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Abstract—Popularity of Cloud Computing produced the birth
of Everything-as-a-Service (XaaS) concept, where each service
can comprise large variety of software and hardware elements.
Although having the same concept, each of these services repre-
sent complex systems that have to be deployed and managed by
a provider using individual tools for almost every element. This
usually leads to a combination of different deployment tools that
are unable to interact with each another in order to provide an
unified and automatic service deployment procedure. Therefore,
the tools are usually used manually or specifically intergrated for
a single cloud service, which on the other hand requires changing
the entire deployment procedure in case the service gets modified.

In this paper we utilize Model-driven development (MDD)
approach for building and managing arbitrary cloud services.
We define a metamodel of a cloud service called CoPS, which
describes a cloud service as a composition of software and
hardware elements by using three sequential models, namely
Component, Product and Service. We also present an architecture
of a Cloud Management System (CMS) that is able to manage
such services by automatically transforming the service models
from the abstract representation to the actual deployment.
Finally, we validate our approach by realizing three real world
use cases using a prototype implementation of the proposed CMS
architecture.

Keywords—Cloud Computing; Model-Driven Development;
Cloud Service Model; Cloud Management System;

I. INTRODUCTION

Cloud Computing represents a new paradigm where arbi-
trary IT products, such as software applications, development
environments and processors are integrated and offered as
part of on-demand online services. According to the National
Institute of Standards and Technology [1], Cloud Computing
defines three service layers, including Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS), also referred to as SPI service models. Unlike
IaaS that usually offers a single distinct product, i.e., a virtual
machine (VM), upper layers such as PaaS and SaaS provide
services that are composed out of arbitrary software prod-
ucts such as database applications, web servers and storage
platforms. This leads to an explosion of services such as
Storage-aaS, Database-aaS, Identity-aaS and Computing-aaS,
thus producing the birth of Everything-as-a-Service (XaaS)
concept [2].

Building and managing such diverse services requires
separate deployment tools [3] for each element that is part
of the service, usually being distinguished by its deployment
layer, e.g., deploying VMs is done by using OpenNebula [4]
on an infrastructure layer, while a database can be deployed
using CloudFoundry [5]. These tools are mostly used manually
and separately for each layer, or in a best case scenario they
are specifically integrated and customized for a single Cloud
service. However, if the service changes the deployment and
management procedure has to change as well, which may
require reintegrating deployment tools from the start. Fox
example, Microsoft offered a standard PaaS with their Azure
[6], until they granted a VM access to their customers by
introducing VM roles, hence reaching towards elements on
an infrastructure layer. Problem with such approach is that the
deployment procedure for each service is being built from the
ground up, without reusing procedures from a service that uses
the same elements.

In order to reuse existing deployment procedures, Cloud
service elements should be abstracted with a higher-level
model [7] capable of describing any service with regards to
its composition [8]. Furthermore, a Cloud Management System
(CMS) must implement an uniform deployment procedure that
utilizes this abstraction, while actual deployment is executed
by a lower-level tools specifically designed for a targeted piece
of software. For example, a database application can be part of
SaaS such as Facebook [9], where customer has no access to
it. It can be part of PaaS such as Amazon RDS [10], where it
is accessed by a customer, but managed by a provider. Finally,
it can be part of Amazon EC2 [10] as an example of IaaS,
where it is both accessed and managed by a customer. In all
three cases the database application could be deployed with
the same procedure using different configuration.

In this paper we introduce an uniform approach for deploy-
ing and monitoring arbitrary Cloud services. We utilize Model-
driven development (MDD) [11] for defining a Cloud service
metamodel called CoPS, in order to get uniform representation
of a Cloud service. The CoPS follows the Model-driven archi-
tecture (MDA) scheme proposed by OMG [12], which defines
three levels of models that describe a system on the abstract
level, on the structural level and finally on the implementation
level. We refer to these models as Service, Product and
Component, which form the abbreviation CoPS in a reverse
order. The models can be sequentially transformed between
each other going from the abstract representation to the actual



deployment. Additionally, the CoPS allows partitioning of the
models so the models for individual service elements can be
reused in other services.

We present the Cloud Management System (CMS) archi-
tecture capable of managing Cloud services described with
CoPS. Management of a service and its elements is performed
on the structural level since service components are represented
through templates as black boxes, while transformation to the
implementation model and final deployment is performed via
plugins. Additionally, modularity of the CoPS models allows
the CMS to reuse its templates and plugins for multiple Cloud
services. The modules and interfaces of the architecture are
described with Unified Modeling Language (UML) [13].

The prototype architecture is implemented using the Cloud-
compaas [14], a Cloud manager framework for the dynamic
management of Cloud resources, and M4Cloud [15], a plugin-
based monitoring tool capable of monitoring arbitrary metrics.
The prototype is used for validating both CoPS metamodel
and the CMS architecture on the three use cases based on real
world scenarios.

The rest of the paper is organized as follows. Three use
cases used throughout the paper are described in Section
II. Section III gives a motivation for the approach taken in
this paper. Section IV introduces the CoPS model. Section
V provides a detailed description of the architecture, while
Section VI describes the implementation of its prototype.
Section VII gives validation of the CoPS metamodel and the
architecture by realizing the three use cases. Section VIII
describes relevant related works. Finally, section IX concludes
the paper and proposes the future work.

II. USE CASE SCENARIOS

We depict three use cases based on real world scenarios
to emphasize of the issues related to management of Cloud
services.

• Online Course: Students of an online course require
a specific software stack to complete exercises of the
course, similar to [16]. The software stack includes a
large number of tightly coupled Python libraries, some
of them specific to the course topic and not widely
available. In order to avoid the cumbersome operation
of manually installing the libraries, the course offers
an online service for instantiating a VM with a cus-
tomizable software stack.
This is a basic IaaS scenario where a provider such as
Amazon [10] offers VMs. Additionally, the provider
also offers ready to use VM images with preinstalled
software [17]. Another examples of such a service are
AWS Marketplace [18] and Vagrantbox [19], where
developers can configure and upload VM images for
customers to deploy and use.

• Genomics: A group of scientists want to run their
scientific applications in the Cloud. They utilize dis-
tributed genomic applications that work on large
datasets similar to [20]. However, since not every
instance works over a complete dataset, but only
a small subset of it, transferring the data to each
machine incurs a large overhead in terms of time and

cost. Therefore, they want to utilize arbitrary number
of VMs with an access to a third party online Bio-
Database such as GenBank [21] or EMBL Nucleotide
Sequence Database [22] allowing customers to retrieve
only a subset of genomic data they are interested in.
This use case represents the collocation of VMs,
which are on an infrastructure layer, with a database
offered on a software layer, thus providing an unique
platform for running genomic applications. A similar
scenario can be found in Amazon Web Services [10]
where a customer can utilize additional hardware
and software products along with the deployed VMs.
Heroku also provides a large set of add-ons [23],
software products that can be referenced from within
customer applications.

• Web hosting: A web developer wants to migrate his
web application to the Cloud in order to benefit from
a highly available and scalable environment. However,
the customer does not want to manually configure and
manage the environment, but rather have it all done
automatically.
This use case represents a traditional PaaS where
a customer deploys the application on a targeted
platform. Google App Engine [24] enables deploying
Java and Python web applications on a managed
Cloud platform that is completely transparent to the
customer. Heroku [23] offers a Ruby on Rails en-
vironment deployed on top of Amazon EC2. The
platform is completely managed by the provider,
while customers only interface with provided run-
times, databases and add-ons. Windows Azure [6]
supports deployment of web and non-web applications
in a Windows runtime for a variety of programming
languages.

These three use cases cover scenarios of Cloud services that
combine software and hardware components from different
layers and require separate management tools and access per-
missions. The use cases are used throughout the paper in order
to illustrate how existing real world issues are represented and
managed by the proposed models and the architecture.

III. MODEL-DRIVEN DEVELOPMENT

Model-driven development (MDD) includes the construc-
tion of a system model that can be transformed into an
implementation [11]. This procedure shown in Figure 1 usually
includes defining a metamodel first, which describes how
the model should be defined and what it needs to include.
Furthermore, the model of a targeted system is constructed by
following the metamodel instructions. Finally, an instance of
the system is created based on the model.
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Fig. 1. Model-driven development (MDD) standard procedure

Special case of MDD is a Model-driven architecture
(MDA) presented by OMG [12], which defines a model as a
description or specification of the system and its environment
for some targeted use. For this purpose, MDA defines three
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Fig. 2. Model-driven architecture (MDA) model in correlation with a Cloud
service

types of models [12], going from the more abstract one to the
model that closely describes details of the system:

• Computation Independent Model (CIM) is a view of
a system that does not show any details. It should be
independent of the system’s structure, thus showing
only requirements of the system and the way the
system is used.

• Platform Independent Model (PIM) describes the sys-
tem and its structure, however without implementation
details, or the details of the platform where the system
is deployed.

• Platform Specific Model (PSM) defines an implemen-
tation of the system that was previously described with
PIM and its implementation details. This includes all
the specific details of the platform where the system
is deployed.

Transforming a higher-level model such as PIM to a lower-
level model such as PSM is done using transformations, which
can be manual, using a profile or templates, or they can be
completely automatic.

The idea of using the MDD, or more specifically MDA
for deploying Cloud services comes from the fact that a
Cloud service is a system composed of multiple software
and hardware elements, which are integrated in order to
provide the service. For example, a Cloud service for the
Online Course use case (Section II) is composed of a physical
machine, hypervisor, operating system and python libraries.
Here we exclude notion of developing new Cloud elements
such as applications, and rather assume that all elements have
been developed. Therefore, we can focus on integrating those
existing elements into unique Cloud services.

Modeling an arbitrary Cloud service by applying MDA
approach would result in separate models for each service,
i.e., customized deployment procedures specialized for a single
Cloud service. Therefore, in order to achieve uniformity of
the deployment procedure, a metamodel of a Cloud service is
required, which describes how CIM, PIM and PSM models
should be defined, as shown in Figure 2. With this approach
we get uniform models for Cloud services, where we can

implement transformations for deploying a service instance by
the CMS (Figure 2).

However, we would still not be able to reuse existing
models of the service elements that are used in other services.
Therefore, as shown in Figure 2, instead of transforming CIM
to a single PIM, and PIM to a single PSM, we partition
the models for each service element so they can be used
separately. This allows us to reuse already existing service
element models and their transformations, i.e., templates and
plugins, for different services and implementations. Example
is given in Figure 2 where PSM3 could represent model of an
operating system used as an underlying platform for database
and web server Cloud products.

Finally, since we consider only existing service elements
such as Hadoop and Ubuntu, rather then developing new
ones, the deployment procedure is not required to understand
internal structure of the service elements. Consequently, a
service element model is not required to contain this informa-
tion, except information about functionalities and configuration
parameters of the service element so that it can be properly
configured.

IV. THE COPS MODEL

This section introduces the CoPS metamodel able to de-
scribe Cloud services using three sequential models going from
the most abstract one to the real deployment, similar to the
MDA models described in the Section III. These three models
include (1) Service model that defines service requirements
and its usage, (2) Product model that defines structure and
the composition of the service, and (3) Component model
that defines configuration of each component of the service.
Unlike MDA models that only extend the previous model by
adding additional information, the CoPS models also partition
this information for each element separately. For example, if a
Cloud service comprises a database and a web server, the lower
level model will include two new separate models instead
of one, namely the database and the web server, each being
described independently, as shown in Figure 2. This allows
CoPS to build up services from components in a modular
fashion. However, it also requires a deployment tool to be
aware of all three models in order to deploy a final service,
by sequentially transforming one model into another.

A. CIM - Service model

(1) Service represents CIM model of MDA, described in
Section III. It defines a service as a composition of one or more
products described in form of high-level requirements and
relations between the products, e.g., the BioDatabase product
grants the access to the VM products of the same customer
for the Genomics service use case in Figure 3. The Service
model does not contain any details about the structure of the
products, rather it represents them as black boxes.

B. PIM - Product model

(2) Product represents PIM model of MDA, described in
Section III. Each product of a service is describes separately
as a composition of components deployed on top of each other
in form of parent-child relations as shown in Figure 4a, where
physical machine is a parent to its child operating system.
Since some components can be multi-tenant, i.e., supporting
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Fig. 3. Three use cases from the Section II represented using the CoPS cloud service model

more than one customer, a parent component can have more
than one child. Fox example, in Figure 4b, operating system
has two children, namely a web server and a database.

The parent-child relation corresponds to the application-
platform relation of MDA described in Section III. Since the
Product model defines a component as a black box, it only
defines its external functions, namely dependencies and access
permissions, as shown in Figure 5. Therefore, implementations
of dependencies and access permissions are defined in the
Component model. Dependencies represent requirements of a
child component towards its parent, i.e., functionalities and
interfaces that it has. Access permissions define four access
levels to a component bound to a single tenant using the
component, as discussed next.
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Fig. 4. Parent-child relations between components

• No access: A customer has no access to a component,
rather it is completely managed by a provider. Fox,
example, any of the use cases in Figure 3 where
physical machines are accessible only to the provider.

• Guest: A customer has only a limited access to a
component through its externally exposed functions.
A provider is still managing the component and is re-
sponsible that the functions are failsafe. Fox example,
the Genomics use case, where a customer can only
read and write to the database component. However,
he cannot change the table structure of the database
or configure the component itself.

• User: A customer can upload his own code or deploy a
child component in order to customize its functionali-
ties. A provider is still responsible for the component.
However, he cannot guarantee for the customization
done by the customer. Fox example, the Web Hosting

use case in Figure 3, where the customer can upload
his own web application to the web server component.

• Admin: A customer owns a component and thus can
change whatever he wants, while a provider does not
have any responsibility regarding it. Fox example, the
Online course use case in Figure 3, where a customer
has admin access to the python library component.

COMPONENT 

Access permissions 

Dependencies 

COMPONENT 

Parameters 

Access data 

Access permissions 

Dependencies 

COMPONENT 

Fig. 5. Black box representation of a component in the Product model

C. PSM - Component model

(3) Component represents PSM model of MDA, described
in Section III. In the real life, components represent instances
of hardware and software items that serve as building blocks of
a functional product, e.g., an operating system or a hypervisor
component, as shown in Figure 3, Online Course use case.
Similar to a product, each component is defined separately
with its own specific implementation details. However, since
a goal of our approach is not to develop new components
that will be used as part of a Cloud service, but rather to
deploy existing ones, the components are represented as gray
boxes. It defines parameters and access data specific to each
component, as shown in Figure 6. For example, an operating
system component can have parameters such as name, type,
version and open_ports. Due to the diversity of com-
ponents, parameters should be defined using Domain Specific
Languages. Furthermore, dependencies defined in the Product
model are implemented using the parameters in the Component
model, e.g., web server requires an operating system with
parameter name=Linux and kernel_version=3.11.1.

Access permissions are configured with the component’s
parameters, and provided to the customer or other components
in form of access data. Fox example, for an operating system
with no access a customer receives no access data, while
with guest access he receives the IP address, username and
password of a guest account not allowed to install or modify
anything. For user access, a customer receives IP address,
username and password of a superuser account that is allowed
to modify or deploy his own child components on top of the
operating system. Finally, admin access permission assumes
user or admin access to a parent component, so the customer



can install, modify, upgrade or completely remove the operat-
ing system.
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Fig. 6. Gray box representation of a component in the Component model

D. Service customization

Customization of a service is defined by a provider through
its composition and high level requirements that map to com-
ponent parameters. In the Online Course use case, a customer
is able to fully customize python libraries by selecting which
libraries he wants to use. His customization is then translated
into the deployment parameters of the component. In the
Genomics use case, the provider is able to offer different sizes
of a virtual machine product, such as small, medium and large,
by defining the set of parameters used by a hypervisor for
instantiating new virtual machines. They include number of
cpu cores, amount of memory, storage size, etc. In the Web
Hosting use case a customer is able to choose between different
implementations of the web server product, such as Apache or
II7. This defines which product template should be deployed,
the one with the Apache as a web server component or the
II7.

By introducing three sequential models, the CoPS meta-
model is able to describe any Cloud service (Service model)
with regards to its composition (Product model), including
all information required for actual deployment (Component
model). Therefore, CoPS provides a basis for the deployment
and management of customizable Cloud services composed
out of arbitrary software and hardware elements, which may
or may not be directly accessible to a customer as part of his
service.

V. ARCHITECTURE

This section introduces an architecture that utilizes the
CoPS models for enabling the management of arbitrary Cloud
services. Figure 8 shows the UML component diagram that
is technology and implementation agnostic. It is composed of
six modules that interact with one another by means of well
defined information flow through their interfaces. The infor-
mation is structured following the transformations between the
CoPS models, namely Component, Product and Service.

The transformation of the Service and Product models is
realized with predefined templates of the products containing
their structure, access permissions and dependencies of their
components. Transformation of the Product and Component
models is done via separate plugins. The use of plugins is
required due to a lack of standardization, i.e., every software
component is implemented and configured differently. And
by the definition of PSM, platform specific information has
to be included in this phase. The information also includes
customer information related to provided service elements. A
detailed deployment procedure is shown in Figure 7 with UML
sequence diagram showing the information flow between the
modules of the architecture.

a) SERVICE: The Central Management System mod-
ule receives a customer service request through the iService
interface with m1. With m2 and m3, the module retrieves
a template of the service as CoPS representation through
the iData interface exposed by the Database module. The
Database module contains information of an entire infrastruc-
ture. It also includes customer data, monitoring data, CoPS
resource templates and other arbitrary information required
for the management of the infrastructure. Once the template
is retrieved, m4 applies the parameters received from the
customer request to the template, thus customizing the service.

b) PRODUCT: Sequence product loop is executed for
each product defined by the service template. Based on the cus-
tomized service template, m5 locates compatible parent com-
ponents where the product can be deployed. Afterwards, m6
and m7 retrieve monitoring data of the selected components.
Monitoring data is retrieved through the iMonitoring interface
exposed by the Monitoring System module responsible for
collecting live monitoring data from the deployed resource
elements. It also stores this data to the Database module
for later analysis. Based on the product template, available
parent components and their monitoring data m8 performs
a scheduling operation by choosing components where the
product will be deployed.

c) COMPONENT: Deployment procedure begins by
repeating the sequence component loop for every component
of the product that needs to be deployed. Messages m9
and m10 retrieve data for the parent component including
its current parameters and access data, in order to locate
and manage it. Message m11 sends deployment data to the
Component Manager module through its iComponent inter-
face. The Component Manager keeps a local copy of data of
the managed components. In order to deploy the component,
the data is used for translating CoPS representation of the
component into a format understandable by the Component
Plugin module shown in Figure 8. The Component Plugin
module, such as OpenNebula is built for managing one or
more component types, and is excluded from the sequence
diagram in Figure 7 as it only receives messages delegated
from the Component Manager through the iPlugin interface.
The Component Manager must implement all the iPlugin
interfaces of the Component Plugins in order to use their
functionalities. After the deployment is performed with m12,
m13 returns the access data of each component. Along with
the component and parent IDs and its parameters, the access
data is forwarded to the Monitoring System module with m14.
The Monitoring System starts monitoring with m15 by initial-
izing Metric Plugin modules through their iMetric interfaces.
Metric Plugins support monitoring specific metrics for the
targeted components. Component ID is used for initializing
monitoring, while parent ID is used for monitoring metrics
that are monitored from its parent. Similar to the Component
Plugin module, the Metric Plugin module receives delegated
messages from the Monitoring System, and is thus excluded
from the sequence diagram in Figure 7.

After all components are deployed, access data of all
elements is updated and stored back to the Database module
with m17. Finally, the customer receives service data in m18
comprising access data for all components with admin, user or
guest permissions, and may start using the service with m19.
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Fig. 7. UML sequence diagram showing the information flow for service deployment

d) USAGE and MONITORING: In parallel with the
service usage, sequence monitoring loop performs monitor-
ing over the resource elements used by the customer. The
Monitoring System gathers metrics using the deployed Metric
Plugins modules, and stores the monitoring data into the
Database module with m20, m21 and m22, respectively.
The monitoring loop is executed during the lifetime of the
components.

In case a product supports multi-tenancy, an existing
product is matched with m5, and its monitoring data is
gathered with m6 and m7. Furthermore, if existing product
can support more tenants, the Central Management System
retrieves its access data with m9 and m10 and instructs the
Component Manager to modify existing component, instead
of deploying a new one. Finally, sequence product loop is
periodically repeated for optimizing the resource usage on the
infrastructure by analyzing monitoring data and rescheduling
the components.

The described sequence diagram represents the deployment
procedure agnostic to a service or its components that are being
deployed. It uses product abstraction in form of templates to
connect individual components into an unique Cloud service.

VI. PROTOTYPE IMPLEMENTATION

This section describes a prototype implementation of the
architecture presented in the previous section that utilizes
plugin-based approach to deploy different components and the
CoPS metamodel to manage them as a single service. The
prototype is built using Cloudcompaas [14], a Cloud manager
framework for the dynamic management of Cloud resources,
and M4Cloud [15], a plugin-based monitoring tool capable of
monitoring arbitrary metrics, as shown in Figure 8.

• Central Management System module is imple-
mented as a Java webservice for the Apache Axis2
server [25] with two modules of the Cloudcompaas
framework, namely the (C1) SLA Manager and the
(C2) Orchestrator. The SLA Manager handles the
translation of input instructions in form of WS-
Agreement [26] received through the iService inter-
face, which is implemented as a RESTful [27] inter-
face. The interface uses HTTP Basic authentication
for validating the input instructions. Once the input
is translated to the CoPS model, it is delegated to
the Orchestrator. The Orchestrator maintains a global
vision of state of a Cloud infrastructure, and performs
scheduling and allocation of resource elements. When
an allocation request arrives, the Orchestrator queries
the Database for service template, available resources
and their utilization data from the Monitoring System
in order to fulfill a customer request.

• Database module of the architecture is implemented
with the (C3) Catalog module of the Cloudcom-
paas framework. The Catalog includes an embedded
HSQLDB database for storing and retrieving data, as
well as a RESTful implementation of the iData inter-
face. The interface only allows simple operations on
single tables, and does not allow performing arbitrary
SQL queries. This is why complex monitoring data,
such as product calculable metrics [15] is acquired
directly from the Monitoring System module.

• Monitoring System module is implemented with the
(M1) Application Level Monitoring module of the
M4Cloud tool. The module is implemented as a Java
application with a socket-based iMonitoring interface.
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The instructions are received and sent as Java serial-
ized objects.

• Component Manager module is implemented with
the (C4) Cloud Connector module of the Cloud-
compaas framework. The Cloud Connector translates
CoPS deployment instructions received from the Cen-
tral Management System to operations understandable
by the Component Plugins. Unlike the Orchestrator
that keeps a global state information of the system,
the Cloud Connector keeps a local state information
of available components deployed by its Component
Plugins.

• Two Component Plugins are supported by the Cloud
Connector, namely (T1) OpenNebula that exposes
XML-RPC API as the iPlugin interface, and the
(M2) Application Deployer of the M4Cloud tool that
exposes socket connection as the iPlugin interface.
OpenNebula is an open source infrastructure layer
management tool capable of managing two types of
components, namely HV for allocating new VMs and
OS in form of VM images. The Application Deployer
is part of the M4Cloud tool capable of deploying
arbitrary applications on top of Linux-based operating
systems using customizable shell scripts.

• Metric Plugin is also implemented as part of the
(M2) Application Deployer. It includes Sigar library
[28] for monitoring system and process metrics. It is
implemented in Java with multiple socket connections
The first connection is used as an iPlugin interface,
and the second one as an iMetric interface. It receives
and sends instructions in form of Java serialized
objects.

VII. CONCEPT VALIDATION

In order to validate our models (Section IV) and the
architecture (Section V) we use the prototype implementation
described in Section VI for realizing the three use cases
presented in Section II. Each validation begins by providing
a high level description of the requirements. Following this
description, the first use case is described with a step by step
procedure following the sequence diagram in Figure 7, while
other two use cases are referred to the first one by describing
differences in the procedure.

Online Course use case: A customer requests a service
allocation comprised of a single machine with a pre-installed
software stack, referred to as Python machine. The customer
describes the machine product by customizing the software
stack from a set of available packages by selecting scipy
and numpy as additional libraries.

CUSTOMER 

SLA 
Manager 

Orchestrator 

Application Deployer 

Cloud 
Connector 

Application 
Monitoring 

Level 

M4CLOUD 

CLOUDCOMPAAS 

WS-Agreement 
Python Machine 
 + scipy
 + numpy
 - django 
 

<service 
 id=‘’online_course’’> 
 <product 
  id=‘’python_machine>’’ 
   . . . 
   <component id=‘’pl’’> 
    <parameters> 
     <ver>2.6</ver> 
     <lib>scipy</lib> 
      <ver>0.12.0</ver> 
     <lib>numpy</lib> 
      <ver>1.7.0</ver> 
      . . . 

1 . . . 
2 sudo apt-get 
 --yes --force-yes 
 install python2.6 
 python-numpy 
 python-scipy 
3 . . . 
4 which python2.6 

/usr/bin/python 

. . . 
<product 
 id=‘’python_machine’’>
 . . .  
 <component id=‘’pl’’> 
  . . . 
  <access_data> 
   <path> 
    /usr/bin/python 
   </path> 
   . . . 

IP address: 
 10.0.0.125 
Username: 
 customer_01 
Password: 
 online_course 
Python: 
 /usr/bin/python 
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Fig. 9. Delegation of service parameters used for deploying PL component
in the Online Course use case, and returning its access data to the customer

Customer’s service request containing the selected libraries
is encoded in the WS-Agreement format and received by
the SLA Manager as shown in Figure 9. The SLA Manager
extracts the service requirements (code 1 in Figure 9) from
the WS-Agreement and forwards them to the Orchestrator
in form of CoPS parameters. The Orchestrator retrieves the
template of the requested service from the Catalog and applies
the customized parameters. Code 2 snippet in Figure 9 shows
the template with the customized parameters in red color.
Version of Python and its libraries, as well as the underlying
operating system is already defined in the template. In this use
case we use UbuntuServer 12.04 LTS for the operating system,
and Python 2.6, Scipy 0.12.0 and Numpy 1.7.0 as shown in
code 2 snippet.



Since the customer has requested a single product, the
product loop from the sequence diagram in Figure 7 is iterated
only once, while component loop for the product is iterated
twice for the operating system (OS) component and for the
python libraries (PL) component. In the first iteration the
operating system is deployed by the OpenNebula Component
Plugin by allocating a new hypervisor tenant, i.e., a VM, and
deploying a VM image of UbuntuServer 12.04 LTS on top of
it. OpenNebula returns the VM identifier, IP address and user
credentials. In a second iteration the Orchestrator forwards the
required parameters for deploying PL component to the Cloud
Connector, including the customized libraries. The Cloud
Connector translates the CoPS parameters (code 2 snippet
in Figure 9) into deployment instructions understandable by
the Application Deployer shown with code 3 snippet. We
assume that the deployed VM image comes with pre-installed
Application Deployer.

Once the python libraries are deployed, the Application
Deployer returns its installation path (code 4 in Figure 9).
The path is sent by the Cloud Connector to the Orchestrator in
form of access data (code 5 in Figure 9). The Orchestrator
then updates the Catalog module with the newly deployed
product and returns the access data to the customer. The data
includes the IP address of the machine, username and password
for accessing it, as well as Python installation path for further
usage, as shown in code 6 snippet in Figure 9.

Since the operating system is deployed with user per-
missions, it means that the customer can deploy new child
components on top of it, i.e., install new software or remove
existing one. However, he has limited access to system files
and has no option to replace the operating system since he has
no access to the underlying hypervisor. On the other hand, the
python libraries can be removed, updated and modified by the
customer just like any other child component of the operating
system, since he has admin access permissions for it.
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Fig. 10. Timeline representation of the infrastructure deployment for the
Genomics use case

Genomics use case: A customer requests a service al-
location comprising two VMs and the access to a database
containing genomic data. The customer selects the size of the
VM products from a set of predefined offerings (medium size
VMs), along with a reference to a database product containing
genomic data (BioDatabase).

Similar to the Online use case, the service request is
received by the SLA Manager, which forwards the require-
ments to the Orchestrator. The Orchestrator then applies them

to the service template and iterates three times through the
product loop, once for each product, namely two VM in-
stances and the BioDatabase, as shown in Figure 10. Figure 11
shows parameters conversion for the VM products where the
customer has selected medium size instances. The parameter
medium is applied to the VM product template, which defines
number of cpu cores, memory, etc., as shown in code 2
snippet in Figure 11. Finally, the Cloud Connector translates
the CoPS parameters to OpenNebula instructions (code 3 in
Figure 11) that deploys the VMs. The BioDatabase is allocated
by adding a new tenant to the existing BioDatabase product,
i.e., the Application Deployer adds a new user to the DB
component that is implemented with MySQL database in this
use case. Additionally, it grants access to it from IP addresses
of newly allocated VMs.

<service 
 id=‘’genomics’’> 
 <product id=‘’vm>’’ 
   . . . 
   <component id=‘’hv’’> 
    <parameters> 
     <size>medium</size> 
      <cpu unit=‘’cores’’>2</cpu> 
      <memory unit=‘’mb’’>4000</memory> 
      . . . 
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 <product id=‘’vm>’’ 
   . . . 
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    <parameters> 
     <size>medium</size> 
      <cpu unit=‘’cores’’> 
       2</cpu> 
      <memory unit=‘’mb’’> 
       2048</memory> 
      . . . 

. . . 
 
CPU = 2  
MEMORY = 2048  
OS = 
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DISK = 
  [ IMAGE_ID = 103 ]  
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  [ NETWORK_ID=2 ] 
. . . 
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Fig. 11. Delegation of service parameters used for deploying VM products
in the Genomics use case

Unlike the Online Course use case where new products
have to be deployed, the Genomics use case also requires a
modification of the existing product for fulfilling the customer
request. Finally, when the customer requests the finalization
of the service, the VMs are deallocated and the BioDatabase
product is reconfigured to stop providing access to the cus-
tomer.

Web hosting use case: A customer requests a Web Hosting
platform service for deploying a web application. A provider
offers service customization by providing different Web Server
products, such as Apache or II7. The service also includes a
database and a load balancer for user requests between web
server instances.

The service template comprises three products. First prod-
uct is a Database implemented with MySQL 5.6.14. that runs
on a dedicated operating system (OS). A second product is
a Web Server that supports auto scaling implemented with
Apache 2.4.6 web server (WS) component. A final product,
namely the Load Balancer is composed of Apache 2.4.6 as a
load balancer (LB) component configured with mod_proxy,
mod_proxy_http and mod_proxy_balancer parame-
ters [29]. The service template defines deployment of the
Database product first, then the Web Server and finally the
Load Balancer, as shown in Figure 12.

Once the service is deployed, the Monitoring System
periodically checks cpu utilization (m20, m21 and m22) of the
Web Server in order to scale the product up or down, namely
to deploy new or undeploy existing instances of a web server
component. Since web server components are defined within
the product template to run on a dedicated operating system,
we use CPU utilization of the underlying operating system
as an utilization metric. If all the web server components of
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Fig. 12. Timeline representation of the infrastructure deployment for the Web Hosting use case

the Web Server product are over-utilized for a longer time
period, the CMS deploys a new web server component. The
new component is also registered at the Load Balancer product
by adding its IP address to an IP pool.

VIII. RELATED WORK

Model-driven development (MDD) approach targets at de-
veloping arbitrary systems. Paper such as [30] and [31] utilize
MDD for developing Cloud applications that can be executed
on multiple Clouds. In [32] the authors include inverse engi-
neering of existing software (legacy) to the new SaaS model
using the model-driven approach. However, these works focus
on developing new SaaS applications and required platforms,
while our approach aims at deploying and monitoring existing
applications and integrating them into a unique Cloud service.

In [33], the authors present a generic framework for the de-
velopment of software applications using MDA. The approach
used by the framework consists on decomposing software in
services using SOA, and then describe each service as a model
using MDA. Services are described using MDA in four dif-
ferent levels of abstraction, from platform specific, to models
and metamodels. Finally, services can be deployed in the Cloud
by assigning software components to the PSM of the service,
executing these software components in Cloud infrastructures.
Additionally, utilization of UML for defining the Platform In-
dependent Model of SaaS applications is presented in [34]. The
model is used to describe the implementation and technology
details of the implementation of the service for an specific
back-end. Authors in [35] focus on application deployment by
using MDD for defining compliance requirements. Although,
works [33], [34] and [35] utilize MDD for Cloud services, they
focus only on deployment or describing its platform, while our
aim is a management of the complete infrastructure.

Authors in [36] try to unify Cloud management by using
service governance approach. However, they focus only on an
infrastructure layer, i.e., VMs with a goal of achieving overall
business level objectives. Rochwerger et.al [37] also focuses
on infrastructure layer by offering a federation of Clouds. [38]
uses SPI model for deploying and monitoring Cloud services.
However, the SPI model is based on layers and not on the
composition of a Cloud service. Therefore, they do not utilize
benefits of modular deployment, nor are they able to manage
services that spread across several layers. [39] introduces an
idea of breaking up the current SPI monolithic approach by
combining services from different layers. However, they still

perform layer-based management as opposed to component-
based one.

[40] proposes using MDA for the definition of SaaS soft-
ware and their interoperability. By describing the interaction
between software components at an abstract level, it provides
a match between dependent software services. Using a PIM
model for services, the authors argue that SaaS applications
can be described independently by the underlying technology.
Finally, the authors propose use of standardized service de-
scription methods, such as WSDL. However, they focus only
on SaaS layer, without considering management of the entire
infrastructure. An architecture for deploying elastic services
in the Cloud and its prototype implementation are presented
in [41]. This work is the closest to ours as the authors use
component-based approach for deploying arbitrary software
components on an underlying existing virtual infrastructure.
Our work goes beyond this by defining the accessibility of the
components by an end customer, and by including management
of infrastructure components as well.

IX. CONCLUSION

This paper represents a first step towards the management
of arbitrary Cloud services with a Cloud Management System
that can utilize existing individual management tools in an uni-
form deployment and management procedure. For this purpose,
we introduced CoPS metamodel that provides a constructive
approach for composing Cloud services out of products, and
products out of software and hardware components, all this
in a modular fashion. We utilized the three models provided
by the CoPS metamodel by defining an architecture of a
Cloud Management System that is capable of managing Cloud
services comprised out of arbitrary components. By realizing
three use cases with the implemented prototype, we showed
that management of Cloud services depends on the interaction
and accessability of its elements, which was supported by our
model and the architecture.

Future work includes defining an unified format of the data
used for representing CoPS services, products and components,
as well as a format for the parameters and access data that is
used for configuring and accessing components. This will also
allow us to strictly define interfaces and transformations within
the architecture. Based on this, we plan to go beyond the pro-
totype implementation and build the architecture modules from
the ground up, with capabilities to plugin existing management
tools such as OpenNebula.
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