG, only similarities measured
by feedback similarity RATE-PCC are found to be significant and
have a large impact. Specifically, pairs of friends that belong to
class LH tend to have higher RATE-PCC than pairs in the other
classes. When classes are defined according to feedback activity
RATE-NUM, pairwise similarities in terms of RATE-SIM and NET-
SIM are found to be significant; however their impact does not
appear to be considerable.

In conclusion, we see that if a user with low social activity is
connected with a user with high social activity, we expect their
feedback similarity, in terms of RATE-PCC, to be almost two times
as high as other pair of friends. Although we cannot be certain of
the direction of influence, we conjecture that it flows from the more
socially active user to the less active one.

The results obtained here could be exploited to provide more
effective personalization. Specifically, we have found that to some
extent network-based similarity can substitute feedback-based sim-
ilarity, and thus be used as a proxy for determining the similarity
between friends in terms of their preferences. Moreover, the simi-
larity strength increases when one friend is much less active than
the other. These findings could be applied in a collaborative filter-
ing approach, where tastes of similar minded users are aggregated.
One idea would be to consider in this aggregation the strength of
influence between two friends, computed based on their network
similarity and their level of feedback activity.

5 CONCLUSION
This paper provides some in-depth insights into the impact of so-
cial connections in the preferences expressed by users. In order to
measure the influence among pairs of friends, we label users with L
(low) and H (high) based on their feedback activity and their social
activity. We then divide pairs of users into classes HH (high-high),
LL (low-low), LH (low-high), and investigate whether various pair-
wise similarity measures (based on either their feedback or their
social activity) tend to become stronger. The main outcome of our
work, is that a pair of friends that belong to class LH in terms of
social activity, tend to be more similar in their feedback activity,
compared to other pairs.
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