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Abstract—Currently, the Cloud landscape is a fragmented,
static and shapeless market that hinders the paradigm’s ability
to fulfil its promise of ubiquitous computing on tap and as a
commodity. In this paper, we present our vision of an autonomic
self-aware Cloud market platform, and argue that autonomic
market platforms for Clouds can step up to the challenge of
today’s status quo. As our first steps towards achieving this vision,
we present a market monitoring methodology, which includes a
series of realistic market goals, sets of extractable metrics from
a market platform and how to map (i.e. combine and transform)
metrics to access goal performance such that autonomic adaption
of the market could be undertaken. We have extended a known
market simulator for distributed infrastructures (GridSim) with
relevant sensors. To demonstrate the usefulness of our approach,
we simulate a sudden cease in demand for goods in our market
platform.

Index Terms—Cloud Markets, Market Monitoring, Self-
awareness, Autonomic Computing

I. INTRODUCTION

Cloud computing represents a novel paradigm for the
implementation of highly scalable computing resources pro-
vided on demand and for the broad customer base [8], [10].
Currently, three cloud types exist, namely private Clouds,
which are client dedicated and which can easily comply
with specific data governance and regulation, public Clouds,
which are provider owned and managed, and hybrid Clouds.
From the economic perspective, private Clouds reduce capital
expenditure (CAPEX) and operating expense (OPEX) [9].
Public Clouds are accessed based upon established Service
Level Agreements (SLAs) stating objectives of service usage
and penalties in case of violation of these objectives. Their
economic benefit is the reduction in IT service delivery costs
through reduced hardware, software and application mainte-
nance costs. Hybrid Clouds define deployment models where
private Clouds can be extended to consume public Cloud
infrastructures to manage load peaks. Their economic benefits
are cost sharing through horizontal and vertical scaling as well
as the reduction of maintenance costs as in public Clouds.

A large body of research into the Cloud paradigm has
yielded the technological development of Cloud infrastruc-
tures, such as development of the appropriate resource man-
agement models [10], [13], solutions for the energy efficient
management of Clouds [1] as well as security and privacy
solutions [7]. Yet, very little research exists on the devel-
opment of appropriate market platforms in a similar way

to other commodities like energy, stocks, and assets. In the
case of public and hybrid Clouds, flexible, dynamic, and low
entry-barrier markets with sufficient stability are crucial if
computation (in general) is to become a commodity.

Today the static nature of the Cloud “market” means it
cannot adapt adequately to dynamic changes in user require-
ments or new services. Moreover, due to the large variability
in resource types and still low number of traders, markets
suffer from low liquidity (the ability to easily and quickly
sell or purchase a service at a certain price), repelling po-
tential consumers and disadvantaging new providers. Thus,
appropriate methodologies and techniques for the definition
and management of Cloud market platforms are crucial and
will affect whether Cloud computing can emerge as a new
state of the art technology for utility computing. We argue that
autonomic capabilities (self-optimisation, self-configuration,
self-healing and self-protection [20]) are essential for the
creation of such market platforms. To create a market platform
with each of these capabilities harmoniously working together
is, however, a very challenging task.

In this paper, we present our first steps towards the vision
of an autonomic marketplace: a novel methodology for the
monitoring of cloud markets. Our goal in this paper is to
define a methodology that could enable a market platform
to be self-aware, i.e. knowledgable about its state at multiple
levels. With this capability, we could then begin to implement
autonomic market platforms with the self-* capabilities men-
tioned above. The main contribution of this paper is therefore:
a methodology for monitoring Cloud market platforms, such
that they can be made autonomic and self-aware. A large part
of this methodology is the identification of monitoring data
that is available and useful for self-aware markets, and the
necessary mappings to transform these metrics into indicators
for the defined market goals. To demonstrate our approach,
we utilize GridSim [11], [12], as a widely used tool for the
simulation of Grid and Cloud market behaviour. We have
extended GridSim with appropriate market and mechanism
sensors as well as simple infrastructure sensors. Based upon
the monitoring metrics of the market (which are translated
from the low level infrastructure measurement) our monitoring
model can sense dynamic changes in market behavior, which
is the first step towards establishing self-aware and self-
manageable market platforms.



This paper is structured as follows. In Section II, we briefly
introduce our vision of a self-aware autonomic market as a
placeholder for this work. In Section III, we critically evaluate
related work to illustrate the gap in research. In Section IV,
we introduce our monitoring methodology, which captures
realistic market goals that can be analysed, i.e. they do not
consist of abstract economic indicators, but rather observable
metrics, as well as the mappings that translate metrics into
individual goal performance scores. In Section VI, we evaluate
our approach by means of a case study with our GridSim
implementation. Finally, in Section VII, we summarise our
investigation and discuss key future work.

II. VISION: A SELF-AWARE AUTONOMIC CLOUD MARKET
PLATFORM

Many large IT companies, such as eBay, Amazon and
Yahoo, attract millions of customers worldwide to buy and
sell a broad variety of goods and services via electronic
marketplaces. This trading model has many advantages over
traditional marketplaces. For example, it allows users to place
their bids at any time and from any geographical location
over the Internet. Furthermore, electronic markets often offer
a broad scope of products and services with easy of access, re-
sulting in a large number of participants, and consequentially,
a potential for low prices as well as operational costs.

Although the current Cloud realisation offers a simple,
fast and inexpensive way to bring consumers and providers
together, it also suffers from many challenging situations.
These include low market liquidity (caused by broad resource
variability and a low number of market participants) [23], a
fragmented array of independent providers, and few standard
mechanisms for unilateral provider adoption and use. In order
to address these challenges and create a Cloud marketplace,
a Cloud market should be dynamic and adapt to the current
needs of its participants (consumers and providers) as well as
address the impact(s) these requirements have upon the market
itself.

In our idea of a self-aware Cloud market, a market has the
ability to change, adapt or even redesign its anatomy and/or the
underpinning infrastructure during runtime in order to improve
its performance. This can be done through autonomically
scaling up or down the applied market mechanism or un-
derlying computing infrastructure in response to the available
resources. Similarly, it could change the market mechanisms
or its components in use during the trading process. In our
vision, Cloud services (e.g., software and hardware infrastruc-
tures) regardless of their provider are traded via electronic
Cloud markets. In such environments, four key independent
components are needed. First, users (often represented by their
agents) authenticate themselves and place bids for a certain
service (as consumers) or define offers (asks) for services
(as providers). Second, an allocation mechanism matches
placed bids and asks, while a pricing mechanism determines
price and quantity of a product to be traded between a
consumer and a provider. Third, a market front-end, which
may be similar to existing multi-provider dashboards (e.g.

Rightscale1 and IBM’s Altocumulus2), or an application in
a commonly used (social network) platform (SNP) such as
Facebook (as in Fig. 1) for user familiarity and to ease
issues like authentication and front-end management. Finally,
an autonomic adaption component that enables the market
platform to modify itself.

We note that all components shown in Fig. 1, except the
Market Adaption component, have to various degrees been
investigated in past and on-going projects such as SORMA,3

GridEcon,4 CloudBus5 and SocialCloud [16]. The novel aspect
in our vision is autonomic market adaptation. It is realized as a
MAPE-K process with five components: Monitoring, Analysis,
Planning, Execution, and Knowledge.

The Monitoring component observes the performance of
market goals. This task is performed by monitoring sensors,
which gather and store low-level monitoring data retrieved
from the market middleware and the market allocation mech-
anism. To assess performance, low-level data (metrics) is
mapped into performance scores for the market goals. We
elaborate upon this component in Section IV.

The Analysis component analyses mapped data from the
monitoring component to derive possible actions for market
adaptation in order to improve market performance with
respect to a set of goals. We define three actions types
that can be executed (in ascending order of complexity): i)
scaling in/out the market infrastructure (e.g., adding/removing
new VMs in order to improve computational performance);
ii) modifying market participants (e.g., attracting additional
participants through advertising when the market is inefficient
due to a decreasing number of active participants) and/or the
goods/services offered on the market; iii) modifying market
“rules” where a change of market mechanism or its proper-
ties (e.g., change to an auction-based allocation mechanism
instead of the posted price due to a large number of market
participants, or the algorithm to determine allocation(s)) and
the market’s transaction charges are just two of many possible
examples.

The Planning component gathers a list of actions from the
analysis component and plans the execution steps of the action
set. It then sends these steps to the Execution component.
During the whole adaptation process, a Knowledge component
stores analysed monitoring data, goal/metric mappings and
experiences from previous adaptations.

III. RELATED WORK

Due to the growing importance of distributed systems (Grids
and Clouds) in recent years, the scientific community focused
on the theoretic foundations and research on how to make such
systems adaptive and sustainable, often referring to the original
self-* principles of autonomic computing [20]. While research
was mainly visionary in the first years after the seminal

1http://www.rightscale.com – last accessed Aug. 2011
2http://almaden.ibm.com/asr/projects/cloud/ – last accessed Aug. 2011
3http://www.sorma-project.eu – last accessed Aug. 2011
4http://www.gridecon.eu – last accessed Aug. 2011
5http://www.buyya.com/CloudBus – last accessed Aug. 2011
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Autonomic Computing article, these early works served as
groundwork for more and more prototypical implementation
of autonomic aspects in various systems. For example, [25]
discuss the need for autonomic capabilities of distributed
service systems and briefly outline the application of the self-
* capabilities in this context. Today, most scientific work
addresses technical issues to make systems autonomic, such
as the development of negotiation protocols to make Grid
or Cloud services self-adaptive [8], or considers autonomic
service management frameworks without explicitly taking
economic methodologies into account (e.g., [18], [22], [24]).

In contrast, research on autonomic systems that apply
economic methods and considerations, as first proposed by
[17], is still in its infancy. In particular, current research
in this area often focuses on narrow and specific issues
and therefore only partially considers the aspects needed
for autonomic marketplaces. For example, a self-organising
resource allocation mechanism in dynamic Application Layer
Networks is proposed by [28]. They do not, however, consider
issues such as the adaptation of the market and the used
mechanism itself depending on the available resources, which
is a crucial element for potential autonomic marketplaces.
[26] propose mechanisms that are able to adaptively adjust
their parameters based on the past behaviour of participants.
An example of economically-inspired market infrastructures is
provided by [14] who present a self-optimising infrastructure
platform for service delivery using economic (congestion-
based) pricing, but only consider the infrastructure level, and
not the market level of the platform. [6] study the mapping of
high-level business objectives to lower level objectives in order
to enable autonomic optimisation. However, they specifically
study an autonomic DBMS and do not consider Grid or Cloud
environments.

In contrast to the original self-* principles as described
above, self-awareness is a more abstract concept that can be
considered a building block of other principles. In order to
facilitate self-configuration or self-optimisation, a platform has
to be able to gather information about its current state and
performance, and be able to draw the right conclusions from
the available data. One key aspect in this process is the ability
to monitor crucial attributes and other performance measures
that provide information about the current state of the market
or the platform. Performance monitoring is a widely used

process that is applied in economics in areas such as principal-
agent theory (monitoring the performance of agents in order
to prevent hidden action, [21] pp. 121), public (government)
institutions (i.e. institutions that are not directly involved in a
competitive market [30]), and market performance with respect
to market power and abuse in decentralised energy markets
[27].

Another area that closely resembles the concept of self-
aware markets is the monitoring of performance metrics in
(Web) services or business processes. Monitoring the per-
formance of Web Services is crucial due to their inherent
dynamics and the complexities and dependencies that arise
with their invocation in service composition. Run-time moni-
toring, in this context has been addressed by several authors,
e.g. [4], and tries to provide methods and frameworks that
address how certain attributes and metrics of Web Services
can be continuously monitored. In an enterprise context, Key-
Performance-Indicators (KPIs) are defined as attributes linked
to the performance of the enterprise, and for each KPI target
values are set according to management goals. KPIs, however,
tend to be management oriented, as they represent high-level
goals, and for this reason, need to be matched to lower-
level metrics of the underlying involved business processes.
[29] presents a framework that is able to derive dependencies
between KPIs and the underlying metrics, in order to be able
to identify the causes of KPI violation.

Although these monitoring models target run-time moni-
toring, they consider (single) service instances or enterprises
rather than taking a market perspective. From a conceptual
perspective, the approach that is most similar to the intended
model of Cloud market monitoring is the previously men-
tioned mechanism by [26]. However, it lacks the needed
detail concerning how such a monitoring infrastructure can be
implemented. In this paper, we address this point by presenting
and evaluating a monitoring model as a precursor to autonomic
self-aware Cloud marketplaces.

IV. MONITORING MODEL

In the previous sections, the dependence of self-aware
markets on the availability of monitoring data was identified,
as only through the continuous monitoring of market char-
acteristics potential inefficiencies can be identified and acted
upon. As monitoring market performance bears resemblance
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to monitoring KPIs, in the sense that high-level (business or
market) goals have to be evaluated against available low-level
monitoring data, it is necessary to define goals for market
performance. In this section, we therefore focus on three
aspects. Firstly, we identify a set of common market goals that
are relevant to our scenario. Secondly, we identify what data is
available that can be monitored to determine the performance
of these goals. Thirdly, as market goals are generally quite
abstract, much more than the lower-level monitoring data, we
present mappings (appropriate aggregation processes) from the
low-level metrics to the market goals.

A. Market Goals

A market can have several goals that it aims to achieve, e.g.
concerning the market environment (i.e. what type of goods
are traded, who owns the market, etc.) and the target group
(system, consumer or provider). From an economic point of
view, market goals are often abstract, system-wide goals that
depend on the market mechanism used. For example, maximis-
ing welfare (the sum of consumer and provider surplus) is one
of the most desirable and applied goals for markets. However,
the downside of this particular goal is its dependence on the
concept of provider and consumer utility, which is difficult to
universally capture. This means that not all possible market
goals, can be monitored in a real environment. In Table I,
we define an initial set of market goals that can be assessed
using derivable metrics that do not rely on abstract (economic)
concepts.

TABLE I
LIST OF MARKET GOALS

Goal Description

Revenue Maximize provider revenue
Platform profit Maximize platform profit
No. of allocations Maximize the number of successful allo-

cations
Transaction volume Maximize the volume (price*quantity) of

transactions
Platform execution
costs

Minimize execution costs for a given qual-
ity level

Liquidity Increase/maximize the easiness to sell dif-
ferent resources on the market

No. of active traders Maximize the number of actively partici-
pating users

Revenue and platform profit directly measure the attractive-
ness of the market to the specific group (providers, platform
owners). For providers, revenue instead of profit is chosen

because internal costs are not known and cannot be monitored,
hence only the revenue generated with trades on the market
can be measured. The number of allocations, active traders
and transaction volume consider the impact of the market
with respect to trades, and can be important if, e.g., fees are
charged per transaction (volume). Platform execution costs
are directly relevant to the market platform owner, as they
want to minimise the resources used to run the market. As
some market mechanisms involve extensive computation (e.g.
some auction types involve NP-hard calculations), this is an
important consideration and represents a trade-off between
efficiency and costs. Finally, liquidity is a more abstract
concept that looks at how easy it is to sell different types
of resources on the market.

Most of the goals are self-explanatory from their descrip-
tion, but the concept of liquidity requires a more concrete
definition. Liquidity, an important measure of market quality
and a concept which is commonly used in financial markets,
describes how easy it is to trade a certain volume of the
considered good. Its rather abstract definition means that
there is no single aggregate value for liquidity. Instead, there
exist several standard measures that serve as a proxy for the
assessment of liquidity. The most common measures include
bid-ask spreads [2], market depth [5] and immediacy [15]. The
bid-ask spread measures the difference between bid prices and
ask prices of a good; smaller differences (spreads) indicate a
more liquid market. Market depth considers the volume of a
good that can be traded at a certain point in time. Immediacy
determines the time needed for an order to be (successfully)
matched. Although these measures are common in financial
literature, they cannot be applied directly in our setting, as
they are used to measure liquidity for specific assets or goods.
In our case, we are interested in the liquidity of the market
itself, where potentially many heterogeneous goods are traded.
Hence, we need to reconsider these measures for market
liquidity defining them as follows:

1) Bid-Ask Spread:

BAS =
average price bids− average price asks

time interval

2) Market Depth:

V =
amount of goods traded

time interval

3) Immediacy:

I = timetrade executed − timeask submitted



While some of the goals can potentially be achieved simul-
taneously, others compete and can create trade-offs between
the goals (e.g. minimisation of platform costs is contradicted
by the maximisation of active participants, as more participants
create the need for more resources).

B. Monitoring Metrics

To assess the performance of a goal or set of goals, they
need to be decomposed into measurable metrics. Table II,
defines an initial set of metrics that can be observed in a
marketplace, as well as for which goal(s) the metric is relevant.
The table also states where in the marketplace the metric is
observed: within the mechanism used in the market, the market
platform itself or the infrastructure used to run the market.

TABLE II
LIST OF MONITORING METRICS

Metric Level Goal Relevance

No. of allocated re-
sources

Market No. of allocations, trans-
action volume, liquidity

Average price of match-
ing

Mechanism Revenue, transaction
volume, platform profit

Active traders during
last time period

Market No. of active traders

Average price of bids
and offers

Mechanism Liquidity, platform
profit

Time to compute the al-
location and pricing

Infrastructure Platform execution
costs, liquidity

Participation costs on
the market

Mechanism Platform profit, revenue

Immediacy of order
matching

Market Liquidity

Number and costs of
platform resources

Infrastructure Platform execution costs

Naturally, other market data can be monitored. Therefore,
Table II is not exhaustive, but an initial set of metrics that are
the most relevant for steering self-aware autonomic markets.

C. Mapping Metrics to Market Goals

As some market goals defined at the beginning of this
section are rather abstract concepts, they cannot be directly
derived from monitored data (metrics). Therefore, we need
to define not only metrics that can be monitored during the
execution of the market, but also mappings that combine and
transform metrics into indicators that determine each goal’s
performance. Some metrics map directly to the goals described
previously (such as platform profit), but for all other goals
multiple metrics have to be considered. Fig. 2 presents the
mappings implemented as a part of this paper to demonstrate
the practicability of our monitoring model.

V. CASE STUDY: A MONITORING MODEL AS AN
EXTENSION TO GRIDSIM

To assess the strength of our monitoring model, we have
implemented monitoring sensors as extensions to GridSim,
an open-source toolkit for conducting simulations in Grid
environments. In this case study, we monitor the performance
of a Continuous Double Auction (CDA) and the underlying

infrastructure to demonstrate how the model can detect market
inefficiencies and peculiarities.

GridSim is an adequate platform for implementing moni-
toring model for several reasons. First, it implements numer-
ous reservation-based and auction mechanisms for resource
allocations, including the double, English, Dutch, first-price
sealed-bid, and continuous double auction mechanisms [3].
It also provides well-defined interfaces for implementing ad-
ditional mechanisms and algorithms. Second, it is designed
as an extensible multi-layer architecture which allows new
components or layers to be added and integrated into Grid-
Sim easily [10]. It also provides a comprehensive facility
for creating different classes of heterogeneous resources that
can be aggregated using application schedulers, also called
the resource brokers, for solving compute and data intensive
applications. Finally, as an open-source toolkit it has already
been used for several research projects [11]. However, GridSim
simulates Grid resource and networks and does not consider
the Cloud computing paradigm directly. Nevertheless, it is
important to note that resource markets for trading Cloud
and Grid services do not significantly differ, as although
definitions of resources may not be the same, the techniques
for matching buyers to sellers are equal. Therefore, although
GridSim simulates Grid infrastructures, it is still suitable for
the implementation of the simulation of a Cloud market.
Moreover, due to the short history of Clouds, most of the
popular Cloud simulation toolkits, such as CloudSim, do not
yet capture market mechanisms [13], making GridSim a better
choice for simulating Cloud markets at this point in time.

A. Implementation of Monitoring Sensors

The monitoring tool measures market and infrastructure
performance of GridSim components placed in one or more
architecture layers. Fig. 3 presents the layered architecture of
GridSim, its components and our extensions. As depicted,
GridSim is placed on top of an operating system and a
distributed hardware infrastructure. Communication between
the infrastructure and other GridSim components is managed
by the bottom GridSim layer. This layer additionally han-
dles the interaction or events among GridSim components
themselves. It is based on SimJava [19], a general purpose
discrete-event simulation package implemented in Java that
defines message passing operations, for communication be-
tween GridSim components [10]. The second layer models
the core elements of the distributed infrastructure, such as
resources (e.g., storage) that are essential to create simulations
in GridSim. The third layer is concerned with modeling and
simulation of services providing various functions such as
managing job submission and providing information about
available resources. The fourth layer contains components that
aid users in implementing schedulers and resource brokers
in order to test algorithms and strategies. Finally, the top
layer helps users to define scenarios and configurations for
validating the algorithms.

Our monitoring tool consists of three sensors: a mechanism
sensor, a market sensor, and an infrastructure sensor. Following
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the layered architecture of GridSim, each sensor extends one
or more GridSim layers to monitor market performance, as
depicted in Fig. 3.

The Mechanism sensor monitors performance of a market
mechanism. For example, it monitors revenue, the number
of resource allocations, and average price for a single unit
of resource. The actual allocation is handled by GridSim.
Therefore, as depicted in Fig. 3, the mechanism sensor is built
on top of the fourth GridSim layer. The mechanism sensor
uses the GridSim interfaces to receive a notification of an
allocation, i.e., a match of a buyer’s bid to a seller’s ask.
Once a resource is allocated, the sensor receives and stores
information about the allocation in the knowledge component.
Additionally, using the same GridSim interfaces, the sensor
gathers mechanism-specific information, such as number of
bids and asks awaiting allocation.

The Market sensor gathers market information which is
not mechanism-related, but is important for assessing market
performance with respect to the market goals, as presented in
Table II. For example, the market sensor stores and analyses
data concerning the past and current number of sellers and
buyers on the market, as well as the information about the
resources traded. This is achieved by using GridSim interfaces
of the architecture layers responsible for resource and job
management (i.e., layers 2 and 3 in Fig. 3).

The Infrastructure sensor monitors the performance of
a market mechanism with respect to the usage of com-
putational resources. In particular, the infrastructure sensor
monitors the utilization and performance of the underlying
operating system and hardware infrastructure. For example,
this sensor observes processor utilization and speed, number
of threads, memory usage, hard-disk usage, etc. The infras-
tructure layer monitoring is based on the interfaces defined by
the java.lang.Management package, which is a management
interface for monitoring and management of the Java virtual
machine as well as the host operating system.

B. Assessing Performance of Continuous Double Auction

In our case study, we adopt the Continuous Double Auction
(CDA) as the mechanism for matching sellers and buyers of
a particular good and for determining the prices at which

trades are executed. In CDA, bids and asks may be placed
at any point in time. As implemented in GridSim, a seller’s
ask specifies the good to be sold and its ask price. Similarly,
a buyer’s bid states the good to be purchased and a bidding
price. The orders are maintained in an order book in bid and
ask priority queues, which are ordered by price: ascending for
bids, descending for asks. Bids and asks with equal prices are
ordered by the time of submission.

When a new bid is received, it is compared with the first
ask of the order list. Similarly, if the new-coming order is an
ask, it is compared with the first bid of the bid queue. A trade
is executed if the price in the ask is lower than or equal to the
bid’s value. Otherwise, the order is added to the order book.
Upon the execution of a trade, participants are informed of the
result and the orders deleted from the order book. The trading
price is calculated as (ask + bid) / 2. Transactions continue in
this manner until no more matches can be found.

Note that although the implementation of the monitoring
sensors is in this paper described only for CDA, the model
can be used similarly to observe any other resource allocation
algorithm. CDA has been chosen due to its continuity, which
facilitates periodical monitoring and comparison of the market
mechanism in time frames. CDAs are also prevalent in many
existing markets, stock exchanges being the most prominent
example, which illustrates their significance.

VI. EVALUATION

A. Simulation Testbed

The auction process is conducted as follows. Initially, a
user submits jobs to a broker. The broker is responsible for
submitting and monitoring jobs on the user’s behalf, as well as
managing the CDA instance and setting additional parameters,
such as job length, quantity of auction rounds, reserve price,
and policy (i.e., market mechanism) to be used. Since the
broker is also the auctioneer, they inform the bidders that
a CDA is about to start, create a call for proposals (CFP),
set its initial price, and broadcast the CFP to all bidders.
Resource providers set their bids for selling a service to the
user to execute a job. Once bids are placed, the auctioneer
iteratively clears the auction according to the CDA definition
and broadcasts matches to the user and bidders (providers).



!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

'#!!!!"

'$!!!!"

'%!!!!"

'" $" ("'!"')"'%"'*"##"#+"#&")'")$")("$!"$)"$%"$*"+#"++"+&"%'"%$"%("(!"()"(%"(*"&#"

!"#$%&'()

,-./0"1-2"-3"4567" ,-./0"1-2"-3"/787" ,-./0"1-2"-3"/00-9/:-;7"

(a) Total number of bids, asks, and allocations

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" #" '" $&"$("%$"%#"%'"&&"&(")$")#")'"#&"#("*$"*#"*'"(&"(("+$"

!
"
#
$
%
&
'(
)'
*
++
(
,
*
-
(
.
/
'

01%&*-(.'

(b) Number of allocations

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

'!!!"

'#!!"

$" #" (" $&"$)"%$"%#"%("&&"&)"'$"'#"'("#&"#)"*$"*#"*(")&"))"+$"

!
"
#
"
$
%
"
&

'(")*+,$&

(c) Market revenue

!"

!#$"

%"

%#$"

&"

&#$"

!" %!" &!" '!" (!" $!" )!" *!" +!" ,!"

!
"
#
$%
&
#
'(
$)
*#
'

+,#$%-./'

(d) Average price

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'" $" ("'!"')"'%"'*"##"#+"#&")'")$")("$!"$)"$%"$*"+#"++"+&"%'"%$"%("(!"()"(%"(*"&#"
!
"#
$
%&
#
'
(
%)

#
)
*
+,
%-
.
/
0%

12#+'3*4%

(e) Used heap memory

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!"

(!!!!"

)!!!!"

*!!!!"

#" '" +" #%"#)"$#"$'"$+"%%"%)"&#"&'"&+"'%"')"(#"('"(+")%"))"*#"

!
"
#
$%
&
'
$(
&
)*
$

+,'-.%/0$

(f) CPU time

Fig. 4. Simulation results

For the evaluation purposes, we simulated one resource type
(for simplicity) traded between 200 buyers and 100 sellers.
Each buyer generates 100 jobs uniformly distributed over the
simulation time. Our sensors monitor the market infrastructure
and market mechanism performance in time frames of 5
seconds. Table III summarizes simulation settings. Our exper-
imental scenario will create a demand higher than the supply,
which somewhat contradicts the infinite elasticity assumption
of the Cloud paradigm. However, such a scenario serves as
a fitting context to highlight inefficiencies and peculiarities
within a Cloud market.

TABLE III
SIMULATION SETTINGS

Parameter Setting

Policy Continuous Double Auction
Number of buyers 200
Number of sellers 100
Number of jobs per buyer 100
Number of resource types 1
Time interval for monitoring intervals 5 seconds

B. Evaluation Results

The consequence of a high demand and low supply for a
single resource type can be seen in Fig. 4(a), which depicts
the total (cumulative) number of buyers’ bids and sellers’ asks,
as well as the total number of allocations between bids and
asks over the whole simulation. Since supply is much lower
than demand, the number of allocations is in line with the
number of providers’ asks. However, towards the end of the
simulation process, when all users have sent all their bids (i.e.,
when the total number of bids does no longer change), the
number of asks dramatically rises. Up until the point where
bids stop arriving, all providers received an allocation. At the
point when the bids stop coming in, providers start acting more

aggressively by increasing their number of asks, as because
competition increases they no longer receive matches.

Several other monitoring metrics can point to the same
problem from a different perspective. For example, an increase
in supply causes a sudden and short-term increase in number
of resource allocations and market revenue. Namely, due to
the large number of providers’ asks in the order book, users
have a higher probability to find a resource for a lower
price. Therefore, at the point when users’ bids stop coming
in, the number of sellers’ asks suddenly increases, since all
non-allocated bids get quickly allocated, which can be seen
in Fig. 4(b). This, of course, affects the market revenue
(Fig. 4(c)), which increases proportionally to the number of
allocated resources on the market.

Fig. 4(d) depicts the average price of the resource in a given
time frame. Note that the price is relatively constant during the
whole simulation period, which is due to the persistent number
of new bids and asks submitted to the market. However, at the
point when the bids stop coming in and the number of new
asks dramatically rises, the average price falls by almost 50%.
This is due to the low number of bids and large number of asks
in the order book. The relation between the number of asks
and the average price is caused by the nature of the continuous
double auction, which allocates highest bids with the lowest
asks. Since high supply results in a large number of low-priced
asks on the market, the allocations with low prices are more
numerous and the average price sinks.

From the infrastructure perspective, the market instability
causes high utilization of hardware resources. Sudden growth
of supply causes an increase in CPU and heap memory usage,
due to the high number of sellers’ asks in the order book and
their exponential growth relating to constant reordering of the
priority queue (Fig. 4(e) and 4(f)).



VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented our vision of an autonomic
self-aware Cloud market platform, and our first steps towards
achieving this vision: a market monitoring methodology. Our
methodology included a series of realistic market goals, the
sets of extractable metrics from a market platform and how
sets of metrics are combined and transformed to access goal
performance. Our simple evaluation scenario (a sudden cease
in demand) illustrated that a sudden change in demand for
resources can lead to market instability, and ultimately crashes,
as was painfully demonstrated in the recent financial crisis.
This, of course, temporarily affected the performance of mar-
ket goals (both positively and negatively), and in a real deploy-
ment would have resulted in excessive and costly utilization of
unneeded hardware infrastructure. We have shown that such
phenomena can be detected by our monitoring model, which
may in the future help to identify and react to sudden changes
in the performance of Cloud markets such that we can begin to
give these platforms autonomic capabilities and enable them
to steer away from and avoid negative market outcomes.

As future work, we intend to investigate similar phenomena
and tune our monitoring model accordingly. We also plan to
include additional allocation mechanisms for future studies.
Ultimately, our goal is to achieve a monitoring basis that
allows us to explore and investigate how the remaining com-
ponents of the Autonomic Market Adaption Cycle illustrated
in Fig. 1 can be implemented.
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