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Abstract The rapid advancements in recent years
of high-throughput technologies in the life sci-
ences are facilitating the generation and storage
of huge amount of data in different databases.
Despite significant developments in computing
capacity and performance, an analysis of these
large-scale data in a search for biomedical rele-
vant patterns remains a challenging task. Scien-
tific workflow applications are deemed to support
data-mining in more complex scenarios that in-
clude many data sources and computational tools,
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as commonly found in bioinformatics. A scien-
tific workflow application is a holistic unit that
defines, executes, and manages scientific appli-
cations using different software tools. Existing
workflow applications are process- or data- rather
than resource-oriented. Thus, they lack efficient
computational resource management capabilities,
such as those provided by Cloud computing environ-
ments. Insufficient computational resources disrupt
the execution of workflow applications, wasting
time and money. To address this issue, advanced
resource monitoring and management strategies
are required to determine the resource consump-
tion behaviours of workflow applications to en-
able a dynamical allocation and deallocation of
resources. In this paper, we present a novel Cloud
management infrastructure consisting of resource
level-, application level monitoring techniques,
and a knowledge management strategy to manage
computational resources for supporting workflow
application executions in order to guarantee their
performance goals and their successful comple-
tion. We present the design description of these
techniques, demonstrate how they can be applied
to scientific workflow applications, and present
detailed evaluation results as a proof of concept.

Keywords Workflow execution · Resource level
monitoring · Application level monitoring ·
Workflow management · Knowledge database ·
Cloud computing
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1 Introduction

Scientific workflow applications have become an
empowering tool for large-scale data analysis in
bioinformatics [37, 38], providing the necessary
abstractions that enable effective usage of compu-
tational and data resources. The workflows strive
to manage the operation complexities to free
researchers to focus on guiding the data analy-
sis, interpretation of results, and taking decisions
whenever human inputs are required [22].

Considering the fast development of high-
throughput technologies, which generate huge
amounts of data, scientific workflow applications
can be instrumental in achieving automation and
breaking down extended complexity in the life
sciences [42]. The execution of workflow appli-
cations can be computationally intensive and re-
quires reliable resource availability. Moreover,
scientific workflow applications should be highly
flexible to accommodate dynamic change of input
data and parameter modifications, even during
execution. Because, in scientific workflows, pre-
liminary results can indicate suboptimal parame-
ter choice. In such situations, one may want to
adapt these parameters immediately. Thus, in the
field of Bioinformatics, analyses are often semi-
interactive. A typical example is the significance
threshold for continuing into the second step of
an analysis. This may have to be set liberally in
case few results are expected. If during execution
surprisingly many results meet the threshold, one
may want to revise it for greater stringency. Typ-
ical scenarios that require a response to changed
input data include the update of an external data-
base or the upgrade of a tool used to preprocess
input data. In such situations, when the workflow
is not already close to completion, it may be a
better use of resources to restart with the revised
input data.

The efficient management of such flexible work-
flow applications seeking to guarantee the avail-
ability of resources and the achievement of their
performance goals is a challenging task. Often,
resource availability decides the successful execu-
tion of a complex and expensive workflow appli-
cation. Therefore, there is a need for advanced
techniques to monitor, at runtime, the resource
consumption and application behaviours and to

inform about resource shortages, so that the
management system can take adequate resource
allocation decisions to support the successful com-
pletion of each workflow application process.

Traditionally, a workflow application can be
executed using local and distributed compute
resources. Such resources are basically limited
and, normally, cannot be dynamically reallocated.
Considering that workflow applications are re-
source intensive and can take hours if not days
to complete, provisioning them in an environment
with fixed resources leads to poor performance
and possible execution failures due to the lack
of a flexible allocation of extra resources. The
Cloud is proving to be a valuable complement
to the compute resources traditionally used in
bioinformatics research laboratories [32]. Cloud
computing technology promises on-demand and
flexible resource provisioning that can be realized
autonomically [3, 20]. The execution of workflow
applications in a Cloud environment allows for
easier management and guaranteeing of their per-
formance goals.

In this paper, we present a novel Cloud
management infrastructure consisting of resource
level-, application level monitoring techniques,
and a knowledge management strategy, which al-
locates and de-allocates resources based on the
monitored information in order to support the
execution of workflow applications in Cloud envi-
ronments. The monitoring techniques are respon-
sible for monitoring the execution of workflow
applications in the Cloud to determine their per-
formance and their resource consumption behav-
iours including supervising the status of avail-
able resources. The knowledge management uses
the monitored information to make decisions on
how to allocate resources to the computational
nodes in order to ensure the successful comple-
tion of the workflow applications. The main con-
tributions of this paper are: (i) the introduction
of Cloud management techniques applicable to
workflow applications; (ii) the improvement of
scientific workflow application execution to sup-
port achieving their performance goals and to
facilitate their successful completions; and (iii) the
evaluation of our approach. The contributions are
demonstrated using TopHat [43], a typical scien-
tific workflow application from the field of bioin-
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formatics that exemplifies the challenges in the
complex analysis of large data sets from modern
high-throughput technologies. The focus of this
work is on supporting the execution of workflow
applications and not on designing a workflow system.

This paper is organized as follows: Section 2
presents some general descriptions of workflow
applications, including the current state-of-the-
art. There, we introduce in detail, the challenges
to be addressed in this paper. In Section 3, we
describe the Cloud management infrastructure,
which is composed of resource-, application mon-
itoring techniques, and a knowledge management
strategy. Section 4 presents a concrete exam-
ple of applying the Cloud techniques to support
workflow application execution and Section 5 dis-
cusses the evaluation of our approach to present
a proof of concept. We consider related work in
Section 6 while Section 7 concludes the paper and
discusses our future work directions.

2 Workflow Applications

In most working environments, there are pro-
cedures that are repeated over and over again.
These procedures usually consist of sub-tasks that
represent encapsulated units of work, which form
a dependency network. Thus, a workflow can be
defined as a composite task that comprises coor-
dinated human and machine executed sub-tasks
[22]. In computer aided scientific work, a scientific
workflow application is a holistic unit that defines,
executes, and manages sub-task processes with the
help of software artifacts [16].

2.1 Background

Bioinformatics is the research discipline in which
scientists, with the use of computational methods,
seek to gain insights from data gathered in the life
sciences [22]. An objective example is the discov-
ery of interesting patterns in data obtained from
laboratory experiments and/or from earlier results
stored in databases that can be online or in storage
sites spread around the world. Bioinformatics is
both applying established computational tools to
new data, as well as new tools to well charac-
terized data sets, seeking to improve on earlier
methods. Thus, in bioinformatics, like in many

modern research disciplines, scientific workflow
applications empower advanced and more com-
plex analysis. Management systems have been de-
veloped to facilitate the execution of workflow
applications that use data and services from dis-
tributed sources [2, 6, 14, 17].

As a result of the proliferation of new high-
throughput technologies in the life sciences that
generate massive amounts of data, the retrieval,
storage, and analysis of data face great technical
challenges [35, 39]. In particular, often, bioinfor-
matics tools, many of which are available only
through web-based interfaces, are not suited for
the analysis of newly generated large-scale data
sets due to their computational intensiveness [4,
34]. In general, existing workflow application
management systems cannot handle the massive
amounts of data and execute workflow applica-
tions on these efficiently either [26]. New analysis
software, workflow applications, monitoring, and
management approaches are required that can
take advantage of more powerful infrastructure
such as data centers or Cloud environments.

In this paper, we consider Next Generation
Sequencing (NGS), a recently introduced high-
throughput technology for the identification of
nucleotide molecules like RNA or DNA in bio-
medical samples. The output of the sequencing
process is a list of billions of character sequences
called ‘reads’, each typically holds up to 35–200
letters that represent the individual DNA bases
determined. Lately, this technology has also been
used to identify and count the abundances of
RNA molecules that reflect new gene activity. We
use the approach, called RNA-Seq, as a typical
example of a scientific workflow application in the
field of bioinformatics.

At first, in the analysis of RNA-Seq data, the
obtained sequences are aligned to the reference
genome. The aligner presented here, TopHat [43],
consists of many sub-tasks, some of them have to
be executed sequentially, whereas others can run
in parallel (Fig. 1). These sub-tasks can have dif-
ferent resource-demand characteristics: needing
extensive computational power, demanding high
I/O access, or requiring extensive memory size.

In Fig. 1, the nodes marked with ∗ represent
simplified sub-tasks of the workflow application,
whereas the nodes marked with # represent the
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Fig. 1 Overview of the
TopHat aligning
approach: color online

data transfered between the sub-tasks. The first
sub-task aligns input reads to the given genome
using the Bowtie program [24]. Unaligned reads
are then divided into shorter sub-sequences that
are further aligned to the reference genome in
the next sub-task. If sub-sequences coming from
the same read were aligned successfully to the
genome, that may indicate that this read was
straddling a ‘gap’ in the gene, falling on a so-
called splice-junction. After verification of candi-
date reads falling on splice junctions, these and the
reads that were aligned in the first sub-task are
combined to create an output with a comprehen-
sive list of localized alignments.

2.2 Problem Description

In the course of a comprehensive study of some
of the largest available RNA-Seq data sets [23], it
has been noticed that even with modern dedicated

servers (having large memory size and high CPU
capacities) the analysis of such large data sets
can be challenging and requires prior knowledge
about the resource-demand characteristics of the
workflow application to execute.

In such studies, the analysis of one data set can
easily take days. The analysis time is related to
both the size of the input data set and the com-
plexity of the studied organism. Like many such
tools, TopHat creates large temporary files (in
GBs per data set), and these accumulate during
execution. With fixed resources, it can therefore
easily occur that in the middle of an analysis
run, there is unexpectedly no more space on the
disks, especially when several instances have been
executed in parallel. Thus, without appropriate
prior knowledge about resource demands across
execution time, the instances of TopHat running
in parallel may trigger a crash and lead to the loss
of several days of calculation time.
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For higher efficiency in such analysis, we en-
visage the necessity of appropriate strategies to
monitor the resource consumption behaviours of
workflow applications and to apply knowledge
databases to manage and allocate resources ap-
propriately. In the next section, we describe the
management tools that can be used to this end.

3 Cloud Management Infrastructure

Cloud computing facilitates the implementation
of scalable on-demand computing infrastructures
combining concepts from virtualization, Grid, and
distributed systems [3, 33, 36]. Cloud resources are
provisioned based on Service Level Agreements
(SLAs), which are contracts specified and signed
between Cloud providers and their customers
detailing the terms of the agreement, including
non-functional requirements, such as Quality of
Service (QoS) and penalties in case of violations
[5, 11, 21]. Clouds open the door for a funda-
mental change in how workflow applications are
designed and deployed in bioinformatics research
laboratories [15]. Its on-demand resource avail-
ability and seemingly infinite scalability can aug-
ment traditional in-house compute and storage

devices. In this section, we present monitoring
techniques and a knowledge management strat-
egy that provide state-of-the-art techniques for
resource and application management in Cloud
environments.

3.1 Resource Level Monitoring

Monitoring techniques are the basis for efficient
resource and SLA management in Clouds. Nor-
mally, SLA parameters such as availability,
throughput, and response time represent the per-
formance goals of applications. However, in
Clouds, applications are provisioned with the in-
frastructure resources, which are characterized by
low-level resource metrics such as, uptime, down-
time, CPU, memory, and storage. Thus, there is
a gap between the SLA parameters and the low-
level resource metrics.

In order to bridge this gap and guarantee the
SLAs of applications, a Low-level resource Met-
rics to High-level SLA (LoM2HiS) monitoring
and mapping framework was designed [7]. The
LoM2HiS framework monitors Cloud infrastruc-
ture resource metrics to determine their status
while applications are being provisioned in a
Cloud environment. Figure 2 depicts an overview

Fig. 2 LoM2HiS
framework overview:
color online
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of the LoM2HiS framework. This framework aims
to address two issues:

– monitoring of low-level resource metrics
– mapping of the monitored metrics into SLA

parameters so as to monitor the application
SLA at runtime.

It consist of two core components namely, the
Host monitor and the Run-time monitor, as shown
in Fig. 2. The Run-time monitor is designed to
monitor services (applications) based on the ne-
gotiated and agreed SLA objectives.

As depicted in Fig. 2, after agreeing on SLA
terms, the service provider creates mapping rules
for the LoM2HiS mappings (step 1 in Fig. 2) using
Domain Specific Languages (DSLs), which are
small languages that can be tailored to a specific
problem domain. Once the customer requests the
provisioning of an agreed service (step 2), the
Run-time monitor loads the service SLA from the
agreed SLA repository (step 3). Service provi-
sioning is based on infrastructure resources, which
represent hosts and network resources in a com-
putational environment. The Gmond monitoring
agents from the Ganglia project [27] is used to
measure the resource metrics, and the Host moni-
tor accesses the measured metrics for processing
(step 4). The Host monitor extracts the metric-
value pairs from the raw metrics and transmits
them periodically to both the run-time monitor
(step 5) and the knowledge component (step 6)
using a novel communication mechanism.

Upon reception of the measured metrics, the
Run-time monitor maps the low-level metrics
based on predefined mapping rules to form the
equivalence of the agreed SLA objectives. These
mapping rules are predefined depending on ap-
plications types, raw metrics, and parameters in-
volved. The definition of the mapping rules may
include different complexity levels, e.g., 1 : n or n :
m. An example rule is presented in (1). It shows
how to map the SLA parameter Availability from
the low-level metrics uptime and downtime:

Availability =
(

1 − downtime
uptime + downtime

)
∗ 100.

(1)

The resulting mapping is stored in the mapped
metric repository (step 7), which also contains the
predefined mapping rules. The Run-time monitor
uses the mapped values to monitor the status of
the deployed service applications at runtime. In
case future SLA violation threats are detected,
it notifies the knowledge component for preven-
tive actions (step 8) and the knowledge compo-
nent’s decision is executed on the infrastructure
resources (step 9). The concept of detecting future
SLA violation threats is designed by defining a
more restrictive threshold than the SLA violation
threshold that is known as threat threshold. Thus,
calculated SLA values are compared against the
predefined threat thresholds in order to inform
the knowledge management to react before real
SLA violations can occur.

In designing LoM2HiS, the separation of the
Host monitor and the Run-time monitor makes
it possible to deploy these two components on
different hosts. This decision is focused towards
increasing the scalability of the framework and
on facilitating its usage in distributed and parallel
environments. To this end, a scalable communica-
tion mechanism is designed for exchanging mes-
sages between the two components. The commu-
nication mechanism exploits the capabilities of the
Java Messaging Service (JMS) API [19], which is
a Java message oriented middleware for sending
messages between two or more clients. In order to
use JMS, there is a need for a JMS provider that is
capable of managing a large number of sessions
and queues. We use the well established open
source Apache ActiveMQ [1] for this purpose.

We have successfully utilized the LoM2HiS
framework for resource monitoring and detecting
SLA violations in private Cloud environments and
in related areas [8, 40]. We have also evaluated
it using different application types [10]. However,
the LoM2HiS framework is focused on monitor-
ing at the resource level in Clouds. The Run-time
component is only capable of monitoring the ex-
ecution of single threaded applications on Cloud
infrastracture. Thus, it is not capable of moni-
toring multi-threaded applications that are being
executed with different processes. To address this
issue, especially for workflow applications, we in-
troduce application level monitoring in the next
section.
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3.2 Application Level Monitoring

In this section, we complement the resource
monitoring framework presented in the previ-
ous section with an application level monitoring
architecture, which is capable of monitoring multi-
threaded applications and the processes execut-
ing their sub-tasks. The goals of this architecture
are to achieve more insight information of the
workflow execution and to realize fine-grained
management of workflow applications. Further-
more, we implement the ability of monitoring
the temporary storage created by the TopHat
workflow application while executing.

In order to realize this goal of monitoring the
processes executing the TopHat application and
its sub-tasks, we used the Linux inbuilt programs
such as top and du to determine the resource
usage of the processes associated with TopHat
application. The du Linux program is capable of
checking the disk usage of files and directories.
Thus, we apply it to supervise the directory and
sub-directories from where the TopHat workflow
application is started in order to obtain informa-
tion about the size of the temporal storage utilized

by the application at runtime. The memory usage
of each process executing a task associated with
TopHat is derived by analyzing the log files
located in the /proc directory especially the statm
log file with our implemented Java routine to
achieve the usage information. Figure 3 presents
an overview of the application monitoring
architecture.

The monitoring architecture design includes
scripts to automatically start the TopHat work-
flow application and call the inbuilt Linux pro-
grams to monitor the execution of the application.
The monitoring takes place at specified interval of
time, which is defined based on the application
type and its resource consumption behaviours.
The application monitoring architecture stops its
operation automatically once the workflow appli-
cation completes its execution or there is a failure
of the execution. We implemented Java routines
to analyze and extract the monitored information
values, which are sent to the knowledge manage-
ment for processing. Furthermore, our architec-
ture is capable of plotting the monitored infor-
mation with the help of JFreeChart API [18] to
visualize the results.

Fig. 3 Application monitoring overview: color online
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3.3 Knowledge Management Strategy

In the previous sections, we discussed the resource
and application monitoring techniques in Cloud
environments. In this section we present a knowl-
edge management strategy that utilizes the moni-
tored information to provide proactive actions for
resource management in Clouds.

The term knowledge management (KM) in our
context, means intelligent usage of measured data,
obtained by monitoring, for the decision making
process to satisfy application performance goal
defined in SLA agreements while optimizing the
computational resource usage. Apart from the
monitoring phase (as shown in Fig. 4), the knowl-
edge management consist of three other phases
namely analysis, plan, and execute. The core of the
KM is a knowledge database that interacts with
these phases in the management process.

Figure 4 presents an overview of the knowl-
edge management. The monitoring phase delivers
the monitored information, which includes details
about the actual resource allocation status, the uti-
lization of the resources by the workflow applica-
tions, the performance status of the applications,
and the applications’ performance goals defined in

the SLA. The analysis phase processes the moni-
tored data. It provides an interface for receiving
the monitored information from the monitoring
phase. It analyzes the received information to de-
termine the exact resource SLA threat thresholds
that are violated, and then decides on the exact
reactive action to carry out in order to prevent
future SLA violations. The plan phase plans the
execution of the recommended actions and sort
to prevent oscillation effects (i.e., allocating and
deallocating the same resource interchangeably)
in the operations. This phase is divided into two
parts: plan I and plan II. Plan I is responsible
for mapping actions onto physical and virtual
machines in the Cloud environments and man-
aging those machines [31]. Plan II is in charge
of planning the order and timing of the actions.
The execute phase is the final one. It executes
the recommended actions on the computational
devices with the help of software actuators.

We have successfully applied different tech-
niques such as Case-Based Reasoning, rule-based,
etc for knowledge management in Cloud environ-
ments [28–30]. In the next section, we show how
the monitoring and rule-based techniques are ap-
plied to support workflow application execution.

Fig. 4 Knowledge management overview: color online
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4 Optimizing Workflow Execution

In this section, we apply the Cloud management
techniques described in Section 3 to optimize the
RNA-Seq scientific data analysis process. The ob-
jective is to address the resource availability prob-
lems affecting workflow application executions
while analyzing bioinformatic data as outlined in
Section 2.2.

4.1 Workflow Execution Monitoring

Scientific workflow applications are resource in-
tensive and can take considerable amount of time
to complete. The successful completion of data
analysis using workflow applications in the life
sciences is paramount to the scientist. To facili-
tate this objective, we apply the resource - and

application monitoring techniques to monitor the
workflow application executions in order to su-
pervise the computational resource status and the
state of the processes executing the application
sub-tasks.

Normally, workflow applications are composed
of other applications (sub-tasks) linked together
to achieve a common goal (as shown in Fig. 1). A
workflow application can be executed in a distrib-
uted system using multiple computational nodes
in which case, some parts of the application might
execute on a different node. Thus, the successful
completion of a workflow application depends on
the completion of its composed parts executed by
different processes.

To demonstrate our approach, we apply the
Cloud management infrastructure techniques to
support the scientific data analysis processes as

Fig. 5 Applying cloud
management
infrastructure techniques
to workflow application:
color online
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shown in Fig. 1. For simplicity and ease of under-
standing, we use a reduced version of Fig. 1 in this
demonstration.

As described in Section 3.1, the resource mon-
itoring framework consists of three main com-
ponents: (i) the Monitoring agents that monitors
single computational nodes; (ii) the Host moni-
tor that gathers and processes monitored infor-
mation from the Monitoring agents; and (iii) the
Run-time monitor that maps metrics and moni-
tors application SLAs. We integrated the appli-
cation monitoring architecture functions into the
resource monitoring components to supplement
their functions in monitoring at application level,
and thereby achieve an advanced monitoring tech-
nique. Figure 5 presents how we applied the ad-
vanced monitoring technique to efficiently man-
age the scientific data analysis executions.

The TopHat workflow application execution
is composed of different applications (sub-tasks)
running sequentially and in parallel (as shown
in Fig. 1). Thus, it is necessary to monitor the
computational node used to execute each of these
sub-tasks and the sub-tasks themselves in order
to dynamically allocate resources if needed and
to determine at each point in time the perfor-
mance of the sub-task execution. As depicted in
Fig. 5, we integrate a monitoring agent into each
of the computational node used for the execu-
tion of the workflow application. The monitoring
agents monitor the low-level resource metrics’
status (e.g., CPU, memory, disk space, etc.) of
each node including the resource consumption of
each sub-task. The monitored information (arrow
a in Fig. 5) is communicated back to the advanced
monitoring technique for processing.

The monitored information consist of unique
IDs for each of the computational node, and their
resource metrics including the resource consump-
tion of each of the processes executing the sub-
task. Thus, the advanced monitoring technique
is capable of determining the specific node and
the exact resource metric that might be lacking
in the near future. It passes this information to
the knowledge management component (arrow
b in Fig. 5) to take appropriate actions to en-
sure the availability of this resource (arrow c
in Fig. 5) in the Cloud environment for further
computations.

4.2 On-Demand Resource Allocation

This section describes how we apply the knowl-
edge management strategy to allocate resources
on-demand based on the monitored information.
With this strategy, we intend to efficiently manage
computational resources to support the execution
of the workflow applications.

To achieve these aims, we introduce a specula-
tive knowledge management technique utilizing
rule-based approach [30]. This approach ensures
that at every point in time the computational
nodes posses enough resources for the workflow
application. Furthermore, it ensures that re-
sources are not wasted by reducing the amount of
resources allocated to a node if necessary.

In the life sciences, it has been identified that
CPU, storage, and memory are the crucial com-
putational resources for workflow execution. To
demonstrate our speculative approach, we define
SLAs to represent the workflow application per-
formance goals. The SLAs specify objective val-
ues for the required computational resources. En-
forcing these objectives guarantees the applica-
tion performance and its successful completion.
An example of SLA specifications is presented in
Table 2 at the evaluation section. The initial size
of a computational node is determined based on
the SLA of the application to be executed.

In a further step, we introduce three notions
for resource management: allocated, utilized, and
specif ied—allocated means the amount of re-
sources allocated to a computational node, uti-
lized means the amount of resources used by the
application executing on the computational node,
and specif ied means the assumed amount of re-
sources required for successful completion of the
workflow application. An SLA violation occurs,
if less resource is allocated than the application
utilizes (or wants to utilize) with respect to the
specified objective in the SLA. Consequently, we
try to allocate less than specified, but more than
utilized in order to avoid SLA violations on the
one hand and on the other hand to mitigate re-
source wastage.

We define allocating more or less than uti-
lized to be called over-provisioning or under-
provisioning, respectively. In order to know
whether a resource r is in danger of under-
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provisioning or already is under-provisioned, or
whether it is over-provisioned, we calculate the
current utilization utr = user

prr × 100, where user

and prr signify how much of a resource r was
used and allocated, respectively, and divide the
percentage range into three regions using Threat
Thresholds (TT). In this case, we define two
threat thresholds TTr

low and TTr
high representing

the higher and the lower boundaries as shown in
Fig. 6:

– Region −1: Danger of under-provisioning, or
under-provisioning (> TTr

high)
– Region 0: Well provisioned (≤ TTr

high and ≥
TTr

low)
– Region +1: Over-Provisioning (< TTr

low)

The idea of this rule-based design is to maintain
an ideal value that we call target value tv(r) for
the utilization of a resource r, in exactly the centre
of region 0. So, if the utilization value after some
measurement leaves this region by using more
(Region −1) or less resources (Region +1), then
we reset the utilization to the target value, i.e., we
increase or decrease allocated resources so that
the utilization is again at region 0 using (2).

tv(r) = TTr
low + TTr

high

2
%. (2)

As long as the utilization value stays in
region 0, no action will be executed. E.g.,
for r = storage, TTr

low = 60 %, and TTr
high =

80 %, the target value would be tv(r) = 70 %.
Figure 6 presents the regions and measurements

Fig. 6 Example behaviour of actions at time intervals t1–
t6: color online

(expressed as utilization of a certain resource) at
time steps t1, t2, . . . , t6. At t1 the utilization of the
resource is in Region −1, because it is in danger
of a violation. Thus, the knowledge database rec-
ommends to increase the resource such that at the
next iteration t2 the utilization is at the center of
Region 0, that is, the target value. At time steps
t3 and t4 utilization stays in the center region 0
and consequently, no action is required. At t5,
the resource is under-utilized and so the knowl-
edge database recommends the decrease of the
resource to tv(r), which is attained at t6. Therefore,
we reset the utilization value to the target value
by dynamically allocating extra resources to the
computing node.

A large enough span between the thresholds
TTr

low and TTr
high helps to prevent oscillations

of repeatedly increasing and decreasing the same
resource. However, to further reduce the risk of
oscillations, we suggest to calculate a prediction
for the next value based on the latest measure-
ments. Thus, an action is only invoked when the
current AND the predicted measurement exceed
the respective thresholds. So, especially when only
one value exceeds the threshold, no action is
executed.

Our on-demand resource allocation model dy-
namically increases or decreases the virtual ma-
chines resources by allocating extra resources
when necessary and duly releasing them to avoid
wastage and unnecessary energy consumption.

Based on this technique, we can provision sci-
entific data analysis processes with enough re-
sources to achieve high performance and to ensure
their successful completion. In the next section,
we present some evaluations of our approach.

5 Evaluation

In this section, we present the evaluation of our
approach. The goals of the evaluations are to show
the applicability of our advanced monitoring tech-
niques to monitor the workflow application execu-
tion and the usage of the knowledge management
strategy to efficiently manage resources. We first
discuss the environmental setups, the workflow
application used, and later present the achieved
results.



V.C. Emeakaroha et al.

Table 1 Computational
node capacity

OS CPU Cores Memory Storage

Linux/Ubuntu Intel Xeon(R) 3 GHz 2 9 GB 19 GB

5.1 Experimental Setup

The evaluations are carried out in a private virtu-
alized Cloud environment. The workflow applica-
tion is executed using virtual machines and each
of them can have its capacity increased up to the
values presented in Table 1.

The virtual machines (VMs) represent compu-
tational nodes for the execution of applications.
The VMs in our evaluation environment are cre-
ated using VMWare tools, which offer us the
opportunity to manage the created VMs using
our developed monitoring and knowledge man-
agement techniques. We avoided using existing
Cloud frameworks such as Eucalyptus in setting
up our Cloud environment since they have their
own management tools. However, we intend to
integrate our management tools into such frame-
work in the future.

Figure 7 presents an abstracted view of the
evaluation testbed exemplifying a control entity
node and a computing node. The testbed repre-
sents a setup for efficient management of appli-
cation execution in a Cloud environment. This
testbed is a private Cloud environment used for
the evaluation of our implemented research pro-
totypes. In this case, the purpose of the testbed is
to present a proof of our concept and to demon-
strate how workflow application executions can be
efficiently managed in a Cloud environment.

On the testbed, a group of nodes act as the
control entity. They host the advanced monitor-
ing technique, the knowledge management com-
ponent, and provides an interface for deploying
workflow applications requested by the users. The
testbed is designed with scalability in mind. The

control nodes are de-centrally distributed in order
to be capable of monitoring large scale Cloud
environment. The computing nodes are used for
the execution of the workflow applications. In
this group of nodes, we only embed light-weight
agents for monitoring and executing the resource
allocation decisions. Thus, the computing nodes
are focused on executing the applications thereby
relieving them from the complexities of analyz-
ing the monitored information. This increases
the efficiency and performance of the comput-
ing nodes. The control nodes and the computing
nodes interacts through our designed communica-
tion mechanism, which is based on the Java Mes-
sage Service (JMS). The communication mecha-
nism provides a means of exchanging information
such as resource status, monitored values, and
synchronization data, among the components in
the Cloud environment.

Generally in our private Cloud, each con-
trol node is assigned a number of computing
nodes, which it processes their monitored infor-
mation. Furthermore, the control nodes synchro-
nize among themselves based on the available
resources to reach the decision of where to deploy
further workflow application requests.

The evaluation of our approach in this
paper is based on the bioinformatic workflow
application TopHat, which was described in
Section 2.1. It aligns RNA-Seq reads to
mammalian-sized genomes using the ultra
high-throughput short read aligner Bowtie [24],
and then analyzes the mapping results to identify
splice junctions between exons. Furthermore,
it uses the Sequence Alignment/Map (SAM)
tools in its execution. SAM tools provide various

Fig. 7 Evaluation
tEstbed: color online
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utilities for manipulating alignments in the SAM
format, including sorting, merging, indexing, and
generating alignments in a per-position format
[25].

We analyzed a set of RNA-Seq data using the
TopHat workflow application, and the achieved
results are presented in the next sections.

5.2 Resource Level Monitoring Results

As outlined in Section 4.1, we use the LoM2HiS
framework to monitor the infrastructure re-
sources while analyzing RNA-Seq data using
TopHat workflow application for the duration of
about three hours. We monitored the status of
the resource metrics CPU, memory and storage
at runtime with a measurement interval of one
minute. The achieved results are presented in
Figs. 8, 9, and 10. Note that the monitored re-
sults presented are from one of the computational
node and not the entire Cloud environment. The
resource consumption behaviours on the different
computational nodes are similar, thus, we present
the results from one node for simplicity and ease
of understanding our approach.

The aim of the monitoring processes is to
timely detect the unavailability of computational
resources. To realize this, LoM2HiS utilizes mon-
itoring agents to monitor the resource status
and compares them against the threat thresholds,
which are defined values to signalize the short-
age of computational resources at runtime. The
threat thresholds can be dynamically or stati-
cally defined. In this paper, the knowledge man-
agement dynamically updates the initial defined
threat thresholds.

Figure 8 presents the monitored results for the
CPU usage. From the results, it can be observed
that the TopHat workflow application in some
time intervals is very CPU intensive. For example
from the execution time 52 to 80. These time inter-
vals where the CPU usage is 100 % are the critical
ones that need to be managed. The LoM2HiS
framework is configured in this case with a threat
threshold value of about 80 % CPU utilization.
This means, once the CPU utilization exceeds this
threshold, it sends a notification message to the
knowledge management to provide preventive ac-
tions to avoid reaching 100 % utilization, because
at that point the performance of TopHat degrades
and there might be risk of failures.

The monitored results of the memory usage are
depicted in Fig. 9. As shown in the figure, the
memory consumption increases along the execu-
tion line of the TopHat workflow application. It is
difficult to predict the total amount of memory the
application might require in the next time inter-
val or to successfully complete the data analysis.
Thus, we define a threat threshold value that is
about 2 GB less than the current allocated mem-
ory. That is, once the memory utilization exceeds
the threat threshold value, a notification message
is sent to the knowledge database for memory
resource allocation decisions.

Figure 10 shows the utilization of storage re-
source by the TopHat workflow application. Ac-
cording to the figure, the storage utilization in-
creases along the execution line. In this case, one
can notice some jumps in the utilization lines.
These jumps can be high depending on the size of
the data set to be analysed. Therefore, the threat
threshold value for managing storage resource is

Fig. 8 Monitored CPU
utilization: color online
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Fig. 9 Monitored
memory utilization: color
online
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set to be about 4 GB less than the current allo-
cated storage, in order not to risk failure situations
before the knowledge management can react to
allocate more storage resources.

Generally, the threat thresholds are defined to
accommodate reaction time for the knowledge
management so that the resource allocation pro-
cedures are carried out early enough before the
system runs out of resources.

5.3 Application Level Monitoring Results

In this section, we discuss the application level
monitoring results achieved at runtime while ex-
ecuting the TopHat workflow application. The
results show the behaviour of each system process
executing the sub-tasks of the workflow appli-
cation in terms of memory resource utilization.
Furthermore, we show the result of the amount
of temporal storage used by the TopHat workflow
application while executing.

Figure 11 presents the results of the memory
utilization from selected processes executing the
TopHat application sub-tasks. To simplify the re-
sults of the application level monitoring, we con-
centrate on the processes executing the highest
resource consumption sub-tasks. In this regards,
the Bowtie and Fix-map-ordering processes are
outstanding.

The Bowtie processes are the most expensive
in terms of memory resource consumption as de-
picted in Fig. 11. According to the results shown
on Fig. 11, the two Bowtie processes use the high-
est amount of memory while actively executing
and the memory consumption falls to zero in their
passive state. The Fix-map-ordering process is sec-
ond in memory consumption level as shown in
Fig. 11. Once the process comes into active state,
its resource consumption jumps from zero to a
certain level and gradually makes an increasing
curve along the execution line until the process
becomes inactive and the consumption level falls
back to zero.

Fig. 10 Monitored
storage utilization: color
online
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Fig. 11 Process memory utilization: color online

The TopHat process has lower memory re-
source consumption level compared to the other
two processes as depicted in Fig. 11. It is the main
process controlling the execution of the other
processes. It stays active and consumes resources
while the processes executing the sub-tasks are
running. It releases the resources and goes into
passive state when all the sub-processes are in
passive state for example in timeline 25 and 75
in Fig. 11. Furthermore, it is the process that
terminates last at the end of the execution.

Note, we also monitored the memory resource
consumption of the Java virtual machine run-
ning the whole TopHat workflow application as
shown in Fig. 11. This process consumed the same
amount of memory resource as the Bowtie process
from the beginning to the end of the execution
length. However, this process is not considered as
part of the TopHat processes.

Figure 12 presents the monitored results of the
temporary storage TopHat uses while executing.

Fig. 12 Monitored temporary storage utilization: color
online

This temporary storage usage is due to the tem-
porary files written by the workflow application
along the execution line, which are cleaned up at
the end of the execution. The behaviour of the
temporal storage usage increases as more data are
being analyzed by the TopHat workflow applica-
tion. However, the usage falls to zero at the end
of the execution once the workflow application
cleans up. The essence of monitoring the temporal
storage is to determine the whole amount of stor-
age resources required by the TopHat workflow
application for seamless execution.

Without the knowledge of the exact temporal
storage requirement, one might not efficiently al-
locate enough storage resources to support the
execution of the workflow application. Because,
using only the monitored information from the
normal storage utilization can cause poor resource
allocation decision in situations where the TopHat
is writing lots of temporary files. As seen on
Fig. 10, there were jumps in the storage consump-
tion along the execution line. These jumps are
caused due to the temporary storage usage, which
the resource monitoring technique is unable to de-
tect. This issue causes the definition of large threat
threshold value for the management of storage
resource. However, the monitoring of the tempo-
ral storage addresses this issue and provides the
knowledge management with the missing infor-
mation to efficiently manage the storage resource.

Generally, the application level monitoring
complements the resource monitoring with fine-
grained monitored information of the applica-
tion resource consumption behaviour. Further-
more, it supports the knowledge management in
defining appropriate values to update the pre-
defined threat thresholds. This is evident in the
management of the storage resource as can be
observed from the monitored results.

In the next section, we discuss how the knowl-
edge management deals with the notification mes-
sages generated by the monitoring techniques.

5.4 Ensuring Resource Availability

This section shows via simulations how the
knowledge management approach reacts to the
monitored data and enables seamless workflow
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application execution, as well as an economically
efficient usage of resources.

To demonstrate this approach, we first define
the SLAs shown in Table 2 for the workflow appli-
cation to specify the amount of available resources
on the virtual machine required for the seamless
execution of the workflow. For CPU power, we
convert CPU utilization into Million Instructions
Per Second (MIPS) based on the assumption that
an Intel Xeon(R) 3 GHz processor delivers 10,000
MIPS for 100 % resource utilization of one core,
and linearly degrades with CPU utilization.

Additionally, we analyze the Resource Alloca-
tion Ef f iciency (RAE) of the various simulations,
where we relate violations and utilization. The
basic idea is that RAE should be equal to utiliza-
tion (100 % −w, where w stands for wastage, see
below) if no violations occur (p = 0 %, where p
stands for penalty, see below) or equal to zero, if
the violation rate is at 100 %, and follow a linear
decrease in between. Thus, we define

RAE = (100 − w)(100 − p)

100
. (3)

Furthermore, we define a more general ap-
proach also taking into account the cost of actions
with a generic cost function that maps SLA viola-
tions, resource wastage, and the costs of executed
actions into a monetary unit, which we describe
as Cloud EUR. The essence of this monetary unit
is to device an independent means of comparing
the various cost values realized in the different
evaluation scenarios. There is no pricing model
behind it.

The cost values in our generic cost function are
defined based on the specified SLA penalties for
violating the agreed SLA terms, the consequence
of resource wastage, and the effects of the correc-
tive actions to avoid SLA violations on the Cloud

Table 2 TopHat SLA

Service level objective (SLO) name SLO value

CPU power ≥ 20000 MIPS
Memory ≥ 8192 MB
Storage ≥ 19456 MB

system performance. Equation (4) presents the
cost function

c(p, w, c) =
∑

r

pr(pr) + wr(wr) + ar(ar), (4)

where, the resource r, pr(pr) : [0, 100] → R
+

defines the costs due to the penalties that have
to be paid according to the relative number of
SLA violations (as compared to all possible SLA
violations) pr; wr(wr) : [0, 100] → R

+ defines the
costs due to unutilized resources wr; and ar(ar) :
[0, 100] → R

+ the costs due to the executed num-
ber of actions ar (as compared to the number of all
possible actions).

The evaluations of our knowledge management
techniques are done in three simulation cate-
gories, where we setup and configure our VM
resources differently to manage the agreed SLA
objectives and prevent / correct SLA violation
situations. The categories are described as follows:

1. In the first category (Scenario 1) we assume
a static configuration with a fixed initial re-
source configuration of the VMs. Normally,
when setting up such a testbed as described
in Section 5.1, an initial guess of possible re-
source consumption is done based on early
monitoring data. From this configuration, we
assume quite generous resource limits. The
first ten measurements of CPU, memory, and
storage lie in the range of [140, 12,500] MIPS,
[172, 1,154] MB, [15.6, 15.7] GB, respectively.
So we initially configured our VM with 15,000
MIPS, 4,096 MB, and 17.1 GB, respectively.

2. The second category subsumes several sce-
narios, where we apply our knowledge man-
agement approach to manage the initial VM
configurations as described in the first cate-
gory. The eight scenarios in this category de-
pend on the chosen Threat Thresholds (TTs).
According to Table 3, we define these scenar-
ios as Scenario 2.1, 2.2, . . . , 2.8, respectively.
In these scenarios, we investigate low, middle,
and high values for TTr

low and TTr
high, where

TTr
low ∈ {30 %, 50 %, 70 %} and TTr

high ∈
{60 %, 75 %, 90 %} for all resources stated
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Table 3 8 Simulations
Scenarios for TTlow and
TThigh

Scenarios

1 2 3 4 5 6 7 8

TTlow 30 % 30 % 30 % 50 % 50 % 50 % 70 % 70 %
TThigh 60 % 75 % 90 % 60 % 75 % 90 % 75 % 90 %

above. We combine the TTs to form eight
different scenarios as depicted in Table 3.

3. In the third category (Scenario 3), we consider
a best case scenario, where we assume to have
an oracle that predicts the maximal resource
consumption values, which can be used to
statically configure the virtual machines. The
essence of this third scenario is to demonstrate
the better resource utilization achievable by
our knowledge management approach com-
pared to peak provisioning.

Figure 13a, b and c present the violations, uti-
lization, as well as the number of reconfiguration
actions, respectively, for every SLA parameter
(together with an average value) in the different
scenarios. Generally, the bars in the figures are
naturally ordered beginning from Scenario 1, over
Scenarios 2.1, . . . , 2.8, ending with Scenario 3. In
Scenario 1, we have static resource configuration
and the number of violations in this scenario
reaches 41.7 % for CPU and memory, and 49.4 %
for storage, which leads to an average of 44.3 %.
Thus, we experience violations in almost half of
the cases. This is especially crucial for parameters
memory and storage, where program execution
could fail, if it runs out of memory or storage,
whereas for a violation of the CPU parameter, we
would “only” delay the successful termination of
the workflow application. We excluded the results
of Scenarios 1 and 3 from Fig. 13a for better
visibility in order to focus on the achieved results
of scenario 2.*, which applies the knowledge man-
agement approach to prevent or correct the SLA
violations.

With the Scenarios 2.* in the second category,
we can reduce the SLA violations to a minimum.
We completely avoid violations for storage in all
sub-scenarios, as well as for memory in all but
one sub-scenario. Also CPU violations can be
reduced to 0.6 % for Sub-scenarios 2.1 and 2.4,

and still achieve a maximum SLA violation rate
of 2.8 % with Scenario 2.8. The average SLA
violation rate can be lowered to 0.2 % in the best

(a) Violations

(b) Utilization

(c) Reconfiguration actions

Fig. 13 Violations, utilization and reconfiguration actions
for ten knowledge management scenarios using bioinfor-
matic workflow: color online
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case. Scenario 3, of course, shows no violations.
However, it is unlikely to know the maximum
resource consumption before workflow execution.

The resource utilization is clearly higher when
a lot of violations occur due to out-usage of
available resources. Thus, Scenario 1 naturally
achieves high resource utilization because when
a parameter is violated, it means the resource
is already fully used up, but more of the re-
source would be needed to fulfill the require-
ments. On the opposite, Scenario 3 naturally
achieves low utilization, as a lot of resources are
over-provisioned. Scenarios 2.* achieve a good
utilization that is on average in between of the two
extremes and ranges from 70.6 % (Scenario 2.1) to
86.2 % (Scenario 2.8). Furthermore, we observe
some exceptions to this “rule” when considering
individual parameters. So, e.g., for memory, we
achieve a utilization of 85.0 % with Scenario 2.8 or
80.0 % with Scenario 2.6, which is higher than the
utilization in Scenario 1 (77.4 %). The same is true
for CPU utilization rates of 85.5 % as compared
to 84.3 % for the Scenario 1 and 2.8, respectively.
Only in the case of storage, the utilization of all
except in one of the Scenarios 2.*, achieved 85.9 %
utilization, which is smaller than that of Scenario 3
(90.1 %).

The clear advantage of Scenarios 2.* is that they
do not run into any crucial SLA violation (ex-
cept for Scenario 2.3), but they achieve a higher
resource utilization as compared to Scenario 3.
Regarding the reallocation actions, of course, Sce-
nario 1 and 3 do not execute any. This is only
done for Scenarios 2.* as shown in Fig. 13c. More-
over, with the knowledge management in Sce-
narios 2.*, the amount of executed reallocation
actions for most scenarios stays below 10 %. Only
Scenario 2.7 executes actions in 19.8 % of the
cases on average of the time. Nevertheless, five
out of eight scenarios stay below 5 % on average.
These results show that our knowledge manage-
ment approach is scalable and less intrusive on the
overall system performance. That is, it does not
cause lots of overheads, which might degrade the
system performance.

When it comes to the overall costs of the sce-
narios (cf. Fig. 14a), all 2.* scenarios approach the
result achieved by the best case scenario 3. The
cost of SLA violations in Scenario 1 sums up to

(a) Cost

(b) Resource Allocation Efficiency

Fig. 14 Resource allocation efficiency and cost for ten
knowledge management scenarios using bioinformatic
workflow: color online

4493.6 Cloud EUR, and is omitted on Fig. 14a
in order to achieve better visibilities of the other
cost results because including this result would
change the scaling on the figure due to its large
value as compared to the other obtained cost
values. Furthermore, the lowest cost is achieved
using Scenario 2.6, which is even lower than the
cost for Scenario 3. This is possible, because Sce-
nario 2.6 achieves a very good resource utiliza-
tion and low SLA violation rate with a very few
number of reallocation actions. Also resource al-
location efficiency for Scenarios 2.* as shown in
Fig. 14b achieves remarkably better results than
for Scenario 1 (RAE of 48.2 %). Nevertheless, all
scenarios of the second category achieve a better
RAE as compared to that of Scenario 3 (69.3 %).

Thus, we conclude that by using the suggested
knowledge management strategy, we can avoid
most costly SLA violations, and therefore, facil-
itate application execution while improving the
resource usage efficiency as demonstrated with
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the workflow application. All this can be achieved
with a very low number of time- and energy con-
suming VM reallocation actions as shown in many
of the knowledge management scenarios.

Based on these observations, we conclude that
by using the suggested Cloud management in-
frastructure techniques, we can guarantee the per-
formance and successful completion of workflow
applications. Furthermore, we can efficiently
manage resources to avoid considerable wastage,
extra maintenance costs, and CO2 emissions due
to the unnecessary energy consumption of unused
resources.

6 Related Work

Currently, a number of workflow systems exist
that are applicable in the area of life sciences.
While these workflow systems are valuable in the
explorative analysis of data, they do not provide
resource management capabilities to ensure the
performance and successful completion of many
modern, more demanding workflow applications.

Hull et al. [17] discuss the Taverna system, a
workbench designed to build workflows for bioin-
formatics. It is a Java application that is capa-
ble of building complex workflows, which can
access both remote and local processors of dif-
ferent kinds, launch the execution of workflow
applications, and display different types of re-
sults. The strength of this system lies in its simple
interface and its flexibility to support access to
services via different types of interfaces. However,
it does not provide efficient resource management
capabilities.

Altintas et al. [2] propose Kepler, an open
source system based on the Ptolemy II tool from
the University of California Berkeley. Ptolemy
can combine concurrent components that are
independent and autonomous through a well-
defined model of computation that governs all
interactions and thus, guarantees the correct op-
eration of the system. The independent compo-
nents can be used to achieve different goals for
workflow applications. But it does not facilitate
adequate resource management to support the
execution of the workflow applications.

Deelman et al. [6] present Pegasus, a workflow
manager that supports automatic conversion of
high-level workflow descriptions to executable
workflows and enacts them in a Condor-based
Grid infrastructure. It consist of a Metadata Cata-
logue Service (MCS) and the implementations of
workflow reduction, resource selection, and task
clustering to optimize execution performance. Pe-
gasus implements both data and computational
abstractions and can therefore, perform some
management functions but suffers from a lack of
openness and standardization.

Other advanced workflow systems including
Galaxy [14] and Wildfire [41] offer an easy way
to access local and remote resources and perform
automatic analyses to test hypotheses or process
data. However, many well known challenges, in
the field of data integration and workflow systems
for bioinformatics [12, 13, 26], are still not solved
such as transferring large amount of data, which
might incur high cost of transfer and storage on
remote locations.

Despite their usabilities, the above mentioned
workflow systems lack the capabilities of on-
line resource monitoring of application execution
as obtainable in Cloud environments. Moreover,
they are not capable of dynamic resource manage-
ment (i.e., dynamically allocating and deallocat-
ing resources to applications) utilizing knowledge
databases as basis for decision making.

7 Conclusion and Future Work

With the recent fast development of high-
throughput technologies in the life sciences, huge
amounts of data are being generated and stored
in different databases. The analysis of these large-
scale data sets by scientists in a search for biomed-
ically interesting patterns presents serious tech-
nical challenges. Scientific workflow applications
can be instrumental in addressing these chal-
lenges, provide a certain degree of automation,
and thus, empower advanced more complex stud-
ies in the life sciences.

The analysis of scientific data using workflow
applications is computationally intensive and
requires adequate availability of resources to
achieve satisfactorily high performance and suc-
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cessful execution completion. Lack of compu-
tational resources disrupts the analysis process,
causing a waste of time and money. Traditional
computational environments consist of static lim-
ited resources and are, therefore, not well suited
for the execution of large workflow applications.
Cloud computing is proving to be a valuable
complement to these traditional static compute
facilities. Cloud technology promises scalable and
on-demand resource provisioning. With this tech-
nology, it is now possible to dynamically allocate
resources to workflow application executions.

In this paper, we have presented a novel
Cloud management infrastructure consisting of
a resource level-, application level monitoring
techniques, and a knowledge management strat-
egy. The monitoring techniques are responsible
for monitoring Cloud environments where scien-
tific workflow applications are being executed, in
order to determine their resource consumption
behaviours, the status of the computational re-
sources, and the performance of the applications.
The knowledge management uses the monitored
information to dynamically allocate resources at
runtime to the workflow applications. We dis-
cussed in detail the design of these Cloud manage-
ment infrastructure techniques and their applica-
bility to support workflow application execution.

We have evaluated our approach using the
well-known TopHat workflow application to an-
alyze RNA-Seq data for a duration of about three
hours, through which we showed how resource
bottleneck are detected at runtime and how the
knowledge management could dynamically allo-
cate more resources in such cases. Based on our
evaluations, we can conclude that we successfully
utilized the Cloud management infrastructure
techniques to support the execution of a scientific
workflow application in order to guarantee its
performance goals and successful completion.

In the future, we intend to integrate these
Cloud management infrastructure techniques into
workflow systems to achieve self-manageable au-
tonomic systems that are capable of managing
computational resources for data analysis, aiming
to fully maximize the power of computational
methods and mining of experimental data in the
life sciences by means of workflow applications.
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