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Abstract—Low liquidity in cloud markets can result in market
instability and inefficiency, preventing the successful implemen-
tation of ubiquitous computing on demand. To circumvent this
issue, it has been suggested to channel demand and supply into
a limited number of standardized services. These standardized
services can even be automatically adapted to user requirements
with the goal of continuously improving market performance.
In this paper, we focus on answering how many standardized
services should be placed in the market. This work is based on a
new definition of liquidity for cloud resources, which in turn has
been derived from liquidity definitions of financial markets. Using
a simulation framework, we evaluate our method for estimating
the optimal quantity of standardized services with respect to
market liquidity and demonstrate the benefits of this approach
in terms of increase in market efficiency and decrease in users’
cost of participation in the market. The methods presented in
this paper have the potential to be applied in other electronic
markets as well.
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I. INTRODUCTION

Common to utility computing, cloud computing and grid
computing is that they offer computational resources (e.g.,
software, hardware and computing platform services) in a
manner similar to utilities, such as water, electricity and tele-
phony, without regard to where the services are hosted or how
they are delivered [4], [15]. However, the current cloud market
is fragmented and static, hindering the paradigm’s ability to
fulfill its promise of ubiquitous computing on demand and as
a commodity. In order to address this issue, electronic markets
for trading and/or allocating computational resources (i.e., grid
and cloud services) have been proposed [1], [38].

In cloud markets, computational services are described by
service parameters and quality of service (QoS) objectives.
Each setting of a service, i.e., configuration of parameters,
desired values of QoS objectives, and combinations of these
elements, defines a new service (also called “computational re-
source”). Due to a great number of available settings, markets
suffer from a vast diversity and heterogeneity of computational
resources.

In addition to this, computational resources are character-
ized by a high dynamism and a high fungibility. Resource
dynamism is a result of a large resource variability, a dy-
namic user base, diverse user behavior in the market, and the

emergence of new actors and new actor types. This results
in changing demand and supply. Fungibility of computational
resources describes the fact that computational resources can
be substituted by other, relatively similar resources without
violating end-user expectations. In particular, resource fun-
gibility allows minor differences in specifications of service
parameters and service objectives that define new resources.

Dynamism of resources may often have negative effects
on market liquidity of a good, i.e., the ability to easily and
quickly sell or purchase a good without causing a significant
movement in its price. With respect to the cloud market and its
extensive variety of computational resources (goods), the prob-
ability to find a resource that matches a buyer’s requirement
is relatively low and, therefore, drives potential users away.
Furthermore, finding a matching provider’s service in such an
environment is a costly task, as a buyer must check numerous
offerings before finding the closest one to their needs. In
our previous work, the means for counteracting this problem
was to channel demand and supply into a limited number of
standardized services [9], [11], [12]. For this, we proposed
automated creation, selection and adaptation of standardized
computational resource specifications based on the current
demand and supply. By continuously adapting the offering of
standardized resources, the marketplace successfully addresses
the issue of changing demand and supply and, as demonstrated
in [8], increases the homogeneity of computational resources
while decreasing the cost of searching for resources.

Standardization of computational resources has the goal
of improving market liquidity. This goal is important as it
promotes active participation in a market and helps ensuring
market efficiency and stability. This, in turn, makes the market
more resilient to external shocks, making it more competitive
and attractive to both buyers and sellers. However, demon-
strating the effects of standardized products on liquidity is far
from trivial.

The first objective of this paper is to make the first step
towards quantifying liquidity of cloud markets with respect
to the resources traded between the participants. For this, we
analyze existing approaches for assessing liquidity in financial
markets and map the common financial liquidity measures to
the computational resource markets. The challenge is to adapt
the common measures of liquidity so that they can capture
the liquidity of a set of differentiated, but partly substitutable



goods. Using our derived method, we demonstrate the effects
of standardized computational resources on market liquidity.

The second objective of the paper is to demonstrate how
the ability to assess liquidity of cloud markets opens the
possibility of adjusting the product offerings in the market
until the maximum point of liquidity is reached. To achieve
this objective, we take liquidity as the key performance in-
dicator for adapting resources and find the “ideal” quantity
of standardized computational resources so that liquidity is
maximized. In order to formalize the process of finding this
“ideal configuration”, we introduce a new method. The impor-
tance of this method is manifold: it can be used to determine
the optimal quantity of standardized resources in electronic
markets, but can also help service providers to decide on
the services they should offer in the market in order to have
the highest probability to find buyers for their services and,
therefore, increase their profit and the overall market revenue.
This method will fundamentally help the cloud computing
market to mature, stabilize and grow.

To summarize, the main contributions of this paper are: (1)
an analysis of methods for measuring market liquidity in finan-
cial markets and modifying these methods to fit computational
goods; (2) a demonstration of the benefits of standardizing
computational resources in cloud markets in terms of market
liquidity; and (3) the introduction of a method for estimating
the optimal quantity of standardized computational resources
with respect to market liquidity.

The remainder of the paper is organized as follows. Sec-
tion II discusses the state-of-the-art in research on electronic
markets. Section III presents a short overview of our approach
of standardizing computational resources in cloud markets and
highlights the importance of liquidity in computing resource
markets. In Section IV, we introduce the liquidity measures
applied in financial markets and derive a small set of liquidity
measures for cloud computing markets. Section V presents a
case study and demonstrates the positive effects of resource
standardization on market liquidity. A discussion about the
usefulness of our approach is given in Section VI. It also
introduces the method for estimating the “ideal” quantity of
standardized resources. Finally, Section VII concludes the
paper.

II. CLOUD MARKETS IN RESEARCH

Several research projects have discussed the implementation
of system resource markets [1], [14], [31]–[33], [38]. GRACE
developed a market architecture for grid markets and outlined
a market mechanism, while the good itself (i.e., computing
resource) has not been defined [14]. Moreover, the process
of creating agreements between consumers and providers has
not been addressed. The SORMA project also considered
open grid markets [32], [33]. They identified several market
requirements, such as allocative efficiency, budget-balance,
truthfulness, and individual rationality [32]. However, they
have not considered that a market can only function efficiently
with a sufficiently large liquidity. In MACE [39], an abstract
computing resource has been defined that can be traded.

However, a detailed specification of a good has not been given.
GridEcon proposed a commodity market for cloud computing
services [1], [38]. Although an explicit service level agreement
for standardized cloud services [37], the cloud service require-
ments, and the requirements for trading have been defined and
specified, the issue of adaptation of standardized goods has
not been addressed. In the work on cloud computing value
chains [31], many important issues of electronic markets (e.g.,
improved cloud pricing and licensing models) are discussed.
However, while the diversity of virtualized resources was
mentioned implicitly, the effect this diversity can have on the
market has not been addressed.

Currently, cloud market platforms assume static markets
in terms of good specification, user base and participation.
However, to enable the flexibility promised by the cloud
computing paradigm, such systems have to be adaptive and
sustainable. Moreover, in order to enable resource-efficient
utilization of on-demand resources, autonomic (self-* [28])
capabilities are essential for the creation of market platforms.
Although some scientific works address technical issues to
make systems autonomic, such as the development of ne-
gotiation protocols to make cloud services self-adaptive [7],
or consider using autonomic service management frameworks
[19], [29], [34], they do not take economic methodologies
into account. Research on autonomic systems focusing on
economic methods and considerations is in its early stage. For
example, Pardoe et al. propose mechanisms that are able to
adaptively adjust their parameters based on the past behavior
of participants [35]. Another example is the self-organizing
resource allocation mechanism for dynamic application layer
networks [43]. The largest step towards this vision, however, is
proposed by Breskovic et al. [10], [16], who use the autonomic
MAPE loop in the context of electronic markets to automat-
ically adapt the market platform to changed environmental
conditions based upon a given concept of “performance”. As
possible form of adaptations, the authors specify market’s
institutional (i.e., economical) properties (e.g., pricing rules
and allocation policies) and properties and the underlying
software/hardware infrastructure. However, they do not con-
sider issues such as resource specification and adaptation
depending on demand and supply, which is a crucial element
of autonomic marketplaces.

Resource allocation, provisioning, QoS-based service selec-
tion, and negotiation in grids and clouds have been the subject
of many research studies. Various resource-efficient and eco-
nomically beneficent allocation techniques and methodologies
have already been proposed to address these issues. These
methodologies include game theoretical approaches [3], [45],
stochastic programming [17], bio-inspired mechanisms [20],
[41], auction-based algorithms [25], [36], [46] and agent-based
approaches [21], [40], [44]. Most of these works perform
QoS service selection and resource allocation based on some
service performance indicators and economic indicators, in-
cluding wait time optimization, utilization maximization and
economic wastage minimization. However, none of the works
identified the importance of market liquidity nor performed



any kind of adaptation of resources traded in cloud markets.
Although market liquidity is commonly used in financial

literature as one of the fundamental measures of market
attractiveness, efficiency and activity, it is virtually impossible
to give one definition of liquidity that covers all of its aspects
and fits to all market scenarios. Due to this complexity,
measuring market liquidity is far from trivial. However, there
are several common measures for approximation of liquidity in
market literature with spread measures (e.g., quoted, effective
and realized spreads) [6], [27], market depth [5], and imme-
diacy of matching [18] being the most prominent examples.
Nevertheless, although they are applicable to the markets
trading financial assets, they cannot be directly applied to the
computing resource markets due to the fact that the current
computing resource market is built of an extremely high
number of heterogeneous (i.e., quality differentiated) goods.
The challenge is to adapt the common measures of liquidity
so that they can capture liquidity of a set of differentiated,
but partly substitutable goods. With such a definition, it will
be possible to create a computing commodity market, which
trades a limited number of standardized goods. A detailed
discussion on common liquidity measures in financial markets
and their possible application to computing resource markets
will be given in Section IV.

Note that besides liquidity, there are several other prominent
and important dimensions of market quality [47] such as
activity [5], [26] and information model [23]. Activity is mea-
sured by indicators such as the daily trading volume and the
average daily trade size. The information model explains how
information is translated into market prices through order flow.
Liquidity, however, is a better measure for the attractiveness
of a market as it indicates the ability to quickly trade large
size of goods for low cost [24].

III. STANDARDIZED RESOURCES IN ELECTRONIC
MARKETS: AN OVERVIEW

In order to position the work in this paper, we shortly
summarize our existing work on automatic adaptation of
standardized computational resources in cloud markets and
identify the next steps towards achieving the vision of self-
adaptive cloud resources. We also give a short motivation and
summary of the contributions of this paper.

Requirements of services in cloud markets are usually ne-
gotiated by means of Service Level Agreements (SLAs). They
are binding electronic contracts signed between service buyers
and service sellers that formally specify end-user expectations.
Before signing legally binding documents, buyers and sellers
express the requirements of their services through the use of
SLA templates. In our vision of adaptive electronic markets,
we differentiate between two types of SLA templates: (1)
private SLA templates, which are used to specify buyers’
requirements and sellers’ offerings for services and which
they create manually when submitting service offerings and
requirements to the market; and (2) public SLA templates,
which are created automatically by the market platform and

represent standardized services that can be traded in the market
[9], [11], [12].

Today’s traditional electronic marketplaces support the trad-
ing of differentiated services: a buyer’s requirement is com-
pared to all sellers’ offerings to find the best matching service.
This process is often inefficient due to the market dynamism
and a large diversity in resources, and requires buyers and
sellers to invest a large effort to find the best matching service
offerings. On the contrary, in our vision of electronic markets,
demand and supply are channeled through a limited number
of standardized resources. Buyers and sellers choose between
the available standardized services (described by public SLA
templates) that describe services closest to their needs. Due
to the significant decrease in the quantity of trading artifacts,
the effort of finding the best-fitting offering on the market is
remarkably lower. However, buyers’ and sellers’ satisfaction
with the limited choice of services is, naturally, lower as
well. To minimize this effect, appropriate adaptation methods
are applied that constantly and efficiently adjust standardized
services to the new market environment and always reflect
the requirements of market participants. As it is shown in
[8], the tradeoff between buyers’ and sellers’ satisfaction
(i.e., their utility) and cost for finding a trading partner is in
the “standardized approach” significantly better than in the
“differentiated approach”.

In our approach, standardized resources are autonomically
adapted using the traditional MAPE loop [28], which is
defined as follows. The Monitoring component monitors the
institutional performance indicators (i.e., properties concerning
the economic implementation and behavior of the market
platform) to determine the overall “market performance”. The
properties measured by the monitoring component include, for
example, market liquidity, number of active buyers and sellers,
revenue, and variety in resource types traded on the market.
The Analysis component analyzes the monitored data and
determines whether publicly available standardized services
should be adapted in order to improve the performance of
the measured market performance indicators. If an adaptation
should be executed, the analysis component inspects demand
and supply, i.e., users’ private SLA templates, and selects new
properties that the new standardized services (i.e., public SLA
templates) should reflect. In order to achieve this, clustering
algorithms are utilized to group similar user requirements and
adaption methods are used to select the preferred properties by
each of the clusters of users. Depending on the results of the
analysis phase, the Planning component determines the set of
adaptation actions to modify the specifications of standardized
services and/or create new service offerings (i.e., public SLA
templates). Finally, the Execution component executes the
adaption, submits the newly created public SLA templates to
the market, and notifies the users of the changes.

In our previous works [8], [11]–[13], we discussed the
three of the four adaptation steps: analysis, planning, and
execution. In [11], we applied and compared several clustering
algorithms for grouping similar requirements of market par-
ticipants. Using a simulation environment, we identified the



k-means algorithm as the best performing in terms of several
evaluation criteria, such as the minimization of participants’
costs of utilizing newly created public SLA templates and the
maximization of SLA isolation (i.e., the average difference
between newly generated public SLA templates). In [12], [30],
we demonstrated several methods for creation of public SLA
templates based on the private SLA templates of a group of
market participants, where the maximum method [30] proved
to be the most efficient. Finally, in [13], we introduced an
automated method for a cost-efficient creation, adaptation, and
utilization of standardized resources as the first step towards
optimization of the adaptation process.

The first phase of the autonomic loop (i.e., monitoring) was
in our earlier work simplified as it only considered buyers’ and
sellers’ utility (i.e., satisfaction with the standardized services)
and the cost that the approach incurred to them. In this paper,
we discuss this component in more detail and investigate the
methods for measuring market liquidity as the key indicator of
market performance. Besides defining methods for assessing
liquidity, we quantify the impact of standardizing resources
in cloud markets on market liquidity and demonstrate how
liquidity measures can be used to determine the “optimal”
quantity of standardized resources in the market.

IV. MEASURING LIQUIDITY IN ELECTRONIC MARKETS

A. The meaning and importance of market liquidity

Market liquidity is an important measure of market quality
and a concept which is commonly used in financial markets,
but can be applied to other types of markets as well. In its
essence, it describes how easy it is to trade a certain volume
of the considered good. A market is liquid when it has a high
level of trading activity, where one can buy and sell with the
minimum price deviation.

The essential characteristic of a liquid market is that there
are sufficiently many ready and willing buyers and sellers
at all times. Market liquidity also depends on the ease with
which market participants can carry out transactions. Thus,
other things being equal, lower transaction costs contribute to
higher market liquidity. In particular, if transaction costs and
the costs of the participation in the market are high, the gap
between the effective price received by the seller and that paid
by the buyer of a service will be large and it will be difficult to
match sell and buy orders [22]. Furthermore, if participation
costs are high enough to constitute an entry barrier, the market
will attract fewer dealers and investors, also lowering trading
activity and, consequentially, market liquidity.

In order to work efficiently and to guarantee market stability,
a marketplace should have a sufficiently high liquidity. In
order for a market to be deeply liquid, a quick, simple and
inexpensive exchange of products between buyers and sellers
needs to be possible. In markets with a high variety of resource
types, as it is the case with cloud markets, this means that it
is necessary to ensure a large likelihood of finding a seller’s
offering for every buyer’s requirement and vice versa.

B. Liquidity in financial markets

Due to its complex definition, measuring market liquidity
is not a trivial task. Many factors affect liquidity, including
institutional factors such as securities law, the regulation
and supervision of dealers, and accounting rules. Equally,
environmental factors such as the macroeconomic situation
and changes play a role. Consideration of all factors that affect
liquidity and formulation of possible measures for its quantifi-
cation have been discussed in various research works with the
focus on financial markets [5], [6], [18], [27], [47]. However,
the common conclusion of those works is that the highly
abstract definition of market liquidity means that it cannot be
expressed as an aggregate value. Instead, there exist several
standard measures that serve as proxies for its assessment. The
most common measures include bid-ask spreads [2], market
depth [5], and immediacy [18]. In the following, we describe
how each of these measures can successfully capture at least
one of the perspectives of market liquidity.

Bid-ask spread denotes the amount by which an ask,
i.e., a seller’s offered price, exceeds a bid, i.e., a buyer’s
requested price. The bid-ask spread essentially measures the
difference in price between the highest price that a buyer is
willing to pay for a product and the lowest price for which
a seller is willing to sell it. Large bid-ask spreads indicate
high buying possibilities of the buyers: their request prices
are higher than the prices offered by the sellers, which results
in more numerous trades in the market. Since the large bid-ask
spread points to a high trading dynamism, it also leads to the
conclusion that the market liquidity rises proportionally to the
increase of its value.

Market depth measures the volume of goods traded in the
market, i.e., the units that can be sold or bought for a given
price impact. Particularly, market depth refers to the maximum
size of a trade for any given bid/ask spread. A market may be
considered deeply liquid if there are ready and willing buyers
and sellers in large quantities, which is directly related to the
concept of market depth as a large number of market traders
and service offerings as well as a well-designed allocation
mechanism result in a large trading volume in a time period.
This suggests that a high market depth implies that the assets
can be easily purchased or sold. Therefore, high market depth
indicates high market liquidity.

The third common approximate measure of market liquidity,
immediacy, refers to the time needed to successfully trade a
certain amount of a product at a prescribed cost. Essentially,
immediacy can be measured as the time passed between the
submission of a requirement for a service to a market and
the allocation (i.e., a match) between the buyer’s requirement
and a seller’s offering. Depending on the actor, it is possible
to differentiate buyer’s immediacy from seller’s immediacy.
Small immediacy characterizes a small time needed to close
a trade and indicates a liquid market.

C. Liquidity in cloud markets

The presented measures for approximation of market liq-
uidity are commonly used in financial literature to measure



liquidity of monetary assets. In the case of cloud markets,
we are interested in the liquidity of the market itself, where
potentially many heterogeneous goods are traded. Due to the
significantly different market organization in terms of goods,
definition of liquidity must be modified and adapted to this
setting. However, this is not a trivial task. For this reason,
instead of defining a complete liquidity model for electronic
markets, we will focus only on those aspects that may be
affected by the standardization of computational resources in
this paper.

One of the key factors of market liquidity is the prices
of goods traded in the market: liquidity is strongly affected
by buyers’ bids and sellers’ asks for goods and strongly
depends on the market’s allocation mechanism as well as
the pricing methods used. However, from the perspective of
the standardization of goods in electronic markets, we are
interested only in the explicit impact of the quantity and
structure of the goods on market liquidity. For this reason,
the effects that the standardization of services may have on
the prices in the market are out of scope of this paper.
To achieve this, we simplify the definition of liquidity and
assume a static user behavior in terms of pricing. Namely,
we assume that the standardization of goods does not affect
the bidding strategies of market participants: they are willing
to bid for the standardized goods with the same prices as
for the differentiated goods. Note that this assumption would
most probably not hold in the real-life markets for several
reasons. For example, users’ satisfaction with the standardized
goods may be lower than with the exact goods they need,
which would result in the lower bidding prices. On the other
hand, the positive impacts on market liquidity and participation
costs (which will be demonstrated later in the paper) would
have positive impacts on the bidding prices. However, the
assumption of “static pricing” provides a simplified view on
market liquidity and allows us to avoid uncertainty about the
real cause of the change of market prices.

To quantify the impact of the product standardization on
market quality, we consider the definitions of the common
liquidity measures. Due to the simplification of the assessment
model, we are not interested in the bid-ask spread, as it
only depends on the current market prices. However, we are
interested in the other two standard measures: market depth
and immediacy, which we modify to the overall market depth
and the search cost.

1) Overall market depth: Similarly as in financial markets,
we use market depth to indicate the number of matches
between requirements and offers during the trading time.
In financial markets, depth points to the trading volume of
one asset. In the computing resource market characterized by
the heterogeneity of services, however, market depth can be
seen as the cumulative value for all goods in the market. To
differentiate between these measures, we use the term overall
market depth to indicate the cumulative trading volume in
computing resource markets. Details on how the overall market
depth can be measured in adaptive cloud markets will be
presented in Section V-A.

2) Search cost: In its original definition, immediacy strictly
represents the time needed to successfully trade a product in
the market. It is presented in time units and is defined for every
single asset in the market. Although it is a valuable indicator
of market liquidity, it is hard to strictly associate it to the
variety of resource types in the market, as many factors (e.g.,
performance of market mechanisms and pricing algorithms,
as well as various exogenous factors) may affect immediacy.
To avoid these conflicts, we consider immediacy in its broad
form: the effort needed to be invested in order to find a trading
partner. In our context, this effort describes the number of
comparisons between a buyer’s (or a seller’s) requirement
and sellers’ (or buyers’) offerings in the market until the
most suitable service in the market is found. The effort is,
hence, associated to the search of a fitting service offering
and is, for this reason, termed search cost. The search cost is
of a particular importance in those markets in which goods
are purchased and (re)sold very often. Considering cloud
computing, this is the case in markets in which computational
resources are rented on a short term (e.g., Amazon EC2 Spot
Instances1). Note that the search cost strictly correlates to the
immediacy, since a large search cost is always a result of more
numerous execution steps in the market, which requires more
computation time.

Having the two liquidity measures in mind, we conclude
that the goal of increasing market liquidity can be achieved by
increasing the overall market depth while reducing the buyers’
and sellers’ search cost. Due to the inversely proportional
relation between these values, this goal can be additionally
expressed as maximization of the aggregate liquidity measure

lqdta = overall market depth/search cost. (1)

Note that Eq. (1) does not present a “final” and “unique” mea-
sure of liquidity, i.e, a measure that depicts market liquidity
independently from the overall market depth and the search
cost. In particular, as it will be demonstrated in Section V, all
presented liquidity measures are equally important and cannot
be interpreted autonomously, i.e., without considering other
measures simultaneously.

V. CASE STUDY

A set of realistic and effective measures for quantification
of liquidity in cloud markets may bring enormous benefits in
various research areas, including design and implementation
of market platforms, allocation mechanisms and pricing, as
well as market assessment and autonomic market adaptation.
In this paper, we focus on its two fundamental applications
with respect to the standardization of computational resources.
First, we study the impact of standardized services to market
liquidity and compare it to the liquidity of electronic markets
with numerous differentiated and heterogenous services. Sec-
ond, we explore the possibility of using market liquidity as the
main market performance indicator to determine the quantity
and quality of standardized services. To perform this analysis,

1http://aws.amazon.com/ec2/spot-instances/



we define a case study in a simulated market environment
described in [11] for evaluating the trade of both differentiated
and standardized products, and examine market liquidity of the
market in the given trading scenarios.

A. Simulation environment and testbed

In our earlier works, we introduced a simulation framework
[11] and a testbed [8] for evaluating the approach of stan-
dardization of computational resources from the perspective
of the cost of creating and utilizing standardized services. For
the sake of consistency, in this paper we adopt the previously
established simulation testbed, which we shortly summarize
here.

The simulation process is started by a random generation of
buyers’ and sellers’ private SLA templates containing a fixed
amount of 4 SLA parameters and 4 associated service level
objectives (SLOs). The desired parameter values specified in
users’ SLOs are given in form of ranges of real numbers. For
example, an SLO value for an SLA parameter ErrorRate
may be [0,1]%, stating that any value between 0% and 1%
is acceptable for the user. The values of SLOs are created
randomly, but with a predefined width of the value range,
which is given as a percentage of the maximum possible SLO
value range. Simulation settings are presented in Table I.

TABLE I
SIMULATION SETTINGS

Parameter Value
No. of market users 200 ≤ n ≤ 15000
Portion of buyers in the number of users 50%
Portion of sellers in the number of users 50%
No. of parameters in SLA templates 4
Width of the SLO value range 10%
Method to cluster users’ preferences k-means [11]
Method to adapt standardized services Maximum method [30]
No. of services required/offered by one user 1

After creating users’ private SLA templates, the simulation
of trade is performed. As previously mentioned, we separately
simulate the trade of differentiated and standardized services.

The trade of differentiated services is started by buy-
ers who “manually” search for appropriate trading partners.
Hereby, buyers iterate trough all sellers’ offerings and compare
them to their requirements by considering the values of service
objectives. A match between a buyer’s requirement and a
seller’s offering is found if the intersection of the SLO value
ranges of all SLA parameters is not an empty set. Once a
buyer finds a match, the search is stopped and the buyer is
ready to establish a trade.

The trade of standardized services is started by the k-
means clustering algorithm that is applied to group similar
requirements and offers based on the SLO values from users’
SLA templates [11]. The adaptation method named “maximum
method” [30] is applied and a set of new public SLA templates
is created (or the existing set updated). As described in
[8], unlike private SLA templates, a public SLA template
defines single parameter values for SLOs instead of ranges
of acceptable values. Once the adaptation cycle is finished,

buyers and sellers iterate through the newly created public
SLA templates and check whether the new products have the
required specification. Specifications of the templates match
only if the SLO values of all SLA parameters from a public
SLA template are inside the value ranges specified by their
private SLA templates. Note that only those users who have a
matching specification are able to be part of a trade. Finally,
buyers are matched with the randomly chosen sellers from
the set of users who opt for the same public SLA template.
Note that finding a matching public SLA template does not
guarantee an allocation with another trading party, as it may
happen that the demand and the supply are not balanced.

In both the differentiated and the standardized approaches,
the overall market depth is measured as the accumulative
trading volume, i.e., the total number of buyers and sellers
who have received an allocation. On the other hand, search
cost is measured as the number of comparisons between SLA
templates that the users have to perform in order to find a
suiting trading partner. These are the comparisons between
the buyers’ and the sellers’ private SLA templates in case of
the differentiated approach, and between users’ (buyers’ and
sellers’) private SLA templates and the public SLA templates
in case of the standardized approach.

For the sake of simplicity, each market participant can
have either the role of a buyer or a seller, but not both at
the same time. Furthermore, each participant wishes to sell
or purchase only one service during the whole simulation
period. Therefore, once an allocation occurs (i.e., when a
match between a seller’s offer and a buyer’s requirement is
found), both the buyer and the seller are removed from the list
of users who have not yet received an allocation. Although the
latter limitation may contradict the scalability requirements of
the cloud computing paradigm that promise virtually unlimited
resources, it helps in simplification of the simulation model
without affecting the approach of standardizing computational
resources.

Regarding the credibility of the simulated approach with
respect to the random creation of SLAs, note that the real-
world “production” SLAs are currently very limited: they are
used only for describing infrastructure services (i.e., in the
infrastructure-as-a-service business model), while for the other
models such as platform-as-a-service (PaaS) and software-as-
a-service (SaaS) they are still not utilized. The SLA parameters
contained by the SLAs used in our experiments are simple
modifications of common production SLAs used in the IaaS
model. However, it is noteworthy that the real-world SLAs
are more complex than the simulated SLAs since they contain
more SLA parameters and more differences in their defini-
tions. It is also important to note that the motivation for our
approach of standardizing computational resources gets on its
significance with the additional complexity of users’ SLAs.
Therefore, we believe that our approach would demonstrate
even better results with the real-world production SLAs than
in the simulated environment. This analysis is, however, out
of scope of this paper and will be examined in detail in our
future work.
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(c) Relative difference between overall market depth and search cost (i.e., aggregate liquidity measure)

Fig. 1. Simulation results for 600, 4000, and 10000 market participants

B. Evaluation results

To begin our analysis of the impact of standardized products
on market liquidity, we simulate a trade of exclusively differ-
entiated products as well as a trade of standardized products
in various environments, out of which we here discuss three:
with 600, 4000, and 10000 market participants trading. In each
of the scenarios, demand and supply are evenly distributed,
i.e., 50% of traders are buyers and the remaining 50% sellers.
Note that the latter assumption does not hold in the real-
world scenarios as cloud consumers currently significantly out-
number cloud providers. However, this assumption increases
market activity and improves visibility of effects of resource
standardization on market liquidity. In our future work, we
will investigate whether and to which extent the ratio between
demand and supply affects the evaluation results.

Fig. 1 presents the simulation results. It contains 9 graphs
arranged in 3 columns and 3 rows. Each of the rows presents

one of the liquidity measures: Fig. 1(a) depicts the overall
market depth, Fig. 1(b) depicts the search cost, and Fig. 1(c)
depicts their relative difference (also called “the aggregate
liquidity measure”). In each of the rows, the left-hand graph
presents the trade of 600 market participants, the middle graph
the trade of 4000 participants, and the right-hand graph the
trade of 10000 market participants. The horizontal axis depicts
the number of created standardized products (i.e., public SLA
templates) and the vertical axis depicts the result values
of liquidity measures. Note that the change in the number
of standardized products is the only change in the market
condition that we consider. This change, of course, does not
effect the trade of the differentiated goods. Nevertheless, in
order to simplify the comparison between the two trading
approaches, Fig. 1 depicts the continuous but constant values
of liquidity measures for the “differentiated approach”.



1) Overall market depth: We begin our discussion on sim-
ulation results by considering overall market depth depicted
in Fig. 1(a). The graphs in this figure present the expected
dominance of the differentiated products over the standardized
products in terms of the number of successful allocations of
requirements and offers for services. Naturally, due to the high
variety in resource types when trading differentiated products,
probability to find an offer similar to a user’s requirement is
significantly higher. Regarding the standardized approach, the
graphs obviously demonstrate that the overall market depth
grows with the increasing number of standardized resource
types in the market. In order to achieve the same amount
of overall market depth as with the differentiated resources,
the standardized approach should create a very large number
of standardized resources. This, however, means that each
standardized resource would be approximately equal to one
private SLA template in the market and would only slightly
differ from the differentiated approach. Moreover, since the
number of standardized resources cannot be larger than the
number of differentiated resources, we conclude that the
standardized approach will always achieve a lower or equal
value of the overall market depth when compared to the
differentiated approach.

When comparing the overall market depth for the differ-
entiated and the standardized products, an interesting result
occurs. As shown in Fig. 1(a), the depth for the standardized
approach, although always lower than for the differentiated
approach, significantly rises with the number of market traders.
Considering the values of the left-hand graph, we conclude that
the standardized approach achieves the maximum of 64% of
the depth value of the differentiated approach when there are
600 active traders in the market. This value is achieved with 47
standardized products, which is 6.4 times less than the number
of products in the differentiated market. When the number
of market participants is increased to 10000 (the right-hand
graph), the standardized approach achieves up to 93.4% of the
overall market depth of the differentiated approach, although
the number of standardized resources increased only slightly.
In this case, when the maximum depth is achieved there are
86 standardized resources in the market which is almost 58
times less than the number of differentiated products. The main
reason for this behavior is diversity of resource types which
is reasonably constant, no matter the number of active traders.
Namely, with only a small number of traders, the number of
different resource types in the market is large and the number
of users requiring or offering one resource type is low. On
the contrary, with a sufficiently large number of traders, the
number of different resource types is only moderately higher,
but with more users requiring a same resource type. This
means that the number of standardized products needed to
keep the overall market depth stable grows slowly with the
number of market participants.

The discovery of the relatively constant diversity in resource
types may lead to a conclusion that a fixed amount of
standardized products is needed to achieve a certain level of
market efficiency with the number of traders playing no role

in its determination. This is, however, not the case for several
reasons. First, as depicted in Fig. 1(a), after a certain amount
of standardized products is created, the growth of the overall
market depth with every new standardized products decelerates
because the currently existing standardized products already
reflect the needs of most of the traders. Secondly, as it will be
soon explained, this growth is not sufficiently high to cover the
expenses of the introduction of more standardized products.

2) Search cost: Fig. 1(b) presents the effort needed to
find a trading partner in the simulated market environment.
On the contrary to the perspective of overall market depth,
the differentiated approach is significantly inferior to the
standardized approach when considering the search cost. For
the differentiated goods, buyers must iterate through active
sellers’ offerings until they find a matching service. This
means that the maximum search cost is

costdiff.max = no. buyers× no. sellers. (2)

In the standardized approach, all users (buyers and sellers)
iterate through public SLA templates, which means that the
maximum search cost is

costst.max = (no. buyers+ no. sellers)× no. st. resources.
(3)

Since the number of buyers and sellers is alway remarkably
larger than the number of standardized resources, the effort
needed in the differentiated approach is always larger when
compared to the standardized approach. However, the realistic
cost values are usually notably lower than the theoretical
maximum in both the differentiated and the standardized
approach for two reasons. Firstly, users usually find required
services before iterating through the whole list of available
resources. Secondly, in the differentiated approach, once an
allocation occurs, the buyer’s request and the seller’s offer
are not considered in future iterations, which means that
the number of active (i.e., non-allocated) users is reduced.
Nevertheless, search cost grows with the number of market
participants and the quantity of standardized products. Since
sellers appear in the market much faster and in larger quantities
than the standardized resources, the positive effects of the
standardization becomes greatly obvious with the increasing
number of market participants.

In the differentiated approach, the growth of the search
cost slows down with the increase in the number of active
market traders. For instance, when there are 600 traders
in the market, the measured cost is 27% of the maximum
possible cost (Eq. (2)). On the contrary, when there are 10000
market traders, the value of the search cost is only 9% of the
maximum cost. This is due to a large number of traders, which
means that they can easily find a trading partner (due to the
diversity in offerings) and have to perform a smaller number
of search iterations. Similarly, the increase in the number of
standardized products slows down the rise of the search cost
in the standardized approach since users can easily find an
appropriate service.
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Fig. 2. Standardized vs. differentiated approach in terms of aggregate
liquidity measure

3) Aggregate liquidity measure: The conclusion that can
be drawn from the previous analysis of standardized vs.
differentiated approach in terms of overall market depth and
search cost is that the standardization of services facilitates the
search for the appropriate services (i.e., it minimizes the cost
necessary to perform that action), but provides a lower chance
to find a match for a certain service requirement or an offering.
It stays unclear, however, which of the two approaches creates
a better trading environment, as each of them provides a better
performance from one of the two aspects of liquidity. The
doubt that remains is, therefore, whether the lower overall
market depth of the standardized approach compensates for
the low search cost and whether the standardization improves
the overall market liquidity. To answer this question, we use
the aggregate liquidity measure (Eq. (1)). Market liquidity is
improved if the depth is increased while the effort is reduced.
Therefore, the market platform has the goal of maximizing the
relative difference between these two values.

Fig. 1(c) depicts the values of the aggregate liquidity mea-
sure and shows that the positive effects of the standardization
become present only with a sufficiently high number of market
participants. In a market with a limited amount of traders,
a high diversity in resource types is distributed among a
low number of market users and, as already explained, many
standardized products are needed to achieve even a moderate
overall market depth. At the same time, a large amount of
standardized products increases the cost of searching for the
most appropriate service offering. With the increase in the
number of buyers and sellers, every new standardized product
brings more to the overall market depth, but increases the
search cost only slightly. Therefore, the more participants are
in the market, the more benefits the standardization brings.

The question of how large the positive effect of the standard-
ization to the market liquidity is can be answered by observing
the results depicted in Fig. 2. The figure compares the two
approaches by looking at the relative difference between the
aggregate liquidity measures of the approaches, i.e.,

l =
depthst./costst.

depthdiff./costdiff.
=

depthst.

depthdiff.
× costdiff.

costst.
. (4)

Essentially, Fig. 2 shows how many times the value of the
aggregate liquidity measure in the standardized approach is
higher than the value in the differentiated approach. The graph
presents the measured values for the various number of market
participants (in the legend depicted in the form of no. buyers
+ no. sellers) and the “line of equality”, which represents the
value in which the two trading approach behave equally in
terms of market liquidity (i.e., when the value of the aggregate
liquidity measure is 1).

Fig. 2 emphasizes the limited performance of the standard-
ized approach with the low number of traders, but also its great
outperformance when the number of traders is sufficiently
high. In the demonstrated scenario, the standardized approach
achieves up to 6 times higher amount of “aggregate liquidity”
with 15000 market participants, which is achieved by creating
only 80 standardized products. This result is important and
noteworthy as we demonstrated, using a simulation scenario,
that the standardization of goods in small markets may even
hurt the market efficiency and stability. On the contrary, it
brings enormous savings and benefits in a market where the
demand and the supply are sufficiently high.

VI. ESTIMATING THE “IDEAL” NUMBER OF
STANDARDIZED RESOURCES

In the previous section, we demonstrated the positive effects
of the standardization of computational resources on market
liquidity in (simulated) electronic markets. In this section,
we continue this study and analyze the possibilities of using
methods for approximation of liquidity to maximize the ben-
efits of the standardized approach. In particular, we look into
automatic estimation of the number of standardized products
that, when introduced, increase the aggregate liquidity measure
to its maximum point. Since market liquidity is the main per-
formance indicator for the “benefit”, the number of products is
“ideal” when the liquidity is maximized. Finding this number
is, therefore, a matter of finding the market setting in which a
single liquidity measure achieves its maximal value. However,
as already described in Section IV, there is no universal
measure of market liquidity. Overall market depth and search
cost cannot be taken as the only measures of liquidity as they
both must be considered in order to balance low search cost
and high overall market depth. The aggregate liquidity measure
(i.e., the relative difference between the depth and the cost)
may help to find the “optimal” point, but cannot be taken into
consideration individually either. To demonstrate this with an
example, in the left-hand graph of Fig. 1(c) it seems that,
considering the value of the aggregate liquidity measure, the
standardized approach outperforms the differentiated approach
when there are only a few standardized products in the market.
This, however, does not hold, as a user’s probability to find a
trading partner at this point is almost nonexistent. A market
with such a low matching probability has almost no benefits
for buyers and sellers who would, in this case, almost certainly
leave the market. Therefore, despite extremely low search costs
that increase the aggregate liquidity measure, these results
cannot be taken into consideration. However, as the aggregate



liquidity measure is the closest we can get to the universal
indicator of market liquidity, we address this issue by taking
only those scenarios into consideration in which the overall
market depth of the standardized approach reaches at least
50% of the value achieved by the differentiated approach. This
step ensures at least a moderately satisfying outcome to the
users. For the cases in which overall market depth is lower than
this predefined threshold, we conclude that the standardization
does not pay off and that only differentiated products should
be traded.

Fig. 3(a) depicts the number of standardized products cre-
ated for a certain number of buyers and sellers in the market
when the aggregate liquidity measure is maximized. Due to
considering only the values where the overall market depth is
sufficiently high, the scenarios with the lower number are not
represented. The figure presents the market behavior already
discussed in Section V: the “ideal” number of standardized
products increases with a significantly slower pace than the
number of traders. Moreover, the growth slows down with the
increase in the number of traders. Therefore, after a certain
number of standardized products are created, there are not
many benefits of introducing additional products, no matter
the number of market participants.

The usefulness of the market behavior depicted in Fig. 3(a)
is limited, as it can only be used to estimate the “ideal”
number of standardized products in a low number of situations:
when the number of sellers and buyers in the market is high
enough, the introduction of additional products does not have
a large effect on market liquidity. As already discussed, in
this case the “ideal” number of standardized products stays
constant. To avoid this limitation, we consider the same results
from a different perspective. Fig. 3(b) depicts the number of
buyers and sellers per one standardized product in the market.
The linear behavior of the graph shows that the diversity of
resource types rises only slowly with the number of market
participants, but the number of users using the same resource
type increases. Therefore, in a market with more traders, the
number of standardized products is not high, but the number
of users per one product is. This measure does not only
illustrate market behavior but may also help to estimate the
“ideal” number of standardized products. In particular, the
linear growth presented in Fig. 3(b) can be estimated with
the following equation:

no. users per resource = 0.12× no. users+ 13.17 (5)

The prediction probability is larger than 99% (i.e., with an
R2 value larger than 0.99). In statistics, the coefficient of
determination R2 is the proportion of variability in a data set
that is accounted for by the statistical model ( [42], pp. 187,
287). It provides a measure of how well future outcomes are
likely to be predicted by the model. Note that in the given
equation, no. users represents the sum of the number of
buyers and the number of sellers in the market.

With respect to Eq. (5), the “ideal” number of standardized

resources can be estimated using the following equation:

no. resources =

⌊
no. users

0.12× no. users+ 13.17

⌋
(6)

Note, however, that this result is valid only for the given
trading scenario. The estimation function and the certainty
depend on the demand and supply, i.e., the diversity in resource
types in the market, and differ in other (real-case) scenarios.
However, having a (reasonable) assumption that the diversity
of users’ requirements is relatively limited even in the real
implementations of electronic markets, the same estimation
method may be used in those environments, but with Eq. 5
adapted to the observed demand and supply.

If properly used, the presented method, i.e., the appropri-
ately adapted Eq. 6, can be used to efficiently estimate the
“ideal” number of standardized resources for every market
situation. Namely, after having enough data to build the esti-
mation function with a sufficiently high prediction probability,
it is not necessary to check the varying number of standardized
resources in order to find the “ideal” number, but it is possible
to use the equation to quickly compute it. In order to allow a
particular certainty, another method can be applied to confirm
that indeed the number with the maximum aggregate liquidity
measure has been selected. Namely, as the simulation scenario
presented in Section V-B has demonstrated, after the maximal
aggregate liquidity value has been reached, the dynamics of
the growth of overall market depth suddenly change: even
if a larger quantity of standardized products is introduced,
the depth stops rising or even loses its value (cf. Fig. 1(a)).
Therefore, it is possible to check whether any close number of
standardized resources larger than the chosen “ideal” number
increases the overall market depth and, thus, validate the
estimated quantity.

VII. CONCLUSION AND FUTURE WORK

Despite many attempts, an implementation of an efficient
and dynamic market model for trading computational services
is still missing. Due to the broad resource variability and still
low number of market participants, the lack of standardized
computational services can cause low market liquidity and
reduce the attractiveness of the market platform. Addressing
this issue may decide whether (or when) cloud computing will
finally make traditional vendor relationships obsolete.

In this paper, we emphasized the need for quantifying
liquidity in electronic markets and derived a set of liquidity
measures from the most notable literature on assessment of
financial markets. Using the derived “liquidity model”, we
demonstrated substantial benefits that the standardization of
computational resources brings in terms of market liquidity.
Furthermore, we used the measure of liquidity to determine
the “optimal setting” of a market, i.e., a quantity of standard-
ized products that should be created so that the liquidity is
maximized. The usefulness of the derived method is manifold.
First, it improves liquidity and, therefore, market activity
and attractiveness, resulting in more numerous trades and
potentially attracting more market participants. Second, this
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Fig. 3. Estimating the “ideal” number of standardized goods

method can be used by service providers to decide on the set
of services they should offer so that the probability to find a
buyer is maximized, therefore increasing providers’ profit and
the market revenue.

In our future work, in addition to market liquidity, we will
consider other measures of market quality and analyze the pos-
sibility of creating a “(near) optimal market setting”, in which
all of the measures are balanced and maximized. Furthermore,
we will consider more complicated SLA specifications, in
order to demonstrate the benefits of resource standardization
in the real-world trading scenarios.
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Birkhäuser Basel, 2010, pp. 187–208.
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