A Survey on Service Quality Description

KYRIAKOS KRITIKOS, 1CS-FORTH

BARBARA PERNICI, PIERLUIGI PLEBANI, and CINZIA CAPPIELLO, Politecnico di Milano
MARCO COMUZZI, Eindhoven University of Technology

SALIMA BENRERNOU, Paris Descartes University

I[VONA BRAN D|C, Vienna University of Technology

ATTILA KERTESZ, MTA-SZTAKI

MICHAEL PARKIN, Tilburg University

MANUEL CARRO, Universidad Politécnica de Madrid and IMDEA Software Institute

Quality of service (QoS) can be a critical element for achieving the business goals of a service provider, for the
acceptance of a service by the user, or for guaranteeing service characteristics in a composition of services,
where a service is defined as either a software or a software-support (i.e., infrastructural) service which is
available on any type of network or electronic channel. The goal of this article is to compare the approaches
to QoS description in the literature, where several models and metamodels are included. consider a large
spectrum of models and metamodels to describe service quality, ranging from ontological approaches to
define quality measures, metrics, and dimensions, to metamodels enabling the specification of quality-based
service requirements and capabilities as well as of SLAs (Service-Level Agreements) and SLA templates for
service provisioning. Our survey is performed by inspecting the characteristics of the available approaches to
reveal which are the consolidated ones and which are the ones specific to given aspects and to analyze where
the need for further research and investigation lies. The approaches here illustrated have been selected based
on a systematic review of conference proceedings and journals spanning various research areas in computer
science and engineering, including: distributed, information, and telecommunication systems, networks and
security, and service-oriented and grid computing.

Categories and Subject Descriptors: H.3.5 [On-line Information Services]: Wed-based Services; D.2.1
[Requirements/Specifications]: Languages; C.4 [Performance of Systems]: Modeling Techniques and
Performance Attributes; D.2.8 [Metrics]: Performance Measures

General Terms: Documentation, Languages, Management, Performance

Additional Key Words and Phrases: Service, description, provisioning, life-cycle, quality, QoS, model,
metamodel, service-level agreement, SLA

The research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

Authors’ addresses: K. Kritikos (corresponding author), Institute of Computer Science, FORTH, N. Plastira
100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece; email: kritikos@ics.forth.gr; B. Pernici, P. Plebani,
and C. Cappiello, Politecnico di Milano, Italy; M. Comuzzi, Eindhoven University of Technology, Germany;
S. Benrernou, Paris Descartes University, France; I. Brandic, Vienna University of Technology, Austria; A.
Kertész, MTA-SZTAKI, Hungary; M. Parkin, Tilburg University, The Netherlands; M. Carro, Universidad
Politécnica de Madrid and IMDEA Software Institute, Spain.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2013 ACM 0360-0300/2013/10- ARTl $15.00

DOI: http://dx.doi.org/10.1145/2522968.2522969

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:2 K. Kritikos et al.

ACM Reference Format:

Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S., Brandic, 1., Kertész, A.,
Parkin, M., and Carro, M. 2013. A survey on service quality description. ACM Comput. Surv. 46, 1, Article 1
(October 2013), 58 pages.

DOL: http://dx.doi.org/10.1145/2522968.2522969

1. INTRODUCTION

A service is an action performed by one entity (the provider) on behalf of another
one (the requester) [O’Sullivan et al. 2002]. Through the interaction between these
two entities, which is called service provisioning and involves various phases, there
is a transfer of value from the provider to the requester or recipient. Depending on
the service nature and the means or channels available, different service types can
be identified. For instance, the drawing of a bank cheque is a physical service that
is only available at a bank counter since it requires the requester’s physical presence
on a specific place and time to be invoked and delivered. Web services are instead
autonomous software systems available over the Internet. This article focuses on soft-
ware and software-support (i.e., infrastructural) services which are available on any
network or electronic channel type. Thus, in this survey the word “service” will have
this designated meaning and any other service type will be excluded from the analysis
and discussion.

Service orientation has emerged lately as a paradigm facilitating interaction be-
tween interoperating systems, but also as a general framework to enable access to
IT-based applications, since the benefits of adopting it include interoperability, just-
in-time integration, easy and fast deployment, efficient application development, and
strong encapsulation [Allen 2006; Georgakopoulos and Papazoglou 2008]. Whilst in
the past such interactions were stable and consolidated, several new application en-
vironments are now based on access to services with a much shorter time frame and
cost, thus responding effectively to ever-changing market conditions, rapid technology
improvements, and increased competition and customer needs.

An interesting characteristic of services is that they can be composed of other services
(e.g., a transportation service may be composed of land and air transport services). For
instance, in the e-business area, services can be selected dynamically and composed in
added-value new services, where the composite service components are selected from a
number of candidate services offering the appropriate functionality. In many pervasive
applications, access to services is based on context characteristics, such as location,
environmental parameters, and the like. Utility services, such as the telecom and en-
ergy provider ones, also require interoperability of very complex systems to guarantee
service delivery. Multimedia and multichannel applications require composing and
synchronizing several different services to provide a good user experience. In general,
to provide such services, several phases are needed, from the selection of the adequate
services to controlling the characteristics of service provisioning, in particular when
the providers are not under the direct control of the service user. This composition
of autonomously running services requires that the service usage rules specified in
agreements are clearly stated and their compliance is verified.

Services can be offered and used across many functional levels following various IT
architectures. The functional architecture model considered in this article is a sim-
plified version of the one proposed in Lamanna et al. [2003]. It follows a three-layer
architecture. The first layer, the Application Layer, contains business or user-oriented
applications which may use services to fulfil a part or their whole functionality. The
Service Layer is the next layer containing services with an electronic interface which
are used to build or populate the applications. Various infrastructures, which belong
to the Infrastructure Layer, host these services and are responsible for managing the

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:3

services underlying resources for communication, transactions, security, and so forth,
for example, through a platform virtualization environment. Every architecture com-
ponent can be offered as a service to the same or other component types. For instance,
Infrastructure as a Service (IaaS) is the delivery of computing infrastructures as a
service which fulfils hosted application or service needs [Dikaiakos et al. 2009].

Since they are intended to be discovered and used by other applications across the
Web, services need to be described and understood both in terms of functional capabili-
ties and service quality properties. Service Quality is a combination of several qualities
or properties (e.g., availability, security, response time) of a service, and can be gener-
ally seen as an important factor in distinguishing the success of service providers. The
service quality description is the main driver in selecting the best service among a set
of functionally equivalent ones. Besides, quality is used to define a contract between
a service provider and a service user in order to guarantee that their expectations
are met. In addition, such a contract feeds the service management system that is
in charge of assessing the proper quality level during the service execution, enforcing
it by taking appropriate adaptation actions, such as increasing the underlying ser-
vice resources, substituting or recomposing the faulty service, and determining which
settlement actions apply based on the way the service was executed, such as the fi-
nal cost or penalties to be paid by the service requester or provider, respectively, and
negotiations for contract termination.

In all previous cases, a prerequisite for using service quality is its proper, precise,
and rigorous description, covering all possible service life-cycle phases. In this article,
the term quality document is used to denote the quality description of a given service.
This term will be used in a generic way as a description of quality, and all issues related
to managing such a document in a specific system architecture will not be addressed.
Even not referring to specific architectural solutions, it will be shown that the problem
of being able to write quality documents is far from solved. Several approaches have
been proposed in the literature, however, there is no commonly agreed way to specify
service quality. This article aims at systematically and comparatively reviewing these
approaches according to various criteria, including their scope, formality, expressive-
ness, and applicability. Many important findings are uncovered from the analysis. In
addition, areas for further research and investigation are spotted.

As service science and engineering is a new scientific but multidisciplinary field, the
authors have performed a systematic review of conference proceedings and journals
spanning various related research areas in computer science and engineering, includ-
ing: distributed, information, and telecommunication systems, networks and security,
and service-oriented and grid computing. Only representative research approaches
were selected based on the quality of their contribution and their significance and rel-
evance to the scope of this article by also considering the respective publication year,
the impact factor of the journal in which they were published (if applicable) and their
number of citations. Research approaches published in journals with low impact factor
or having a small number of citations were not considered. Depending on the type of
the quality document examined, different criteria were exploited to assess its quality,
as it will be shown in Section 2, such as the document expressiveness, richness, and
formality. In case two or more approaches were assessed to have the same quality, only
one was eventually selected having first the highest impact factor (if published in a
journal), second the highest number of citations, and third the most recent publication
year. In the end, the resulting sample collected is not only representative but also
characteristic of the contribution diversity of all relevant approaches in service quality
description.

This article is structured as follows. First, in Section 2, a definition of service quality
is provided along with an analysis of the service life-cycle and a general classification

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:4 K. Kritikos et al.

Advertisement

Discovery

Adaptation

Negotiation

Monitoring & _/

Utilization

Fig. 1. Service life-cycle.

of quality models is presented, which is then used in the remaining article sections.
According to the general classification of quality models presented in Section 2, the
state-of-the-art on quality models is analyzed in Section 3, on quality metamodels in
Section 4, and on Service-Level Agreements in Section 5. In each section, a set of
comparison characteristics are defined and then exploited to compare the approaches.
The final section presents interesting topics for further investigation.

2. SERVICE LIFE-CYCLE AND QUALITY

By relying on the definition provided in Kritikos and Plexousakis [2009], which mainly
applies to software services, service quality is defined as a set of nonfunctional at-
tributes of those contextual entities that are considered relevant to the service-client
interaction, including the service and the client, that bear on the service ability to
satisfy stated or implied needs. Service quality can be classified as Quality of Service
(QoS) and Quality of Experience (QoE). QoS includes quality attributes that can be
objectively measured (like execution time) and are typical constituents of Service-Level
Agreements (SLAs). QoE includes quality attributes that can be subjectively measured
(e.g., reputation, usability) and reflects the perception of a service by its users.

The distinguishing feature of service quality with respect to functionality is its dy-
namicity. In particular, the values of some service quality attributes can vary without
impacting the core service function which remains constant most of the time during
the service’s lifetime. In fact, service quality can play a significant role during several
phases of the service life-cycle [Kritikos and Plexousakis 2009]. With reference to the
service life-cycle illustrated in Figure 1, each life-cycle activity is shortly analyzed along
with the type of quality model it exploits.

—Aduvertisement. Requesters and providers publish or exchange quality requests and
quality offers, respectively. Such quality documents are called Quality-Based Service
Descriptions (QSDs).

—Discovery. The service discovery phase is split into two subphases: service matchmak-
ing and selection. Service matchmaking concerns filtering the advertised services
according to the requester’s functional and quality requirements. Service selection
concerns sorting the matchmaking results according to the requester’s preferences.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:5

In result, the requester is presented with an ordered list of services and selects the
one that best matches his needs.

—Negotiation. QSDs are exchanged between service providers and requesters. The pos-
sible agreement on quality levels between the parties involved leads to the definition
of another quality document, the Service-Level Agreement (SLA).

—DMonitoring and Utilization. The qualities in the SLA are monitored in order to
discover customers, and/or providers’ violations of its functional and quality terms.
Monitoring may also signal potential dangerous situations, which may lead to a
violation of the SLA if corrective actions are not timely undertaken.

—Adaptation. When an SLA is violated, recovery/adaptation actions may be taken. A
possible recovery action might require a renegotiation of the SLA or the execution of
the matchmaking activity to find an alternative service. It might also happen that an
alert is sent to the assessment component of the monitoring activity that continues
to execute.

SQMs are descriptions of a taxonomy or concrete list of QoS categories, attributes, met-
rics, and relationships that connect all of these quality entities. For example, a typical
SQM may contain the Performance QoS category which includes the QoS attributes
of response time and throughput. As will be shown in Section 3, some proposed SQMs
classify quality attributes in terms of relevant scenarios, other SQMs classify them in
terms of their dependencies, while other SQMs classify them in terms of compliance
to existing standards. Relying on these models means that Service Providers (SPs)
and Service Requesters (SRs) have to preliminary select which is the exact set of rel-
evant quality attributes. SQMs provide the concrete semantics of the quality terms
that may be used in QSDs and SLAs, that is in other types of quality documents. In
this way, all the service life-cycle activities, such as matchmaking and monitoring, are
designed around this set of quality attributes. Although the aforesaid procedure assists
in producing suitable mechanisms for supporting the service life-cycle activities, the
suitability of these mechanisms is specific for the considered scenario.

In addition to QSDs and SLAs, another document type is a Service Quality Model
(SQM). SQMs have been used to describe concrete quality properties which can
be exploited by other quality document types to express service quality capabili-
ties/requirements or service levels. QSDs have been used to express service quality
capabilities and requirements as a set of constraints on quality attributes and metrics.
Such descriptions contain all the appropriate information for supporting the service
matchmaking and negotiation activities. Finally, SLAs have been used not only to ex-
press the service levels in which a service can execute but also other information that is
suitable for supporting the service provisioning activities. As a service-level description
of an SLA is actually a QSD (i.e., a set of service quality constraints), SLAs are actually
built on top of the other document types.

QSDs are often associated with a validity period or expiration time which signifies
when they become outdated. Depending on which party is producing them, QSDs can
be separated into Service Quality Offers (produced by an SP) and Service Quality Re-
quests (produced by an SR). Service Quality Requests are further separated into Service
Quality Requirements and Service Selection Models. The latter denote the significance
of each quality attribute or metric to the SR by associating it with a specific weight
and are used for ranking Service Descriptions (SDs). Both Service Quality Offers and
Requirements are expressed as a set of quality constraints. A quality constraint usually
contains a comparison operator that is used to compare a quality metric or attribute
with a value. Sometimes, a quality constraint may also contain the unit of the compared
value. Thus, QSDs describe all the appropriate information that is required for match-
making and negotiating service quality. In this way, they are used in the respective

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:6 K. Kritikos et al.

Specification of Service Levels, Responsibilities, and any other information
supporting the management of the SLA and corresponding service life cycle

SLA-enabled Service SIA MataModel

Quality Meta-model €
(SLA-MM)
(SLA-SQMM) Extended by
T Uses
Extended by

Specification of quality
Service Quality Meta-model (SQMM) dlme.nsmns, at.trlbutels, :
metrics, & their relationships
and of quality constraints

Specified by Specified by
Description of quality r . .
capabilities/requirements Se?vli‘::lt)ye-;:a::efion Contains Service Level L] Descnpt{op-o.f Service Levels,
as a set of constraints on (sp) p Agreement (SLA) Responsibilities, a|.1d any ther
quality metrics & SLA management information
attributes References
Specified by Description of a concrete set

of quality dimensions,
attributes, metrics, and their
relationships

Service Quality model (SQM)

Fig. 2. The main types of quality documents and metamodels and their interrelationships.

service life-cycle activities. However, they are not used further in the service life-cycle,
as they do not contain all the appropriate information that is required for supporting the
rest of the service life-cycle activities, which mainly concern the service provisioning.

To this end, SLAs have been introduced to close this gap. An SLA is an important
aspect of a contract for IT services that includes the set of QoS guarantees and the
obligations of the various parties (see definition in Keller and Ludwig [2003]). QoS
guarantees are widely known as Service-Level Objectives (SLOs) and are expressed as
conditions on one or more QoS metrics, thus indicating the metrics, allowed values. A
set of SLOs constitutes a specific Service Level (SL). There can be different SLs defined
in an SLA, expressing the different modes in which a service may be executed in differ-
ent time periods, or degradation/upgrade levels if the agreed SL is violated/surpassed.
The party obligations are usually expressed as action guarantees (e.g., compensation,
recovery, or management actions) to be performed when a given precondition is met
(e.g., when a violation occurs). Other important SLA components are the organizational
ones which correspond to information concerning service monitoring and reporting.

As can be seen from the preceding analysis, SLAs contain more information than
QSDs in terms of supporting the service provisioning activity. Moreover, there is no
uniform and common quality document to be used across all the activities. This is a
major drawback that requires time, as document transformations should take place
from one format to the other, and reduces the automation degree of the activities.

In order to automate as much as possible the aforesaid activities, a clear and for-
mal description of QoS is required. Moreover, Service Providers (SPs) and Service
Requesters (SRs) should agree on the same language for expressing their quality doc-
uments. In this way, all the mechanisms used for supporting the service life-cycle can
be properly enacted. Nowadays, in the literature many metamodels and languages
for describing service quality have been proposed, which can be distinguished in two
main types: Service Quality MetaModels (SQMMs) and SLA MetaModels (SLA-MMs).
Figure 2 represents the types of quality documents and metamodels and the various
relationships involved between these entities.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1.7

SQMMs provide the means for describing QoS in a more general and extensible
way than SQMs. Actually, an SQMM is a conceptualization of the appropriate quality
concepts and their relationships that can be used to capture and describe an SQM.
For example, a typical SQMM will contain the concepts of QoS category, QoS attribute,
and QoS metric and the relationships contains (from QoS categories to attributes)
and measuredBy (from QoS attributes to metrics). So, an SQMM can describe many
different SQMs, where the number of those SQMs and their actual difference mainly
depends on the richness of the SQMM. In addition, SQMMs are used to specify @SDs,
which are usually described by a set of constraints on some QoS attributes and metrics.
Thus, existing SQMMSs can be compared according to their expressiveness, as will be
shown in Section 4. On one hand, by adopting an SQMM, the mechanisms that use
quality documents become more general than those which adopt a specific SQM. Indeed,
in this case, these mechanisms can be designed regardless of a specific quality attribute
set. In case SRs and SPs change the relevant quality attribute set, the mechanisms
remain the same. On the other hand, due to the intrinsic subjectiveness and complexity
of quality, the existing SQMMs are not able to capture all the possible features of quality
attributes and rely on a common understanding of the interacting parties about the
concepts defined in the SQMM.

As will be discussed in Section 5, SLA-MMs allow the definition of SLAs and SLA
Templates between the interacting parties. Since the agreement terms include Service-
Level Objectives (SLOs), which denote constraints on quality attributes or metrics
listed in an SQM, and both SQMs and constraints may be defined by an SQMM, the
existence of the three following cases is highlighted: (a) there is a specific SQMM type,
called SLA-enabled SQMM (SLA-SQMM), that can define SLA specifications; (b) SLA-
MDMs may use one or more SQMMs to define and reference quality attributes and even
specify SLOs; (¢c) SLA-MMs may reference the contents of one or more SQMs. Various
SLA description capabilities are considered, when comparing existing SLA languages,
which concern the definition of the contract terms and various other information that
may be used to support the service life-cycle activities.

In general, metamodels are used to define a language’s abstract syntax. Then, differ-
ent concrete syntaxes may exist for the same language, which are based on its abstract
syntax. Therefore, a metamodel drives the design of a language. Thus, a language has
one and only one underlying metamodel, whilst one metamodel may be used for the
design of many languages. However, in practice, there is usually a one-to-one correspon-
dence between a language and its underlying metamodel, as different languages of the
same domain are designed by different modelers which have a different conceptualiza-
tion of that domain. Indeed, to the best of our knowledge, Service Quality Specification
Languages (SQSLs) and SLA Languages have an one-to-one correspondence with their
underlying SQMMs and SLA-MMs, respectively. Thus, these corresponding terms will
be used interchangeably in the remaining sections of this survey.

3. SERVICE QUALITY MODELS
3.1. Background

As described in Section 2, an SQM focuses on the analysis of the set of quality attributes
that are considered relevant in service applications. If services are considered as
standalone software modules, then their quality can be determined by the attributes
that traditionally characterize software quality and, thus, by the attributes defined in
the ISO 9126 model [ISO/IEC 2001]. However, this model must be adapted to capture
the peculiarities deriving from the service intended use, that is, their composition to
build service-based applications by removing the nonapplicable attributes and their
categories (i.e., most of the internal attributes) and refining or specializing other
attributes (i.e., the rest of internal and all external attributes).

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:8 K. Kritikos et al.

Services in the advertisement and utilization phase are considered as black boxes
that expose their external attributes to the audience of service-based developers. From
this perspective, all external quality attributes proposed for traditional software are
applicable, such as privacy, security, performance, and reliability. However, some inter-
nal quality attributes are not applicable (e.g., analysability, changeability) since they
require the analysis of the software code that is hidden in the service-oriented pro-
gramming or consider portability aspects which are de-facto covered through the use
of the standard service technology. On the other hand, some internal software product
characteristics can be useful at least during service design as they influence the way a
composite service is built or executed. For instance, in case of the stability attribute, a
composite service developer would select more stable service components than others
to build at design or runtime a stable composite service which can used many times
without being updated.

Thus, it is easy to understand that the ISO 9126 quality model is not adequate for
representing service quality. In addition, it applies only to software services and not
to other service types, such as infrastructural services. For this reason, different con-
tributions can be found in the literature, which propose various SQMs. The structure
of these SQMs is based on the use of taxonomies in which categories, related to differ-
ent analyzed aspects, are defined. Each category contains a set of attributes that are
entities which can be verified or measured in the service. Most of the models associate
each attribute with a definition and, in some cases, also provide the related metric and
assessment formulae. The latter information is needed only for measurable quality
attributes [Kritikos and Plexousakis 2009].

The most referenced QoS categories of SQMs are the Performance, Security, Depend-
ability, and Configuration categories that usually contain specific quality attributes,
as will be shown in Section 3.3. As there is a differentiation on how SQMs catego-
rize the rest of the service quality attributes, it was decided not to evaluate SQMs
in terms of specific categories but generally on the extensiveness of their quality at-
tribute categorization. Moreover, SQMs were evaluated also on the level of detail in
their categorization in order to inspect the SQM richness. Section 3.3 evaluates SQMs
in terms of the quality attributes they contain in order to distinguish which attributes
are the most common ones and to provide a proof for the correct evaluation of the SQM
richness.

3.2. Methodology

The most significant SQMs proposed for services and their applications have been col-
lected according to the selection process designated in Section 1. Only generic SQMs
were considered and not specialized models proposed for security, data, and network
aspects. This is because in the analysis of each security and data quality model the
service-level and service type attributes are not considered, since the respective classi-
fications have been often defined for generic applications and not for service-based ones.

A set of comparison criteria have been selected in order to analyze and compare
the different SQM approaches according to the type and value of the information that
they contain. In particular, a set of particular aspects of the information that such
an SQM must specify were identified by considering specific requirements originating
from the service life-cycle presented in Section 2. These include the consideration of
both the service provider and requester view for service discovery and negotiation
and the association of a quality attribute with assessment guidelines for enabling its
assessment, as well as quality-based specific criteria, such as the extensiveness of the
SQM’s quality categorization and the consideration of both domain-independent and
domain-dependent attributes. Some of these criteria reflect the directions for further
research with respect to service quality models indicated in Seth et al. [2005], such

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:9

Table I. Summary of the Comparison Criteria of Service Quality Models

Criterion Summary
Quality Categorization Extensiveness How many quality categories does the SQM have?
Level of Detail in Quality Categories Does each quality category contain a sufficient

number of quality attributes?

Containment of Domain-Independent and Does the SQM contain both domain-independent
Domain-Dependent Quality Attributes and domain-dependent quality attributes?
Consideration of Service Provider and Requester Are the contained quality attributes relevant to the
Views SP, SR, or both?
QoS and QoE Consideration Does the SQM contain both quality attributes that

are measured objectively and those that are
measured subjectively?

Atomic and Composite Quality Attribute Inclusion |Are there any relationships expressed between
atomic and composite QoS attributes?

Types of Dependencies Is there any type of inter-attribute dependencies
expressed?

Layer Designation To which service layer(s) does a QoS attribute refer
to?

Association with Assessment Guidelines Are there any assessment guidelines associated to a
QoS attribute?

Metric Identification Is there any metric associated to a QoS attribute?

as measurement issues (quantification and measurement of QoS and linkage of QoS
with business performance—criteria Layer Designation, Association with Assessment
Guidelines, Metric Identification, Types of Dependencies), relation between various
attributes of a service (criterion Types of Dependencies), and role of technology such
as IT (criteria—Layer Designation and Types of Dependencies). It must be noted that
the criteria considered do not assess which exact modelling constructs are used by a
SQM to specify appropriate quality terms and their relationships as this is the subject
of research for the SQMM evaluation in Section 4.

A summary of the comparison criteria considered is shown in Table I, while their
thorough presentation is provided later on in this section. The evaluation results of
the examined SQMs according to the comparison criteria are shown in Table II. In this
table, the SQMs are sorted in ascending chronological publication order. In this way,
interesting conclusions concerning trends in SQM modelling can be drawn.

In the remainder of this section, each criterion along with its evaluation results is
presented in separate subsections. In the end, a global analysis of the SQMs across
all criteria is given and the most frequent quality categories and attributes in the
considered SQMs are distinguished.

3.2.1. Quality Categorization Extensiveness. Quality attributes are usually categorized
into quality categories. This categorization is required as the set of quality attributes
is often large and can be used to separate quality according to several aspects. In this
way, the higher the number of categories, the higher the comprehensiveness of the
approach. Categories also improve the model’s readability and allow users to better
explore the model and optimize the search activity. Categories that are defined in many
SQMs are Performance, Security, Dependability, and Configuration Management. A flat
model would contain only one quality category while an extensive one can contain up
to 9 or 10 categories. Grades of extensiveness are defined as follows: flat (1 category),
fair (2—4 categories), good (5-7) categories, and extensive (8—10) categories. While it is
quite obvious that a flat SQM would contain just one quality category, the other SQM
space partitions were created in a uniform way by observing that the highest number

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:10 K. Kritikos et al.

Table Il. Comparison of Research Approaches Providing Service Quality Models

Research Extensi- |Detail| Domain |SP/SR| QoS |Composite | Dep/ncy Ass/ent
Approach veness | Level | Dep/ncy | View |& QoE| & Atomic | Types | Layer | Metric |Guid/es
[Sabata fair fair |domain ind.| SP QoS both no service| partial fair
et al. 1997]

[Ran 2003] good fair |domain ind.| SP QoS both no all partial fair
[Colombo flat high |domain ind.| both | both atomic no serv. & |complete| fair
et al. 2005] appl.

[The OASIS fair fair |domain ind.| both | QoS both quant. |serv. & |[complete| good
Group 2005] appl.

[Cappiello |extensive| high |domain ind.| both | both both no all partial | none
2006]

[Truong good fair |domain ind.| SP QoS both quant. |serv. &| partial fair
et al. 2006] infr.

[Brandic good fair |domain ind.| SP QoS both quant. |serv. &| partial fair
et al. 2006] infr.

[Sakellariou good good both both | QoS both no |serv. &| partial fair
and infr.

Yarmolenko

2008]

[Cappiello |extensive| high both both | both both quant. all none none
et al. 2008]
[Frutos et al.| good high |domain ind.| SP QoS both quant. all partial | none
2009]
[Nessi Open fair fair |domain ind.| both | both both quant. | serv. none none
Framework
2009]

[Kritikos extensive| high both both | both both no all partial fair
and

Plexousakis
2009]

[Mabrouk extensive| good both both | both both quant. all partial fair
et al. 2009]

of quality categories is 10 across all SQMs and splitting the [2—10] space of the number
of quality categories in three (additional) equally-sized partitions.

The evaluation results are presented in the second column of Table II. The majority
of SQMs use categories to classify the attributes and improve the model’s understand-
ability. Moreover, there is a balance between all the SQM partitions created according
to this criterion (apart from the flat partition which has only one approach) with the
partition corresponding to good extensiveness to have a very small precedence. Finally,
by observing the last nine values of the extensiveness criterion column, we can see
that SQMs are improving according to this aspect (with the exception of Nessi Open
Framework [2009]).

3.2.2. Level of Detail in Quality Categories. This criterion is used to determine if each
category contains a sufficient quality attribute number. The greater the number of
quality attributes in a category, the higher the probability that the most significant
QoS attributes will be included within it. So when a quality category contains less than
three attributes, its level of detail is: low. When it contains three to five attributes, it
is good, while when it contains more than five it is high. Again, the splitting of the
quality category space according to the number of the quality attributes contained
was performed in a uniform way based on the lowest and greatest number of quality
attributes across all quality categories of all SQMs. In this way, we can build on this
categorization to express the level of detail of the whole SQM. To this end, the following

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:11

levels have been defined by considering all meaningful combinations of categorizations
of an SQM’s quality categories: very low (every category has low level of detail), low
(some categories have low and other have good level of detail), fair (some categories
have low and other have good or high level of detail — but at least one quality category
has high level of detail), good (all categories have good level of detail), very good (some
categories have good and other have high level of detail), high (most categories have
high level of detail).

The evaluation results are presented in the third column of Table II. Almost half of
the SQMs have a fair level of detail which means that some of their categories contain
less than three quality attributes. For the rest of the approaches, SQMs that present
high level of detail are more than those having good. Finally, note that approaches with
a level of detail greater than fair have appeared after 2005, meaning that SQMs have
increased their level of detail over time.

3.2.3. Containment of Domain-Independent and Domain-Dependent Quality Attributes. Domain-
independent quality attributes are general/technical attributes that can characterize
all services in any possible application domain. For example, it is difficult to find an
SQM that does not contain the response time and availability (domain-independent)
attributes. On the other hand, domain-dependent quality attributes characterize ser-
vices (or their parts) of one or more but not any application domain. For example,
data-related attributes like validity and timeliness characterize the input or output
data of services that manipulate data. So the evaluation of this criterion for a specific
SQM would be: domain ind. (only domain independent), domain dep. (only domain
dependent), and both.

The evaluation results are presented in the fourth column of Table II. All the ap-
proaches tend to be general and not domain specific. In fact, all the SQMs propose
domain-independent criteria that can be generally used in every context in which
nonfunctional properties are considered. Only four approaches enumerate also some
domain-specific attributes of a particular domain [Sakellariou and Yarmolenko 2008;
Kritikos and Plexousakis 2009; Mabrouk et al. 2009] or some quality attributes used
in some domains according to a particular context [Cappiello et al. 2008]. The latter
four approaches have been proposed recently.

3.2.4. Consideration of Service Provider and Requester Views. This criterion considers the
relevance degree of the different quality attributes with respect to the SP and SR.
Some quality attributes are particularly relevant for SPs, such as availability and
response time. Other quality attributes are important to SRs, such as response time
and usability. Thus, some quality attributes are both important to SPs and SRs, so
they belong to their common view, while other attributes are important only for one of
these parties, so they are either SP specific or SR specific. If the SQM captures both
views, it should provide a quality attribute set that can be used to express both SP
capabilities and SR requirements. Thus, this criterion’s evaluation for a specific SQM
would be: SP (if the SQM contains SP-specific and common quality attributes), SR
(if it contains SR-specific and common attributes), and both (if it contains common,
SP-specific, and SR-specific attributes).

The evaluation results are presented in the fifth column of Table II. More than half
of the SQMs consider quality attributes that correspond to both the provider’s and
requester’s view. So, researchers have understood the need of expressing both views in
an SQM. Moreover, the evaluation results of this criterion are in accordance with those
of the previous one. First, domain independence signifies that the selected quality
attributes are more specific to the service and independent of its usage in specific
applications, so at least the provider view is covered. This is because providers are more
concerned about having their services used across many application domains so they

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:12 K. Kritikos et al.

focus more on those quality attributes that are generic and tend to distinguish their
services from other services independently of the application domain. Second, domain
dependence signifies that the selected attributes are specific to an application and its
usage, so they have an impact on the user’s expectations. Thus, domain-dependent
attributes tend to cover the requester view. Indeed, by cross-checking the results of
this and the previous criterion (domain independence), we can observe that when only
domain-independent attributes are contained in an SQM, then at least the SP’s view is
captured. In addition, when an SQM also captures domain-dependent attributes, then
also the requester’s view is captured. Finally, it can be observed that while in the past
most SQMs were capturing only the SP view, this situation has changed recently as
the more recent SQMs (from 2006 and on) tend to cover both views.

3.2.5. QoS and QoE Consideration. QoE attributes certainly reflect the requester view.
However, two main questions arise that may be addressed by the evaluation of this
criterion and the observation of the evaluation results of the previous criterion: (a) are
all requester-view quality attributes QoE or not?, and (b) what is the situation with the
provider-view quality attributes, in other words do the provider-view attributes contain
QoS, QoE, or both attribute types? Thus, these two questions actually concern which
views do the QoS attributes reflect. Obviously, both sets of attributes are important
and should be represented by an SQM. So, the evaluation of this criterion for a specific
SQM would be: QoS (only QoS), QoE (only QoE), and both.

The evaluation results are presented in the sixth column of Table II. It is noticeable
that there is a balance between the SQMs that contain only QoS attributes with those
that contain also QoE attributes. Moreover, the more recent SQMs tend to cover both
attribute types. This means that SQM modellers have understood the importance of
modelling both QoS and QoE attributes.

By inspecting this criterion’s results and those of the previous one, some other in-
teresting facts can be inferred. First, when an SQM covers only the SP view, then
it covers only QoS attributes. This means that an SP considers the QoS attributes
as more important. This is quite reasonable as the SP-view quality attributes are in
their majority domain-independent attributes that should be measured objectively in
order to be able to meaningfully compare services across all application domains. Sec-
ond, when an SQM additionally covers the SR view, then it covers either QoS or both
QoS and QoE attributes. This signifies that the SR view corresponds to both attribute
types. On one hand, the SR-view domain-independent attributes will tend to be QoE
attributes because these attributes can be assessed differently from users across the
various application domains, as in each domain the usage and the requirements from
a service are different with respect to the other domains. On the other hand, SR-view
domain-dependent attributes will tend to be QoS attributes because in a specific appli-
cation domain the requirements and the service usage are specific or vary in a specific
way according to the user expectations, while the user’s domain expertise is high. In
this way, the SR-view domain-dependent attributes will tend to be measured with well-
established domain metrics or be assessed in the same objective way by users that have
similar expectations.

3.2.6. Atomic and Composite Quality Attribute Inclusion. Some attributes are composite and
can be computed by evaluating other attribute values. For example, response time (the
parent) is a composite attribute since it can be assessed by evaluating latency and
network delay (its children). Other attributes, like authentication, are atomic as they
do not rely on any attribute. The composability aspect is important as it can be used
later by metamodels to capture this inherent relationship type between the parent and
child quality attribute. Moreover, as this relationship can be associated with specific
quantitative (composite attribute derivation formulas) or qualitative (expressing the

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:13

correlation between the parent and the child attribute) dependencies, it can provide
important input to the service monitoring process. Thus, this criterion’s evaluation
for an SQM would be: atomic (only atomic attributes are included), composite (only
composite attributes are included), and both (both attribute types are included along
with a connecting relationship).

The seventh column of Table II presents the evaluation results. Most of the SQMs con-
tain both atomic and composite quality attributes along with a connecting relationship.
In addition, all SQMs proposed after 2005 contain both attribute types, demonstrating
an improving trend with respect to this aspect. Finally, by inspecting the evaluation of
the SQM of Colombo et al. [2005] according to this and the first two criteria, it can be ob-
served that this SQM contains only atomic attributes, while its category extensiveness
is flat and level of detail is fair. Such an SQM is built and structured in this way for sup-
porting fact computation (i.e., service matchmaking and selection) algorithms which
require that no interattribute dependencies exist but only QoS attributes that can be
immediately measured by specific metrics without introducing higher measurement
levels.

3.2.7. Types of Dependencies. There can be two dependency types between quality at-
tributes: quantitative and qualitative. The former are expressed by mathematical for-
mulas or constraints, while the latter are expressed symbolically or descriptively. A
qualitative dependency example is that availability and reliability have “a positive cor-
relation”, that is, an increase of the one’s value causes an increase to the other’s value.
Both dependency types can be exploited for service monitoring. For example, the moni-
toring process can inspect if the monitoring facts conform to the correlations expressed
in qualitative dependencies. In addition, the dependencies between quality attributes
may unveil the correlation between quality attributes across the three service lay-
ers and, thus, provide insights on how the performance of an application or business
process is influenced by the performance of the (external) services that it exploits as
well as by the performance of the infrastructure that provides support to its execu-
tion. So it must be inspected if concrete dependencies between quality attributes exist
without considering which modelling constructs are used, as SQMs and not SQMMs
are evaluated. This criterion’s evaluation for a specific SQM would be: no (no depen-
dencies are expressed), quant. (only quantitative dependencies are expressed), qual.
(only qualitative dependencies are expressed), and both (both dependency types are
expressed).

The evaluation results are presented in the eighth column of Table II. Only quanti-
tative dependencies are addressed by the SQMs. In addition, all of these quantitative
dependencies concern composite attribute derivation formulas. Finally, by comparing
the evaluation results with those of the previous criterion, it can be inferred that the
majority of the SQMs that specify both composite and atomic quality attributes also
specify the way the composite attributes are produced from the atomic ones.

3.2.8. Layer Designation. The reference model introduced in Section 1 consists of three
layers: application, service, and infrastructure. The application and service layers usu-
ally have a set of identical attributes, where the application-layer attributes are pro-
duced from the respective service-layer ones. Moreover, some business- or user-oriented
attributes are associated to the application layer. The infrastructure layer usually con-
tains a completely different quality attribute set with respect to the other two layers.
So, as it is important to clarify to which service layers an SQM refers, this criterion’s
evaluation for a specific SQM would be: service, serv. and appl. (service and application),
infr. (infrastructure), serv. and infr. (service and infrastructure), and all (all layers). We
have considered all meaningful layer combinations for categorizing the SQMs, where
the term “meaningful” relies on the fact that as we are dealing with the quality of a

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:14 K. Kritikos et al.

service, at least the service layer must be captured by an SQM through defining the
respective quality attributes of this layer.

The evaluation results are presented in the ninth column of Table II. As all SQMs
focus on the components of the service layer, that is, software services, they unsurpris-
ingly contain service-layer quality attributes. Almost half of the SQMs also contain
either infrastructure-layer or application-layer attributes, while the same result ap-
plies for SQMs which have adopted a holistic approach. Thus, apart from the initial
SQM that contained solely service-layer quality attributes, the researchers in this field
have quickly understood the need to include quality attributes from other layers so as
to be able to characterize the quality of all types of services.

By comparing the results of this criterion with those of the previous one, it can be
inferred that there is a trend in proposing SQMs that not only cover all service layers
but also expose the quantitative dependencies between the service attributes. How-
ever, it should be noted that most of the SQMs do not cover dependencies between
quality attributes at different service layers but only at the same layer. In this way,
first the lack of qualitative dependencies prevents monitoring from deriving novel facts
or validating the existing ones. Second, the way the quality at one layer is measured
and influenced by the quality at a different layer is not indicated, thus preventing the
service monitoring and assessment activities to correlate the monitored information,
discover interesting patterns, and find the root cause of a specific service fault that
has occurred with respect to the violation of a specific SLO of an SLA. Indeed, by also
considering the state-of-the-art work in service monitoring, it can be observed that
cross-layer service dependency models are scarcely exploited and usually the moni-
toring components of an application are deployed at specific layers and are usually
independent from each other. As such, they cannot easily detect which is the exact root
cause of a service-level degradation and take the most suitable adaptation action or
strategy. Moreover, they may detect different forms of the same problem and initiate in-
dependent adaptation actions which may have strong interference or cancel the effects
of each other, and may potentially not solve the problem in its entirety [Kazhamiakin
et al. 2009].

3.2.9. Metric Identification. This criterion is used to inspect if SQMs contain quality
metrics used to measure quality attributes. Metrics are entities that encapsulate all
appropriate measurement details of an attribute such as measurement values, units,
formulas, and schedules. However, a metric’s measurement formula or assessment
algorithm is used as a separate comparison criterion from the current one because some
SQMs provide the name of a metric and some of its details, when they associate it to an
attribute, but not an assessment guideline or algorithm for it. So it must be assessed
first which SQMs associate specific metrics to attributes and then the existence or not
of assessment guidelines for the incorporated metrics. Thus, this criterion’s evaluation
for each SQM will take the following discrete values: none if no metrics are provided
in the SQM, partial if the SQM associates metrics to a subset of the quality attributes,
and complete when all attributes are associated with at least one corresponding metric.

The evaluation results are presented in the tenth column of Table II. More than half
of the SQMs associate metrics to a subset of the contained quality attributes, while only
two SQMs are complete in this aspect. The reason of having many partial SQMs can
be twofold: (a) some quality attributes are not measurable or are difficult to measure
(e.g., QoE attributes), and (b) there was a decision of associating metrics only to the
most popular or widely used (in QSDs and SLAs) attributes. Finally, two SQMs do not
associate metrics to attributes, which significantly limits their usage in specific service
quality description and matchmaking scenarios.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:15

3.2.10. Association with Assessment Guidelines. An SQM may provide algorithms to assess
the quality attributes that it defines. This criterion’s evaluation would be: none if
guidelines are not provided, fair if simple assessment rules are provided, and good if
the authors specify precise assessment algorithms.

The evaluation results are presented in the eleventh column of Table II. More than
half SQMs just specify some guidelines for each metric, while one third of the considered
SQMs do not provide metric assessment guidelines. Thus, as the latter SQMs cannot
be used in the monitoring and assessment service life-cycle activity, their use is limited
mostly in the advertisement and matchmaking activities. Only one approach provides
precise assessment algorithms for all defined metrics and associates metrics to all its
contained attributes. So, this approach is suitable for annotating QSDs and SLAs which
can be used across all service life-cycle activities. However, it can be used in specific
scenarios as it contains a small set of domain-independent quality attributes and not
domain-dependent ones.

By correlating the evaluation results of this criterion with those of the previous one,
it can be inferred that SQMs, which associate metrics to some or all of their quality
attributes, do provide for them simple assessment rules that could be further used to
create precise assessment algorithms. If this inferred result is combined with that for
the Types of Dependencies and Service-Layer criteria, it can be observed that most
SQMs do not provide the appropriate information for the proper service monitoring
and assessment of a service’s quality attributes. This substantially limits their use and
creates the need for a novel SQM that not only extends the best SQM according to these
aspects but also provides quantitative and qualitative dependencies between quality
attributes of not only the same but of also different service layers.

3.3. Overall Analysis

Based on the preceding analysis, no SQM can be distinguished as the best according
to its evaluation on all the considered criteria. On one hand, by considering the first
six criteria plus the Layer Designation one which relate to an SQM’s extensiveness,
structure, and generality, four approaches can be distinguished as the most complete
[Cappiello 2006; Cappiello et al. 2008; Kritikos and Plexousakis 2009; Mabrouk et al.
2009]. On the other hand, by considering the last two criteria which relate to an SQM’s
attribute assessment and applicability, the approach in Colombo et al. [2005] can be
distinguished. Moreover, all approaches have the worst behavior with respect to the
Types of Dependencies criterion. Thus, a new SQM is needed combining the charac-
teristics of the best approaches in the aforesaid two criteria partitions and describing
all the possible but realistic interattribute dependencies across the same and different
service layers. Such an SQM could be specified via the ideal metamodel illustrated in
Figure 3, where the concepts and associations marked with grey show the common
conceptual elements among all SQMs.

Apart from the criteria-based analysis, the frequency of the service quality categories
and attributes across all SQMs was assessed in order to distinguish the most frequent
ones. Table III shows which quality attributes have been defined by which SQM(s).

Although several different QoS attributes and categories can be found in the various
proposals, it is possible to single out the most frequent and consider them as the “basic”
and most important QoS attributes and categories, respectively. This is because all
other attributes either capture secondary features or are more context dependent (i.e.,
very specific), while they appear very scarcely in the proposed SQMs. As can be seen
from Table III, response time, latency, and throughput are the attributes that mostly
represent the performance category, which is present in most SQMs. Another important
category is security which has three attributes, namely authentication, authorization,

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:16 K. Kritikos et al.

+hasChild

QoE

\/
i 1
V+(:OSA.tt:-1bute 4 E@i
QoSCategory© escription .

1.0 1. [Hayer

+containedin +view +measuredBy | 1..*
Y
* | *depgndsOn [QoS | QoSMetric
+assessment
|Domain-Independent| (Domain-Dependent| |UnMeasurable|

Fig. 3. Ideal metamodel for SQMs.

and nonrepudation, that are steadily present in the SQMs. Availability, accuracy, and
reliability are the remaining three most important attributes.

Data quality is a multidimensional concept that defines the suitability of the used
data for the application involved. In the literature, there exist several contributions
about data quality attributes and taxonomies/SQMs (e.g., Redman [1997], Strong et al.
[1997], and Batini et al. [2009]). The most important and representative data quality
attributes (according to the data quality research) are accuracy, completeness, consis-
tency, and timeliness. Since the service output is mostly composed of information, data
quality can be considered as a part of the service QoS and it can thoroughly drive the
analysis of the required input and provided output. Thus, data quality attributes could
be easily applied to the service world in order to check the correctness of data, the
existence of missing or contradictory values, and the updateness of the information
provided. However, data quality aspects are scarcely considered. The only data quality
aspect that is mostly considered is correctness.

Some SQMs take into account particular network aspects. In these SQMs there
is usually a Network quality category which mainly contains the four most frequent
network attributes, namely, bandwidth, network delay, jitter, and packet loss.

4. SERVICE QUALITY METAMODELS
4.1. Background

SQMMs have been mainly used to describe the service quality capabilities or require-
ments of an SP or SR, respectively. Thus, apart from their ability to describe SQMs,
SQMDMs can specify @SDs. As service description is a prerequisite for service discovery,
the content of SQMMSs has been used for Quality-Based Service Matchmaking (QBSM)
and service selection in service registries. QBSM is a process executed after Functional
Service Discovery (FSD) to further filter out a registry’s Service Descriptions (SDs)
based on their service quality capabilities with respect to the service quality require-
ments of an SR. It must be noted that SDs specify both the service functional and
quality capabilities. The results of the QBSM process may be ranked, if needed, by
executing the service selection process.

As analyzed in Section 2, some SQMMs can be also considered as SLA-MMs be-
cause they can describe SLAs. These SQMMs are called SLA-enabled SQMMs (SLA-
SQMMs). The corresponding languages of this SQMM type include QML [Frglund and
Koistinen 1998], WSLA [Keller and Ludwig 2003], WSOL [Tosic et al. 2003b], and

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description

Table IIl. Attributes Defined in Service Quality Approaches

Service
Quality
Category

Service
Quality
Attribute

Approach Reference

Sabata et al. 1997

Sakellariou and Yarmolenko 2008

Performance

Response Time

> The OASIS Group 2005

> Nessi Open Framework 2009

>l Mabrouk et al. 2009

Processing Time

> | Brandic et al. 2006

Latency

> | > Ran 2003

> 4 >4 Truong et al. 2006
> 4| >4 Cappiello et al. 2008

™ | ™ Frutos et al. 2009

> M4 X4 Kritikos and Plexousakis 2009

Timeliness

Precision

isle

Throughput

Availability

sk

sl Micisls

ok

Accessability

skalke

kil

Accuracy

Reliability

P | | XX | >4 Colombo et al. 2005

D444 4 D | 4 4 4 4 Cappiello 2006

Capacity

isle

sk ke lslalls

ks ke lelals

Believability

Maintainability

slslsisbaiale

I Bk kalalle

Relative Importance

Complexity

Customer Service

Depandability

Stability

isle

isle

Trust

Understandability

Sk ke lolala e

>

Integrability

Interoperability

Resource Efficiency

Reusability

Scalability

Cost

Security

Authentication

slksls

Authorization

>

Skicicislials

Level

Integrity

Confidentiality

Accountability

sk ks ke lslials

Traceability

slisis B Lilsls

MMM [

i IRES E Il e

Non-repudation

Data Encryption

sl bl lsBisisiskes

sl ke ls

sl bl laliasiaiske

Isolation

sliske

Configuration

Virtual Organization

ole

Location

Level of Service

Service Version

Supported Standard

sk ke lals
>

Data

Maturity/Age

ks

Timeliness

Reliability

> 4
slsisia s lts

Completeness

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:18 K. Kritikos et al.

Table IV. Summary of the Comparison Criteria of Service Quality Specification Languages

Criterion Summary
Formalism The language’s expression formalism
Quality Model Expressiveness in defining SQMs
Metric Model Expressiveness in defining metric models
Constraint Model Expressiveness in defining service quality constraints
Complexity The complexity of producing SQMs and QSDs
Service Description Separation Separation of functional and quality-based SDs
Service Description Refinement Refinement/reuse of QSDs
Service Description Granularity The ability to define quality constraints for the various service
components
Symmetric but Separate QSDs | QSDs should be defined for both SPs and SRs in the same way but
separately
Class of Service The ability to produce different QSDs for the same service
Connection Connection of a language’s QSDs with functional SDs of a specific
language
Quality Matching The way QSDs of SPs and SRs should be matched
Framework Support In which type of frameworks is the language used

SWAPS [Oldham et al. 2006]). SLA metamodels that do not define quality attributes
and the corresponding service quality capabilities are not considered in this section
(e.g., WS-Agreement [WS-AGREEMENT 2003]). Section 5 will analyze all kinds of
SLA languages with the appropriate SLA-based criteria.

Some security aspects like trust and privacy are considered orthogonal to service
quality and are usually separated from the service quality description with respect
to the other security aspects. In this way, another partition of SQMMs is considered
in this section which maps to languages, such as Trust-Serv [Skogsrud et al. 2004],
PeerTrust [Nejdl et al. 2004], WS-Trust [Nadalin et al. 2007], and P3P [Cranor et al.
2006], that describe a service quality part which is not described in the rest of the
SQSLs. The SQMMs of this type are called security-based SQMMs.

4.2. Methodology and Analysis

In order to analyze all SQMMs and compare them on their ability to define quality, par-
ticular comparison criteria have been chosen that were either devised by the authors
or collected from other research approaches [Frglund and Koistinen 1998; Tosic et al.
2002; Maximilien and Singh 2002; Cortés et al. 2005; De Paoli et al. 2008; Kritikos
2008; Kritikos and Plexousakis 2009]. These criteria mainly reflect the formality, ex-
pressiveness, complexity, and applicability of the examined SQMMs. The summary of
our selected criteria (without their grouping) is shown in Table IV, while their complete
presentation is provided later on.

Based on the SQMM categorization of the previous subsection, there are actually
three SQMM partitions: pure, SLA enabled, and security based. The content of these
partitions with respect to the corresponding SQMMSs can be seen in Table V. The evalua-
tion results of the examined SQMMs according to our comparison criteria are presented
in Table VI. This table is separated into three clusters, each one presenting the evalu-
ation results of one particular SQMM partition, where the respective approaches are
ordered chronologically.

In the remainder of this section, each criterion or group of criteria is presented along
with its evaluation results in separate subsections, where the analysis of the evaluation
results takes place both globally for all SQMMSs and locally for each partition. At the
end, a global analysis of the SQMMs across all criteria is given.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:19

Table V. SQMM Partitions and their Corresponding Approaches

Partition Approach Name Approach Reference
WS-QoS [Tian et al. 2003]
WSAF-QoS [Maximilien and Singh 2004]
DAML-QoS [Zhou et al. 2004]
QoSOnt [Dobson et al. 2005]
Pure QRL [Cortés et al. 2005]
UML QoS [The OMG Group 2005]
WSMO-QoS [Wang et al. 2006]
OWL-Q [Kritikos and Plexousakis 2006]
onQoS-QL [Giallonardo and Zimeo 2007]
PCM [De Paoli et al. 2008]
QML [Frglund and Koistinen 1998]
WSOL [Tosic et al. 2003b]
SLA-enabled WSLA [Keller and Ludwig 2003]
SWAPS [Oldham et al. 2006]
Trust-Serv [Skogsrud et al. 2004]
. PeerTrust [Nejdl et al. 2004]
Security-based P3P [Cranor et al. 2006]
WS-Trust [Nadalin et al. 2007]

4.2.1. Formalism. This criterion has been chosen in order to distinguish SQMMs (i.e.,
the metamodels that define the abstract syntax of quality languages) depending on
their representation formalism. Various formalisms have been used to express an
SQMM, such as informal (such as DTDs or XML schemas), UML, and ontologies. Each
formalism has its own advantages and disadvantages. For example, ontologies provide
a formal, syntactic, and semantic description model of concepts, properties, and rela-
tionships between concepts. They are extensible, human understandable, and machine
interpretable and enable reasoning support by using Semantic Web technologies. How-
ever, sometimes their expressive power is more than needed while also the tool support
is not as efficient as in the other formalisms. Moreover, current ontology tools from the
research community require expertise in knowledge representation. The evaluation of
this criterion for each SQMM can have one of the following values: informal, UML, and
ontologies.

The evaluation results are presented in the second column of Table VI. Most of the
approaches use either ontologies or informal formalisms (mostly schema languages
focusing on a language’s concrete syntax), while only two use UML. This result is rea-
sonable as ontologies are powerful modelling formalisms and very expressive, while in-
formal formalisms are simple and very well supported. Concerning the local partitions,
pure SQMMs are modelled mostly through ontologies, while an informal formalism is
the best modelling choice in the other partitions. For pure and SLA-enabled SQMMSs
there is a recent trend to use ontologies for their modelling. This is because ontologies
provide unambiguous semantics to quality terms and thus enable machines to auto-
matically process and reason on ontology-specified QSDs to support service life-cycle
activities like discovery and negotiation.

4.2.2. Richness in Defining Service Quality Models. In the presence of multiple services with
overlapping or identical functionality, SRs need objective quality criteria to distinguish
between these services. However, it is not practical to create a standard SQM that can
be used for all services in every domain. This is because quality is a broad concept that
encompasses many nonfunctional properties, such as privacy, reputation, and usability.
Moreover, when evaluating service quality, domain-specific criteria must be considered.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

K. Kritikos et al.

1:20

oN oN TASM QU | 3OTNIISUO)) SUWIBS [u‘us Mo I100J areyq Ireyq [euLojuy ISNIT-SM
AI9A00S1(T oN TASM Auely | 1oNI)SUO)) SWERS [£KK) Mo poon Ief | poon [euLIoyuy ded
K10A02S1q ON S TMO Auely | 1oNI)SUO)) SWRS [KKK) MO Py poon | poon) | serdojojuQ ISNLT I8
AI9A00S1(] ON TASM AURy | 1PNIISUO)) dWERG [£KK] Mo poon areyq areyq [euLIojuy ATOG-ISNI],
AI9A00SI(] SOx TASM AURy | 1ONIISUO)) dWRS [£4u) WNIPIA yory pooy) | arejq ser3o[0juQ SdVMS
uorjerjoseN ON TASM AURy | 1PONISUO)) dWRS [AAK] WNIPSJN | JUS[[EIXE | Pooy) | J100d [euLiojuy VISM
AIOA00SI(] ON TASM AURy | 19oNI)SUO)) dWRS [AKK] MO yory pooy) | J100g [eurrojuy TOSM
ON ON ON dU(| JONIISUO)) dUIeS [£KK] Mo JUS[[IXY | POOY) Ireyq 9 Mﬁuﬂmﬁ TINO
AI9A00SI(] Sox OINSM Auey JLIjOWWAS [uwhK] WNIPa yory poon ey ser3o[ojuQ WOd
AI0A00SI(] Sox S-TMO Auey JLIJOWWAS [AKK] WNIPS yory pooy) | Ppooy) ser3o[ojuQ 19-gopuo
AI9A00S1(] Sox S-TMO Auey OLIJOWWAS [AKK] y3rg yory yory pooy) ser3o[0juQ O-1TMO
K19A00S1(T oN OINSM Auely | 1oNI)SUO)) dwWRS [uhA] Mo poon poon areyq so13o[0u() | SOD-OINSM
ON ON ON Auepy | jonaysuo)) sweg [£64] WmIpajA oty req pooH TINN Sod TINN
AI9A00S1(] oN ON ouQ JLIjOWWAS [u‘ui] Mo yory areyq 100g [euLIoyuy IO
AI9A00SI(] ON S-TMO Auey JLIjOWWAS [£KK] Mo poon areyq Ireyq ser3o[01u(UOSod
AI9A00SI(] ON S-TMO Auepy JLIjoWWAS [£KK] Mo yory areyq Ireyq ser3o[01u) | SOO-TINVA
AI9A00SI(] ON S-TMO QU | JOMIISUO)) SRS [u‘u‘u] Mo 1004 1004 | PpooH ser30[01U() | SOP-AVSM
ON ON TASM Auey JLIJOWWAS [£uk) Mo 1004 aeyq ey [euLiojuy SOO-SM
1roddng SJONIISUO)) | UOIJOBUUOY) | AIIAISS | SUSH 9jeredeg ‘nueLy) AIxX/UI00) 1989 [®POIAl | [PPOIN | WISI[BULIOJ yoroxddy
JIomewrel,] | SuIyPIRIA Jo sse[) | Inq OLIeWWAG “ugey JUTRIISUO)) | ILIFOIA | £31[eN() oIeesey
Ayrend “deg I0se(

BlIB}ID UoleNneAg || 8y} uo seyorolddy NINDS 40 uosiiedwo) ‘|A 8|geL

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:21

Therefore, a rich and extensible SQM must be enabled by the SQMM that includes both
generic and domain-specific attributes and can be extended with the addition of new
attributes. All the SQMMs considered advertise that they are extensible according to
this aspect.

However, an SQMM richness depends also on other additional modelling capabilities
that concern the offering of constructs that enable a quality attribute description in
every possible detail/aspect. The following list summarizes all the modelling criteria
that are needed to assess an SQMM'’s richness in defining SQMs:

(1) enumeration of all possible quality attributes;

(2) modelling the attribute’s domain (e.g., phone service provisioning) (i.e., the entity
and its relation to the “attribute” entity);

(3) modelling of interattribute relationships/dependencies (either quantitative or qual-
itative or both);

(4) modelling the attribute’s compositionality (i.e., if it is composite or not and what
are its child attributes);

(5) modelling the different views which an attribute may concern, that is, the SPs, SRs,
or both views;

(6) distinguishing by using appropriate constructs between QoS and QoE attributes;

(7) distinguishing by using appropriate constructs between domain-dependent and
domain-independent attributes;

(8) modelling the service layer an attribute refers to;

(9) modelling the association/relationship between quality attributes and metrics.

It must be noted that for the last subcriterion we do not inspect the richness of the
metric model, as this is the subject of the next criterion.

This criterion’s evaluation for a specific SQMM depends on the SQMM’s satisfaction
of the nine previously analyzed subcriteria. In particular, the SQMM space is parti-
tioned in a uniform way depending on the number of subcriteria that are satisfied by
an SQMM. Therefore, if the considered SQMM satisfies only one or two subcriteria, it
is considered poor. If it satisfies three to four criteria, it is considered fair. If it satisfies
five to seven criteria, it is considered good. Finally, if the metamodel satisfies eight to
nine criteria, it is considered rich.

The evaluation results are presented in the third column of Table VI. Most of the
SQMMSs can describe either a fair or good in richness SQM, while the rest can only
describe a poor SQM. As there is no SQMM that can describe a rich SQM, there is no
approach perfectly capturing this modelling aspect. Concerning the local partitions, the
aforesaid general result also applies to pure SQMMs, while there is a trend revealing
that the SQM richness is improved in recent pure SQMM approaches. Moreover, SLA-
enabled SQMMSs do not perform well in this modelling aspect because they place more
importance on how a quality attribute can be measured rather than how it is modelled.
On the other hand, security-based SQMMs perform moderately as the definition of
quality attributes is one of their major concerns but not all attribute aspects need to
be described.

4.2.3. Richness in Defining Quality Metric Models. An attribute is measured through the
abstraction of a metric. While a metric model is encompassed in a quality model, the
capability of an SQMM to express such models in a rich way was inspected separately
for two main reasons. First, quality attributes and metrics are two different concepts.
Second, both of these concepts require a quite rich description as the number of sub-
criteria that were used to compare the SQMMS’ richness in describing both of these
concepts can reveal. So, the overall richness of an SQMM depends on the richness of
both its quality and metric models.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:22 K. Kritikos et al.

Thus, SQMMs should enable the creation of rich service quality metric models. The
richness of the SQMM metric models was evaluated according to the following metric
aspects.

(D

(2)

3

4)

The metric dynamicity. Metrics should be distinguished between dynamic and static
ones. Dynamic metrics measure dynamic quality attributes (like availability) that
change over time and are computed according to a schedule or trigger. Static metrics
measure static quality attributes (like security) and have a specific value that does
not change over time. This means that these attributes are not only controllable but
also fixable, so SPs can guarantee their fixed values even if the provided service’s
context changes.

The metric value type. A metric value type specifies a domain of values. These
values can be used in constraints involving this metric. The domain of values
may be ordered. For example, a numeric domain comes with a built-in ordering
that corresponds to the usual ordering on numbers. So, only the maximum and
minimum value along with their numeric type (e.g., real or integer) have to be
modelled for numeric domains. If the domain is not continuous, then it can be
expressed as a union of continuous domains. In practice, numeric domains are
used for most quality metrics. Set and enumeration domains do not have a built-in
ordering, so a user ordering of the domain elements must be described apart from
the explicit modelling of these elements. Depending on the quality metric semantics
(e.g., if the amount of values the metric can take only matters), the natural partial
order of sets defined by inclusion can be used. The order in which an enumeration’s
elements are defined may also be their sorting order but the user has to define if it
is increasing or decreasing. Finally, for unordered domains only the domain values
have to be explicitly defined.

The metric unit. The values a metric can take are measured in specific units, for
example, seconds for a metric measuring execution time. Concerning the modelling
of units, describing just the unit name is not enough because additional information
regarding how to convert a value expressed in a specific unit to a value expressed
in another unit has to be modelled. This information is crucial in case the SP and
SR express a metric constraint using different units or when combining metric
measurements of different units originating from different sources. Units should
be separated into basic and derived units. Basic units should have a name and a
short abbreviation. Derived units are produced from other units by multiplying the
component unit with a specific (float) value (i.e., multiples of units) and possibly
dividing it with another one. For example, the unit of minutes is produced by
multiplying the unit of seconds with 1/60, while one unit for the throughput quality
attribute is “bytes/second” produced by dividing the unit of “bytes” with the unit of
“seconds”. Thus, two relationships, stating which unit(s) are directly proportional
and which are inverse proportional to it, and an additional multiplying factor should
be modelled for a derived unit.

The metric measurement directive or function. Quality metrics should be classified
into resource and composite metrics. Resource metrics are directly measured from
the service’s system instrumentation through measurement directives. For mea-
surement directives, a URI, specifying how the value of a managed resource is
retrieved, and the value type of the return value should be described. In addition,
the access model (i.e., push or pull) must be specified to establish if the party re-
sponsible for the measurement will ask for the value or receive it when it is ready.
Moreover, specific measurement directives may require a possible extra attribute
(timeout) specification concerning the time duration that the measurement party
will wait for obtaining the measurement value. Composite metrics are computed by

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:23

applying statistical or other mathematical functions to other metrics. Therefore,
a description of both the function and the metrics used to compute the composite
metric must exist. Moreover, a function model should be provided in order to enable
users to select the appropriate function for each composite metric.

(5) The metric schedule. The SQMM should enable the definition of at least one of the
following types of time windows for the periodic or instantaneous calculation of
new values for a quality metric:

(a) calendar time window like week, month, and/or year;

(b) sliding windows like the last ten days;

(c) expanding window or running total, for example, from this year’s start until
now.

(6) The metric weight relative to its implicit domain and user preferences. This weight
can be used to calculate the rank of a service quality offer and indicates the impact
that this metric has to the overall quality offered by a service.

(7) The characteristic of the function from metric values to overall quality values. An
SQMM should explicitly specify the exact monotonicity/value direction of mono-
tonic metrics (e.g., negative for an execution time metric) and mapping functions
for nonmonotonic metrics. This information modelling is sufficient in most of the
quality-based service discovery scenarios.

The nonmonotonic metrics need user-defined mapping functions to express the
user preferences regarding the values that these metrics can take. For example,
for the nonmonotonic metric enumerating the encryption algorithms supported
by a service, there may be a user function that maps the value of “AES-192” to
service level 3, the value of “AES—-256” to service level 2, and the value of “AES-
128” to service level 1. In this case, the highest security value gets a lower quality
value than the second highest one indicating that the user may be satisfied with
the second highest value and does not want to pay more in order to have a more
secured service.

The preceding situation is tailored for QBSM scenarios where each quality met-
ric is considered independently of the other. In case that there are dependencies
between quality metrics and attributes, functions (or n-ary constraints) should be
used to capture them in conjunction with the aforementioned mapping functions.
The simple additive weighting technique [Hwang and Yoon 1981] is commonly used
in service selection and requires that the values of each attribute or metric are
normalized according to a specific evaluation function. In this case, the aforesaid
mapping functions of nonmonotonic metrics can be used provided that they map
the metric values to the same range (usually the [0.0,1.0] range). For monotonic
metrics, particular evaluation functions are used in most research approaches that
do not have to be captured in an SQMM.

(8) Aggregation of the values of a composite service’s metric. There must be a description
(mathematical or otherwise formal) of how, for a complex service, the value of
a quality metric can be calculated from the values of the corresponding quality
metrics of the individual services it contains. For example, if Tc is the execution
time of a complex service C, a sequence of two services A and B, then Tc can be
computed as the sum of the execution times of the two individual services. This
description is essential for the automated estimation of the quality metric values
for a composite service. So this description is needed for automating the quality
analysis process, a prerequisite for a successful quality-based service discovery.

This criterion’s evaluation for a specific SQMM depends on the SQMM'’s satisfaction
of the eight previously analyzed subcriteria, where, as in the case of the previous
criterion, the SQMM space is partitioned in a uniform way. If an SQMM does not

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:24 K. Kritikos et al.

comply with all the modelling requirements for a specific subcriterion, then this SQMM
does not satisfy the subcriterion. So if the considered SQMM satisfies only one or two
subcriteria, then it is considered poor. If it satisfies three to four criteria, it is considered
fair. If it satisfies five to six criteria, it is considered good. Otherwise, if it satisfies seven
to eight criteria, it is considered rich.

The evaluation results are presented in the fourth column of Table VI. Most SQMMs
encompass either a good or a fair metric model, while only one SQMM encompasses
a poor model. In addition, only one approach (OWL-Q) captures a rich metric model,
while it does not offer a rich quality model. Thus, a metric model is better captured in
the current state-of-the-art SQMMs than a quality model. Considering the local results
in each partition, SLA-enabled SQMMs capture a good metric model with respect to its
richness. This observation was actually justified in the previous criterion’s evaluation,
where it was stated that SLA-enabled approaches pay more attention to metric than
to attribute modelling. The majority of pure and security-based SQMMs present a fair
metric model. Finally, there is a trend for pure SQMMs to improve their metric model
as the SQMMs proposed after 2004 do not encompass a fair or poor metric model.
By combining this result with the respective result of the previous criterion, it can be
deduced that the most recent pure SQMMs have increased their expressiveness as they
cater for a better service quality and metric model.

4.2.4. Expressiveness in Constraint Description. QSDs comprise quality constraints, which
consist of a name, an operator, and a value [Frglund and Koistinen 1998]. The name
is typically a quality metric’s name, or the name of a metric aspect or function. The
permissible operators and values depend on the quality metric’s value type. Only the
values that a metric can take should be used in constraints for that metric. The domain
may be ordered. The domain ordering determines which operators can be used in
constraints for that domain. For example, only the equal “=” and unequal operators
“#£” can be used in unordered domains and not inequality operators (“<”, “>”", “<”, “>”),

Aspects [Frglund and Koistinen 1998] are statistical characterizations of quality
constraints, such as percentile, mean, variance, and frequency. They are used for the
characterization of measured values over some time period. For example, the percentile
aspect could be used to define an upper or lower value for a percentage of the measure-
ments or occurrences that have been observed. Aspects can be very useful when the
measurements or occurrences of a quality metric present some special characteristics
and a new complex metric should not be produced from the basic quality metric for
each of these characteristics.

Quality constraints are usually connected by logical operators into expressions. A
service quality specification should contain one complete constraint expression or just
one constraint. Moreover, quality constraints should be joined into Constraint Groups
(CG) or Constraint Group Templates (parameterized CGs) in order to be reused by many
service quality specifications [Tosic et al. 2003a]. Constraint Groups contain a set of
concrete quality constraints, while Constraint Group Templates contain abstract quality
constraints (i.e., the second constraint operand is not specified). Other reusability
constructs can also be created even for expressions.

To evaluate this criterion for a specific SQMM, the following cases are considered,
which depend on whether the SQMM satisfies any of the aforesaid requirements, where
these requirements have been separated in different levels of importance/significance.
In this way, if the SQMM does not satisfy any of the previous requirements, then its
expressiveness is poor. If the SQMM allows comparison operators in constraints but
does not check their compatibility with the metrics used, then its level is increased and
the SQMM is considered fair. If the SQMM allows comparison operators and checks
their compatibility with constraints, then it is promoted at the good level. If the SQMM

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:25

is good and allows not only to express constraint conjunctions but also other constraint
expressions and formations, it is placed at the rich level. Finally, if the SQMM is rich
and allows the specification of aspects, then it is placed at the highest possible level,
namely the excellent one.

This criterion’s evaluation results are presented in the fifth column of Table VI. Most
of SQMMs use a rich constraint model. As there are no fair constraint models, SQMMs
either perform above or below the average in this aspect. Moreover, in the SLA-enabled
partition, there is a balance between those SQMMs that capture excellent constraint
models and those that capture rich. This is because the rich constraint representation,
especially for service quality levels, is one of the cornerstone features of SLA languages,
which is equally important for all SLA contracting parties. The security-based SQMMs
mostly use a good constraint model because they do not require advanced constraint
modelling features. In pure SQMMs rich constraint models are the majority. More-
over, pure SQMM modelers have quickly understood this feature’s importance as their
SQMMs moved from a poor to a better constraint model. By combining this result with
the respective results of the two previous criteria, it can be deduced that pure SQMMs
have increased their overall expressiveness over time.

4.2.5. Complexity. On one hand, a metamodel’s formalism characterizes the explicit-
ness in which the semantics of the metamodel’s terms are expressed, while its expres-
siveness or richness concerns how well the domain of discourse (i.e., service quality)
is modelled. On the other hand, a metamodel’s complexity mainly concerns its size
and structure and significantly impacts user understandability, the modelling effort
involved, and the size and amount of information included in the produced descrip-
tions. Obviously, the better the domain is modelled and more details are captured, the
higher is the metamodel complexity. So, usually there is a trade-off between complexity
and richness that is mainly regulated by the metamodel’s quality. The latter depends
on how accurately and extensively the metamodel expresses its domain, the existence
of formal and semantic inconsistencies in it, and the relevance and appropriateness of
the modelled information. Thus, rich and qualitative metamodels must be developed
such that their complexity is not big.

It is very difficult to assess a metamodel’s quality and very few approaches have
been proposed focusing on some quality aspect [Jiang et al. 2004; Welty et al. 2003]. On
the contrary, many metrics have been proposed for measuring metamodel or ontology
complexity [Mens and Lanza 2002; Yi et al. 2004; Yoa et al. 2005; Ma et al. 2010]. Thus,
the SQMM quality can be speculated by assessing the SQMM complexity through one
of these metrics in combination with the SQMM richness.

The complexity metric to measure a metamodel’s number of concepts/elements was
chosen for the following reasons: (a) many SQMMs are not publicly available, so they
cannot be evaluated with sophisticated complexity metrics; (b) many complexity met-
rics are not applicable to informal SQMMs; (c) the structure particularities of the
informal SQMMs require using a simple and fair metric that does not depend on the
SQMM structure and is easy to compute. However, such a simplistic metric prevents
performing reasonable speculations about the SQMM quality, as the threshold on the
number of sufficient concepts for modelling a domain depends on the subjective view
of domain modelers.

Particular thresholds on the number of concepts involved in SQMMs were used
to assess their complexity, which were set in a uniform way according to the lowest
and highest number of concepts across all SQMMs. So, if an SQMM has less than
25 concepts, it is evaluated to have low complexity. If it has 26 to 50 concepts, then
it has medium complexity. Finally, if it has more than 50 concepts, then it has big
complexity.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:26 K. Kritikos et al.

This criterion’s evaluation results are presented in the sixth column of Table VI.
Most SQMMs have low complexity, while only five SQMMs have medium complexity.
Only one SQMM (OWL-Q) has high complexity, which is the most expressive SQMM
according to the evaluation of the previous three criteria. Concerning the SLA-enabled
partition, there is a balance between the approaches with low and medium complexity.
All security-based SQMMs exhibit low complexity. By inspecting the results, there is a
trend in proposals for pure and SLA-enabled SQMMs of higher complexity. This means
that modelers are increasing the expressiveness of their SQMMs and, in result, the
complexity of their SQMMs. Indeed, based on the analysis of the previous criterion, pure
SQMDMs have increased their expressiveness over the years. Section 5 will show that the
SLA-enabled SQMMs have increased their expressiveness but in SLA-based aspects
and not in quality-related ones. Security-based SQMMs have only low complexity as
they are deliberately designed in this way, that is, to produce short descriptions that
are easily exchanged, processed, and matched by various entities over the Web.

4.2.6. Service Description Separation, Refinement, and Granularity. This subsection presents
and analyzes a group of three related subcriteria. As these three criteria represent
features that an SQMM either possesses or not, the SQMMs are evaluated with either
y (possess the feature) or n (do not possess it) for each criterion. This results in an overall
evaluation result for an SQMM of [#1, fe, 3], where ; = y or n and the evaluation values
order is the one with which the criteria are analyzed next.

4.2.6.1. Syntactical separation of quality-based and functional parts of service
description. Service quality specifications should be syntactically separated from other
parts of service specifications, such as interface definitions. This separation allows to
specify different quality properties for different implementations of the same interface.
Moreover, while functional constraints rarely change during runtime, service quality
constraints do change. So, the separation of service quality offers from WSDL descrip-
tions permits these offers to be deactivated, reactivated, created, or deleted dynamically
without any modification of the underlying WSDL file. Finally, a service quality offer
could be referenced from multiple WSDL files and thus be reused for different services.

4.2.6.2. Support for the refinement of quality-based service descriptions and their
constructs. Apart from syntactical separation, another form of reusability is equally
important. Service quality specifications should be also refined. This means that a new
service quality offer can be created by referencing an older one and adding constraints
like the refinement of an older quality restriction or creation of a new one. In addition,
templates of service quality offerings should be created and appropriately extended for
every domain.

4.2.6.3. Support for fine-grained quality-based service description. It should be pos-
sible to specify quality properties/metrics at a fine-grained level. As an example, per-
formance characteristics are commonly specified for individual operations. An SQMM
must allow quality specifications for interfaces, operations, attributes, operation pa-
rameters, and operation results.

This criterion’s evaluation results are presented in the seventh column of Table VI.
Most of SQMMs enable all three features. So, most SQMM modelers have understood
the importance of these three features. The same result holds for all the partitions. The
mostly supported features among all SQMM approaches are syntactical separation and
specification refinement, followed by fine-grained specification. The same order holds
for the pure and security-based SQMMs. Finally, for SLA-enabled SQMMs the order is
different. Fine-grained specification is the most important feature, while the other two
are of equal importance.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:27

4.2.7. Support for Symmetric but Separate Quality-Based Service Description for Providers and
Requesters. Both the quality properties that clients require and the quality properties
that services provide must be specified separately so that a client-server relationship
has two service quality specifications: a specification that captures the client’s re-
quirements (i.e., service quality requirement) and a specification that captures service
provisioning (i.e., service quality offer). This separation allows us to specify the quality
properties that a component provides or requires, without specifying the interconnec-
tion of components in order to enable the component reuse in different contexts.

Service quality requirements and offers should be specified in the same expressive
way, that is, symmetrically. Assuming that S is a multidimensional space whose di-
mensions are given by domains of quality parameters, then both a service quality
offer and requirement should be expressed as a subspace in S. Traditionally, service
quality offers have been described as points in S, that is, asymmetrically. However,
this semantics makes it difficult to specify offers whose quality can vary. Moreover,
the probability that an offer is matched with a requirement is quite low. On the other
hand, the probability of matching is higher when both types of QSDs are expressed as
subspaces, while also more advanced protocols are enabled in service negotiation. In
addition, symmetric approaches achieve a better expressiveness to specify QoS, since
there is usually no restriction on the number of involved parameters or operator types,
so that nonlinear or more complex expressions are allowed.

This subcriterion inspects if both SPs and SRs can provide service quality speci-
fications, if these specifications are defined separately with different constructs, and
if these specifications are allowed to have the same expressiveness. This criterion’s
evaluation for a specific SQMM has the following values: (a) SP, (b) same construct,
(c) asymmetric (so also different constructs are used), and (d) symmetric (where differ-
ent constructs are used). The first and last values are the worst and best, respectively,
while there is no definite order between the second and third value as each violates a
different requirement.

The evaluation results are presented in the eighth column of Table VI. Most SQMMs
allow both SPs and SRs to specify service quality specifications with the same construct,
followed by those SQMMs that allow both SPs and SRs to specify service quality spec-
ifications with different constructs but symmetrically. Thus, researchers have realized
that both SPs and SRs should be allowed to specify their QSDs with the same ex-
pressiveness. Concerning the SQMM partitions, all SLA-enabled and security-based
SQMMs use the same construct for expressing the two QSD types. This is a rational
choice for SLA-enabled SQMMs as the produced SLAs express both the views of the SP
and SR. However, for security-based SQMMs, this is not a rational choice for privacy, as
there must be a clear distinction between who is requesting privacy requirements and
who is offering to satisfy these requirements, but it is rational for trust, as the speci-
fication of requirements and offerings is performed in a bilateral way. The majority of
pure SQMDMSs express the two different QSD types in a separate and symmetric way.
Thus, the pure SQMM modelers have realized the significance of this design choice.

4.2.8. Support for Classes of Service Description. Class of Service means the discrete vari-
ation of the complete service and quality provided by one service. In our opinion a Class
of Service has the same meaning as the alternatives have in WS-agreement. In other
words, a Class of Service is actually the set of (functional and) nonfunctional guaran-
tees that are to be provided by a service in terms of an SLA. So, this criterion assesses
if a SQMM can capture only one class of service specification or many. In this way, this
criterion’s evaluation for a specific metamodel is: one (class of service), and many.

The evaluation results are presented in the ninth column of Table VI. Most SQMMs
can represent many classes of service. This result also applies to each partition

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:28 K. Kritikos et al.

separately. So SQMM modelers have understood the advantage of allowing many
classes of service specification for one service. For pure and SLA-enabled SQMM:s this
understanding is more anticipated in the most recent approaches.

4.2.9. Connection to Functional Service Specification Languages. This criterion inspects if
the SQMM is connected to or references a Service Functional Specification Language
(SFSL) like WSDL, WSMO, or OWL-S. On one hand, if the answer is positive, this
means that there would be no effort required to extend this SQMM (and probably all
of its QSDs) in order to be used in a registry containing functional SDs obeying the
connected SFSL. On the other hand, if the answer is negative, then the SQMM can be
extended in order to be connected to any SFSL and not only to a specific one. In this
way, it can be practically used with any registry.

The evaluation results are presented in the tenth column of Table VI. WSDL is
the most referenced SFSL, followed by OWL-S (ontology-based SFSL), while another
ontology-based language, namely WSMO, is referenced by only two SQMMs. Three
SQMMs do not reference any SFSL, being in this way SFSL independent. Taking
specific SQMM partitions into consideration, OWL-S (or ontology-based SFSLs more
generally) is the most referenced SFSL in pure SQMMs for two main reasons: (1) onto-
logical approaches are greater in population with respect to the rest of the approaches
in this partition, and (2) the use of semantics has been proven to increase the accuracy
in FSD, so pure SQMM modelers prefer an ontology-based SFSL for this reason. On
the other hand, WSDL is the most referenced SFSL in the rest of the SQMM partitions.
This is expected because SLA-enabled and security-based SQMMs do not consider the
FSD scenario when they are designed, as they regard it as an orthogonal issue. So they
prefer to stay on the most popular and used SFSL (i.e., WSDL) in order to increase
their adoption. Moreover, there is a trend that the most recent SLA-enabled SQMMs
are connected to WSDL.

4.2.10. Support for Quality Matching. As users may have different conceptualizations of
the same domain, it is possible that in different QSDs of the same SQMM the same
concepts are expressed differently or different concepts are expressed in the same way.
Concerning the QoS domain, this can be true for QoS metrics and QoS attributes but
not for measurement units that are more or less standardized. This argument is also
strengthened by the fact that the same QoS metric or attribute can be considered
either composite or atomic in different SQMs depending on the level-of-detail required
or the measurement types supported. For instance, a service’s availability is measured
from high-level readings in one system’s instrumentation, while it is measured from
low-level readings (e.g., from service’s uptime) in another system’s instrumentation. In
the former case, the service’s availability metric is resource, while in the latter case,
the same metric is composite.

As the basic QSD part is the one where QoS capabilities or requirements are ex-
pressed as a set of constraints on specific QoS metrics or attributes, these sets of QoS
concepts must be matched in order to increase the accuracy of the QBSM process. Thus,
semantic QoS metric/attribute matching rules must be developed and used internally
or externally to an SQMM in order to enrich and align the produced QSDs. Depending
on the SQMM'’s formalism, rules may be part of the SQMM’s specification or may be
developed externally in a possibly different format. In the latter case, it could be argued
that these external rules are not actually part of the SQMM’s specification and, thus,
they should not be a criterion for comparing SQMMs. However, this information, either
being internal or external, should be additionally modelled as it can be used to support
service discovery and increase an SQMM’s adoption and significance. Thus, this crite-
rion’s evaluation for each SQMM will be: yes, if the corresponding SQMM contains or
is accompanied with quality matching rules and no otherwise.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:29

The evaluation results are presented in the eleventh column of Table VI. Most of the
SQMM approaches have not considered this modelling aspect at all. This also holds
locally in each partition. Moreover, not all security-based SQMMs use or model these
matching rules as they are not required because the quality attributes in this area are
more or less standardized, while quality metrics are used less often. Finally, the most
recent pure and SLA-enabled approaches have understood the need of modelling this
feature and have produced the required matching rules.

4.2.11. Framework Support. This criterion inspects if any service discovery and negoti-
ation framework has adopted the SQMM under inspection. If the answer is positive,
then this means that the SQMM has been used in practice in one of the service life-cycle
activities (apart from the first one). So this criterion evaluates the adoption and usage
of every SQMM. In addition, it evaluates if SQMMs have been used in service negotia-
tion apart from service discovery. The evaluation of a specific SQMM for this criterion
is: no (support), only discovery, only negotiation, and both (discovery and negotiation).
As all SLA-enabled SQMMs already have an underlying SLA enforcement framework
implementation, we chose not to explicitly represent this fact in this evaluation.

The evaluation results are presented in the last column of Table VI. The majority
of the SQMMs have been used in service discovery implementations. This result holds
not only globally but also in each partition. In addition, in conjunction with the results
of the previous criterion, all the SQMM approaches that model matching rules have
been used in service discovery implementations, thus realizing the need for increasing
the accuracy of the service discovery activity. However, none of the implementing dis-
covery frameworks can also perform service negotiation. Moreover, there is no service
negotiation framework supporting any of the SQMMs. It must be noted that there
are negotiation frameworks supporting WS-agreement but not SWAPS (which is a
WS-agreement extension).

Most of the SLA-enabled SQMMs apart from WSLA are not used in any implemented
negotiation framework. This actually reduces the dynamics and further spread of these
SQMMSs. In addition, by considering the service life-cycle analyzed in Section 2, it
should be stated that only the SLA-enabled SQMMs have been used in service nego-
tiation, as the QSDs of this SQMM type that are used in this activity are SLAs or
SLA templates. Thus, the service negotiation activity is the stopping usage point of the
QSDs and the corresponding starting point of SLAs.

4.3. Overall Analysis

Based on the previous analysis, there is not any complete approach that has taken the
best value in all criteria. From all the SQMMs, OWL-Q can be distinguished as the
best among the good approaches which are found mainly in the pure SQMM partition.
However, it must be extended accordingly so as to enable the specification of rich SQMs
and even more expressive constraint models.

Considering the remaining SQMM partitions, SWAPS is the best among all SLA-
enabled SQMMs but it must significantly improve its attribute and metric model. This
is also true for PeerTrust, the best among all security-based SQMMs. Thus, the SLA-
enabled and security-based SQMMs need further improvement and extension in their
attribute and metric models and far more changes with respect to those needed for the
pure SQMM approaches.

Anideal SQMM that satisfies most of the comparison criteria is visualized as an UML
diagram in Figure 4. The parts that are highlighted with the grey color correspond
to those conceptual elements that are common among the majority of all SQMDMs.
These elements have been identified by following a similar approach as the one of
Section 3.3 which was used to identify the most common quality attributes among

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:30 K. Kritikos et al.

[—l_‘ T Bl Conatanl 14 ServiceRequest
ComplexConstraint| “containstonsirain +0.] _ 0
+logicalOperator IT QualityConstraint ServiceQualityRequirement| 1l

1

- : . J _@sb | T
[ServiceAdvertisement P S eldyRerod| {Ser alityRequest]|
2 * * 1“1
W AbstractConstraintGroup)| [ServiceSelectionModel|

+containsConstraint

QoSAttribute 1.
SimpleConstraint *a'gume"tq SRCEa 1 0" [QosselectionElement] '
+operator 0 1 3 +has [TWeight |

5 Schedule

2% 0. +onMetric +hasSchedule =
foTcrete ConstraintGroup)| [Aspect———] DynamicMetric}—:calend; “\';\;fj%w
xale +containsConstraint T 0.1 0.* q) [Fexpandingvindow
——v

+slidingWindow
+producedFrom | 0.* QoSMetric
10.* +weight < Resource
Function Composite +serviceElement
+measure 1 | +measuredBy
y — - -
+evaluation | 1 I~ 0.* | +hasunit[Monotonic| [StaticMetric| 3
-direction
. _ MeasurementDirective
0..1 4.7 | +inverseProportiol ab ¥ P

+accessModel

Unit)
+name +timeout
+abbreviation

7ay)

Continuous 1 | +hasValueTjpe +proportional
*type —>{Numeric}—>{ ValueType |
+min e .
+max
Basic
o
+unionOf
Ll [[SatR Enumeration
El ti< Set-Based s
+hasElement ieCllL[
[set | [Unordered|

Fig. 4. Anideal SQMM.

SQMs. The QoS Attribute concept is not further analyzed, as an ideal metamodel related
to the appropriate and rich quality attribute description has been already presented in
Figure 3 of Section 3. This latter metamodel is part of the ideal SQMM presented.

4.3.1. Ontology-Based SQMMs. As indicated previously, there is now a trend in adopting
ontology-based SQMMs due to the advantages that their usage brings up. To this end,
let us now focus on this type of SQMMs by unveiling some interesting facts about their
content as well as analyzing their quality.

One interesting fact that can only be inferred by inspecting all ontology-based
SQMMs is that some of them define concrete quality attributes and metrics at con-
cept level (e.g., DAML-Qo0S), while the others (e.g., OWL-Q) define such terms and
their relationships at instance level. The rationale for the definition at the instance
level relates to the fact that the latter SQMMSs use specific rules that can be used to
infer the equivalence between quality terms, to align QSDs, as well as to match or
select QSDs [Kritikos 2008], while the definition of these terms at the concept level
enables equivalence and subsumption relationships between terms to be unveiled as
well as the matching of QSDs [Zhou et al. 2004].

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:31

Table VII. The Cohesion and Complexity Assessment Results of the Ontology-Based SQMMs

Approach NOC NOL NOP NOF AC-F MAX-DIT ADIT-LN
WSAF-QoS 19 13 8 22 1,16 3 2,42
DAML-QoS 13 10 8 10 0,77 2 2
QoSOnt 22 11 21 10 0,45 2 2
WSMO-QoS 4 3 10 1 0,25 2 2
OWL-Q 107 70 82 169 1,58 5 2,98
onQoS-QL 44 26 39 41 0,93 3 2,46
PCM 26 14 12 32 1,23 3 2,86
SWAPS 26 6 28 6 0,23 2 2
PeerTrust 13 5 15 5 0,38 2 2
Ideal SQMM 49 24 53 53 1,08 4 2,91

Evaluating the quality of an ontology has received great attention for many years
and many related approaches have been proposed. The most prominent from these ap-
proaches [Yoa et al. 2005; Ma et al. 2010] focus on particular aspects of ontology quality,
such as complexity and cohesion and have proposed formal sets of metrics which can be
used to assess an ontology based on these aspects. An ontology is cohesive if its entities
are strongly related to each other. In this sense, the cohesion of an ontology resembles
the cohesion of software and the respective approaches aim at evaluating the sepa-
ration of responsibilities and the independence of ontology components. On the other
hand, the complexity of an ontology is potentially a measure of its completeness, as the
more complex is the ontology, more and more appropriate domain concept and proper-
ties are captured and thus the ontology becomes more complete. However, if an ontology
becomes very complex without being also cohesive, then this is a sign that there is a
loss of focus, as, for example, more irrelevant concepts to a domain are modelled.

As many of the proposed ontology-based SQMMs are not publicly available, we just
have a description of the modelled concepts and their attributes and relationships.
This means that: (a) there is no information about any other type of axioms and (b) we
cannot make any assumption about their consistency. Based on this setting, the most
appropriate complexity and cohesion ontology metrics were drawn from the approach
of Yoa et al. [2005] and are the following.

—NOC: Number of Concepts

—NOL: Number of Leaf concepts

—NOP: Number of Properties

—NOF: The sum of the fanout of all concept nodes

—AF-C: The average concept fanout

—MAX-DIT: The maximum path size from a leaf to a root concept
—ADIT-LN: The average path size from a leaf to a root concept

Before presenting the results of the comparison of the ontology-based SQMMs based on
the preceding metrics, it must be indicated that to ensure the fairness of the compari-
son, the following restrictions were imposed: (a) only the upper ontology, which actually
maps to the respective SQMM, of an approach was considered and not the mid- and
low-level ontologies which map to concrete domain-independent and domain-dependent
quality terms, respectively, and (b) unnamed classes were not considered. Moreover, to
make the comparison even more interesting, the ideal SQMM was also considered. The
results of the assessment of the complexity and cohesion of the ontology-based SQMMs
are shown in Table VII.

As can be seen from the results presented in Table VII, the ontology-based SQMMs
that exhibit good levels of complexity and coherence are only the pure-based ones and

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:32 K. Kritikos et al.

especially the WSAF-QoS, OWL-Q, onQoS-QL, PCM, and the ideal SQMM. However,
WSAF-QoS and PCM are not complex enough to capture all the appropriate aspects
of service quality description. This was also indicated by the analysis of the second,
third, and fourth comparison criteria in Section 4.2. The ideal and the onQoS-QL
seem to have similar complexity (see first three criteria which are mostly related to
an ontology’s complexity) but the ideal SQMM seems to be slightly more complex and
even more cohesive (see the last three metrics which are mostly related to an ontology’s
cohesiveness). However, the best ontology-based SQMM seems to be OWL-Q which is
the most complex and cohesive ontology-based model. By relating these results with
the comparison results of Section 4.2, it can be certainly concluded that OWL-Q is more
complex due to its increased expressiveness with respect to the other SQMMs and that
this complexity did not lead to a reduction of this ontology model’s quality.

By comparing the complexity and cohesion of OWL-Q and the ideal SQMM it can
be deduced that OWL-Q is more complex and slightly more cohesive. By also bear-
ing in mind that this ideal SQMM could be further improved in some aspects, this
means that the complexity of OWL-Q does not seem overwhelming. However, by also
recording the fact that OWL-Q needs some improvement in some modelling aspects,
this means that additional complexity will be attained, thus, a better balance between
expressiveness and complexity should be accomplished in this SQMM by adding the
appropriate concepts and relationships identified in Section 4.2 and possibly removing
other terms which may be not very essential in service quality description. Another
possible improvement concerns defining which are the obligatory and optional concepts
in order to help modelers in defining their QSDs with less effort and more speed as
well as supplying well-documented guides on how to produce complete QSDs. The lat-
ter improvement concerns not only OWL-Q but any other SQMM and if realized could
lead to an increase in the SQMM’s adoption and exploitation.

By closely inspecting the last criterion results, pure and security-based SQMMs are
used until the service discovery activity and they seem not to be exploited further
in the service life-cycle. This can be justified by their inability to model SLA-specific
constructs which are considered more useful for supporting the rest of the service life-
cycle activities. This should be the reason why SLA languages have been proposed,
that is, to fill the gap and play the significant role of mostly supporting those service
activities that are beyond service discovery. The next section explains this role and
provides an analysis of the capabilities of the SLA languages with respect to their
support to the service life-cycle activities.

5. SERVICE-LEVEL AGREEMENTS
5.1. Background

5.1.1. Contracts and SLAs. As the global economy is changing at a fast pace and the
competition is rising due to technology advancements, organizations have to enter in
dynamic business relationships with other organizations, whose result would be one or
more cross-organizational processes. The basis for the establishment of such dynamic
relationships are electronic contracts, which are legally binding digital agreements
that safeguard the concerns of each participating organization [Hoffner et al. 2001],
as they assist in speeding up and automating the various activities that support these
relationships, which include the contractual relationships establishment and the en-
actment infrastructure setup. Many types of contracts exist based on the type of value
that is exchanged between two or more organizations [Grefen and Angelov 2002]. How-
ever, this article considers only service contracts, as the focus is on services. A service
contract includes information, such as [Hoffner at al. 2001; Oren et al. 2005]: (a) the
parties involved in the agreement, (b) the service, including interface description and

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:33

expected interactions, (c) a description of the norms (e.g., obligations, prohibitions, per-
missions, etc.) imposed on each party concerning service provision and consumption,
(d) timing and conditions of contract termination. Apart from technical information,
some service contracts may also contain legal procedures in case of breach of contract
and arbitration.

Most of the service contract languages have focused on describing the service func-
tionality and on automated contract execution monitoring [Oren et al. 2005], that is,
determining the state a contract is in, and which contract rules are in effect given this
state. Thus, they focused more on how the service behaves while they more or less
neglected the QoS aspects of service behavior. However, as QoS plays an important role
in the whole service life-cycle and is equally important to functionality, the focus is now
on more specialized service contracts, called SLAs. SLAs describe how well a service
performs its functions [Tosic and Pagurek 2005]. They contain quality guarantees that
have to be respected during service execution and other important terms indicating the
actions to be taken when these guarantees are violated. Thus, they increase the trust
and consolidate the overall relationship between an SP and an SR, as the service will
either meet the stated requirements or there will be consequences that tend to compen-
sate the client for the harm it suffers due to these requirements being missed [Skene
2007]. The last point is very important as it demonstrates how both service contracts
and SLAs are the basis for the establishment and support of business relationships.

5.1.2. SLA Demystification. According to Paschke and Schnappinger-Gerull [2006], SLA
documents contain technical (e.g., metrics, actions), organizational (monitoring and re-
porting), and legal (legal responsibilities, invoicing and payment modes) components.
It is difficult to automate and enforce the legal components of SLA documents, so these
are either omitted or neglected. The most common SLA components are the following
[Paschke and Schnappinger-Gerull 2006]: involved parties, contract validity period,
service definitions, SLOs, and action guarantees. Involved parties are roles referenced
inside a contract. They can be distinguished between [Keller and Ludwig 2003] signa-
tory parties, which are usually played by the SP and SR that sign the contract, and
supporting parties, which have the role to support the SLA monitoring and assessment.
These two role types are not mutually exclusive, as, for instance, an SP can provide
measurements for the provided service’s execution time. The contract validity period
specifies for how long the SLA will be valid and enforceable. This field is important
for continuous services as it determines the period that the SPs should provide their
services to the requesters according to the directives of the agreed SLAs. The service
definitions section specifies the service characteristics (i.e., functionality), components
(i.e., operations, input, output, internal and external services for a composite service),
and observable parameters (i.e., QoS metrics for the service and its components). SLOs
are QoS guarantees that must be met by a specific obliged party (e.g., SP) and have va-
lidity periods [Keller and Ludwig 2003], while they can also have qualifying conditions
on external factors such as time of the day (i.e., when the SLO should be evaluated) as
well as the conditions that a client must meet (e.g., a client’s request rate is above a
threshold). Finally, action guarantees [Keller and Ludwig 2003] express a commitment
that a particular activity is performed by an obliged party if a given precondition is
met (e.g., a violation occurs). The committing activities include compensation, reward,
recovery, and management actions.

Besides the common SLA components, two additional SLA components should be de-
scribed [Muller 1999]: limitations and renegotiation. The former describes the limits of
IT support during peak period demand conditions, resource contention by other appli-
cations, and general overall application workload intensities. These limitations should
be agreed by all parties in order to prevent finger pointing and user dissatisfaction. The

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:34 K. Kritikos et al.

latter describes how and under what circumstances the SLA must be changed through
renegotiation to reflect changes in the user, service, or environmental context.

Before SLAs are established, they are in a form which is called SLA template.!
These SLA templates are used to describe, matchmake, and negotiate the SLs to be
offered by a service of an SP to an SR. Thus, they are produced by both SPs and
SRs. SLA templates can be complete or incomplete SLAs. Complete SLA templates are
commonly agreed among all participants in a restricted domain or are used as bilateral
agreements between two organizations or as SLA offerings advertised by an SP to
specific customer classes. Thus, they are offered in a “take it or leave it” basis [Hoffner
et al. 2001]. Incomplete SLA templates can be seen as a skeleton with fields which
must be completed according to the directives of the desired relationship between two
organizations [Hoffner et al. 2001]. So, they are generic forms or templates that can be
tailored to the specific circumstances of an SLA instance. According to the granularity
of choice and specialization [Hoffner et al. 2001], they may: (a) be monolithic where
values are inserted in predefined positions; (b) have certain sections which can be
included or removed; or (c) be clause based [Fosbrook and Laing 1996].

There can be different SLA types according to their composability, intended purpose
[Paschke and Schnappinger-Gerull 2006], and the service usage based on the reference
functional architecture model [Lamanna et al. 2003]. Concering the composability
aspect, SLAs are distinguished between single and composite. Single SLAs specify
the SLs of one service, independently of the service type (i.e., single or composite), and
are agreed between two parties, the SP and SR. On the other hand, composite SLAs
specify the SLs of both the service, which should be provided to an SR by the SP, and
some of its components or supporting services that are provided by third-party SPs to
the main SP. Thus, a composite SLA may consist or depend on other SLAs. This does
not exclude the possibility that a single SLA may depend on one or more other SLAs.
However, this dependency information is not included in the single SLA’s description.

5.2. Methodology and Analysis

As an SLA is a document, it has a life-cycle that starts with its creation and ends with
its disposal or archiving. This life-cycle includes all the appropriate activities needed
for the SLA management and is tightly coupled with the service life-cycle introduced in
Section 2. The same holds for the contract life-cycle. This tight coupling is justified as
follows. SLAs, and service contracts in general, exist as long as the service they describe
exists because this service is the reason for the establishment and very existence of
the business relationship between the SP and SR. Indeed, all service contract and SLA
management systems actually support, directly or indirectly, the management of the
service offered by the SP to the SR. Thus, through the support of the SLA/contract life-
cycle, the service life-cycle is supported and especially those activities that correspond
to service provisioning.

Service contract life-cycles (e.g., in Hoffner et al. [2001]), are more coarse-grained
and general with respect to the SLA life-cycle as they consider both the service pro-
visioning functional and QoS aspects. However, as the focus is on service quality and
its description, only the QoS aspects of service provisioning are considered. Therefore,
in this survey, the analysis of service contract and SLA languages is based on a set of
comparison criteria which are grouped along the SLA life-cycle activities. These crite-
ria are used to compare these languages along the lines of the information they can
describe which is necessary for supporting the SLA life-cycle activities.

Various SLA life-cycles have been proposed in the literature, which differ on the
activities they involve, the activities granularity level, and their terminology. However,

IThe term Contract Template is used for service contracts.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:35

1
v] ! 1
SLA Template SLA SLA - Agreement & Execution &
Development > Advertisement i Matchmaking =] | Negotiation | = Deployment g Assessment

t=p| | Settiement | f=p{ | Archive -|

Fig. 5. The SLA life-cycle.

none of them is suitable in this article context as they are either coarse-grained or tend
to neglect some activities. To this end, an extended SLA life-cycle has been devised
based on the research works of Keller and Ludwig [2003] and Parkin et al. [2008],
which is depicted in Figure 5.

In the following, using this life-cycle as a basis, the life-cycle activities involved in
the SLA management are analyzed along with their relation to those of the service
life-cycle.

—Template Development. An SLA template is developed by the SP or the SR according
to the service quality capabilities and requirements, respectively. This activity is
executed after the service is implemented and tested but can happen before, during,
or after the service deployment.

—Advertisement. After the SLA template is developed by the SP, it is advertised in
intra- or interorganizational repositories in order to be discovered by potential SRs.
This activity happens after the service is deployed. It is a joint activity of the service
and SLA life-cycles.

—Matchmaking. SRs make a request represented by an SLA template to a broker or
discovery service so as to find the SLA templates of those services that satisfy their
quality requirements. This activity is after or in parallel with the functional service
discovery activity. It may also be a joint activity of the two considered life-cycles,
as SLAs can represent all information needed for the functional and quality-based
service discovery. As a result of this activity, the user’s SLA template may change,
if it is overconstrained, to reflect realistic performance situations in the respective
application domain.

—Negotiation. This is a joint activity of the two considered life-cycles. The SP of the best
service (or the SPs of the matched services) negotiates with the SR based on their
SLA templates’ content. These SLA templates may change during the negotiation to
reflect the compromises made by the two parties.

—Agreement and Deployment. As the outcome of service negotiation is not always
successful, this activity is separated from the previous one. If the outcome is success-
ful (agreement is reached), then a specific SLA is produced and signed by the two
corresponding parties. This SLA has to be validated first and then deployed. SLA
deployment is performed at two steps: (a) a signatory party’s deployment system
extracts from the SLA the appropriate configuration information and distributes it
to the corresponding supporting parties so as to inform them about their roles and
duties; (b) the supporting party deployment systems configure their own implemen-
tations in a suitable way. All parties need to know the definitions of the interfaces
they must expose, as well as the interfaces of the partners they interact with. This
composite activity is usually performed before service execution. When no active
service instance can execute in the respective SL of the SLA, a new service instance
must be deployed or more resources are given to a specific instance. In this case, the
service deployment activity runs in parallel with the respective SLA activity.

—Monitoring and Assessment. While the service is executing, the SLA is also “ex-
ecuted”. The latter means that the service is periodically monitored and the SLA’s
agreed SLOs are assessed. Monitoring is performed by the measurement components

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:36 K. Kritikos et al.

of the supporting parties’ runtime systems which maintain information on the cur-
rent system configuration and the SLA metrics. These components measure QoS
metrics either from inside, by retrieving resource metrics directly from managed
resources, or outside the SP’s domain, for example, by probing or intercepting client
invocations. The condition evaluation components of supporting parties’ runtime
systems compare the measurement information against the SLOs and notify the
management systems (of the signatory parties and the SLA’s external one (if it ex-
ists)) about violations. If the violation or violation number is very critical, then the
SLA is renegotiated or canceled according to the SLA’s corresponding action guar-
antee. If not, an appropriate corrective action is selected and performed by the SP’s
management system (e.g., more resources are provided to the underperforming ser-
vice) according to the current context and the SP’s business goals and policies. This
SLA management activity runs in parallel with the service execution, monitoring,
and recovery life-cycle activities.

—Settlement. This activity determines if the SLA was met, the final cost to paid by
the SR, and which penalties may apply to the SP for breaching the SLA terms.
Negotiations for SLA termination may be carried out between the parties, in the
same way as the SLA establishment is performed, or for service reexecution in a
different SL and cost. This activity occurs after the end of service execution.

—Archive. After the SLA settlement takes place, the SLA may be disposed or archived
according to the signatory parties’ policies. However, even if the SLA is decided to
be discarded, there is usually a statutory period (known as the “limitation period”)
where the SLA must be kept as it is a legal document describing how services were
provided. If this activity is accompanied with an audit trail mechanism, it can be used
for identifying problems and patterns of wrong service behavior or user requirement
trends so as to improve the future developed SLA templates’ content and even evolve
the service implementation towards correcting the identified problems and meeting
the increased customer needs. Thus, this activity can provide significant input to the
service evolution life-cycle activity.

The summary of the selected criteria is shown in Table IX, while their complete
presentation is provided later in this section. In this table, the term “Description” is
used to cover the first two SLA life-cycle activities, that is, the “SLA Template Devel-
opment” and the “SLA Advertisement”, as they are actually associated with an SLA’s
description. Moreover, the “Agreement and Deployment” activity was not analyzed by
using any criterion, since this activity does not need any specific information which is
not already covered by existing SLA languages. Finally, as explained in Section 4, most
SLA languages regard that quality should be defined outside the SLA specification by
different formalisms and languages and only referenced inside this specification. For
this reason, this section neglects from its analysis the quality description capabilities
of the SLA languages.

Service contracts and SLAs are expressed by their respective languages which are
shown in Table VIII. While there is no standard Service Contract Language (SCL),
there are two widely used SLA languages, namely WSLA [Keller and Ludwig 2003]
and WS-agreement [WS-Agreement 2003], which can be considered as standards.

The most representative SCLs have been chosen because, as was explained before,
the majority of these languages focus more on the functional aspects of service behavior.
The evaluation results of the examined languages according to our selected criteria are
presented in Tables X and XI.

In the remaining part of this section, each activity-based group of criteria along with
their evaluation results is presented in separate subsections. In the end, there is an
overall analysis of the service contract and SLA languages across all criteria.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:37

Table VIII. The SLA and Service Contract Languages Examined

ID | Approach Name Approach Reference Type
1 QML [Frglund and Koistinen 1998] SLA
2 WSLA [Keller and Ludwig 2003] SLA
3 WS-A [WS-AGREEMENT 2003] SLA
4 SLAng [Lamanna et al. 2003] SLA
5 WSOL [Tosic et al. 2003b] SLA
6 RBSLA [Paschke 2005] SLA
7 QoWL [Brandic et al. 2006] SLA
8 GXLA [Tebbani and Aib 2006] SLA
9 TrustCom [TrustCoM Consortium 2007] SLA
10 X-Contract [Molina-Jimenez et al. 2003] Service Contract
11 BCL [Linington et al. 2004] Service Contract
12 SweetDeal [Grosof and Poon 2004] Service Contract
13 CTXML [Farrell et al. 2004] Service Contract
14 SWCL [Oren et al. 2005] Service Contract

5.2.1. Description. Every SLA and service contract language must possess some prop-
erties that enable it to be a good candidate for representing SLAs. A set of such five
properties/criteria has been selected and is analyzed in the next four subsubsections.

5.2.1.1. Formalism. Similarly to SQSLs, each SLA language adopts a specific for-
malism to express its metamodel. These formalisms include: informal (such as DTDs
or XML Schemas), UML, RuleML, Finite State Machines (FSMs), and ontologies, and
have been used for categorizing each language.

The evaluation results are presented in the first row of the Description composite
SLA life-cycle activity of Tables X and XI. The vast majority of the SLA-MMs are
expressed with informal formalisms (mostly XML Schema but also other schema lan-
guages which focus on a language’s concrete syntax). The same result applies to the
SLA language partition but not to the SCL one, where SCLs exploit mostly formal
formalisms. Schema languages are selected as they lead to a quick way of producing a
language, surpassing in this way its abstract syntax expression. In addition, the ma-
jority of the approaches use XML Schema for the concrete syntax and XML for the SLA
representation. XML is adopted due to its platform independence, simplicity, and ease
of use, the excellent range of tool support available enabling automatability, includ-
ing editors, parsers, transformation engines, and document validity checkers, and the
fact that is both human and machine understandable and processable. However, XML
Schema and correspondingly XML lack proper and precise language semantics needed
to perform semantic SLA consistency and the formality needed to perform SLA analysis
(analysability) [Skene 2007] which can be used to reveal hidden obligations and other
important nonvisible implications. For this reason, XML-based SLA descriptions are
either transformed to another formalism [Linington et al. 2004] or other formalisms
are adopted for expressing the SLA-MM like FSM (X-Contract), RuleML (RBSLA and
SweetDeal), or Event Calculus (TCXML). This justifies the choice of SCL modelers to
adopt such formalisms, as the focus is on analyzing the functional service behavior.
While the adoption of stronger formalisms equips the SLA language with powerful
tools to perform various forms of reasoning, there is usually a trade-off with simplicity,
ease of use, and human understandability and processing.

Most SLA and service contract languages can perform at most the structural and
semantical validity forms (i.e., discover syntactic and semantic inconsistencies with
the help of DTDs, XML Schemas, and ontologies). However, another validity form is
also required, called SL validity, in order to discover a specific quality inconsistency

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:38 K. Kritikos et al.

Table IX. Summary of the Comparison Criteria of the SLA and Service Contract Languages

Life-Cycle
Activity Criteria Summary
Formalism The language’s description formalism
. Coverage The ability to express functional and quality terms
Description - =
Reusability The ability to represent SLA templates and other
reusability constructs
Composability The ability to represent composite SLAs
Metric Definition The ability to define quality metrics
Matchmaking Alternatives The ability to express alternative SLs
Soft Constraints The ability to express soft SLOs that may be violated
Matchmaking Metric Definition of the way SLAs produced by a specific
language must be compared
Negotiation Meta-Negotiation The ability to represen.t any infoymation to be used for
negotiation establishment
Negotiability The ability to define which SLA parts are negotiable and
in what way
T Metric Provider The ability to define the party responsible of producing a
Monitoring Y metric’spmegsurerr)nents i ¢
Metric Schedule The ability to define the production frequency of a metric’s
measurements
Condition Evaluator The ability to define the party responsible of SLO
evaluation
Qualifying Condition The ability to define conditions that must hold in order to
Assessment assess an SLO
Obliged The ability to express the party in charge of delivering
what is promised in an SLO
Assessment Schedule | The ability to express the assessment frequency of an SLO
Validity Period The ability to express the time period in which the SLO is
guaranteed
Recovery Actions The ability to express corrective actions to be carried out
when an SLO is violated
Penalties The ability to express penalties incurred when one party
Settlement violates its promises
Rewards The ability to express rewards incurred when one party
overwhelms its promise
Settlement Actions The ability to express actions concerning the final SLA
outcome
Archive Validity Period The ability to express the period where an SLA is valid

type in SLs, which concerns the constraint consistency. As SLs are composed from the
logical combinations of SLOs, it must be checked if this combination is meaningful
and correct. For instance, if two constraints of the form X < a and X > b, where X
is a QoS metric and b > a, are conjunctively combined then metric X would not be
allowed to take any value from its value type, so the produced SL would not be valid.
This problem is exacerbated when arbitrary functions are involved in expressing SLO
constraints. A good solution to this problem would be to transform the SL description
into an appropriate constraint model and then use Constraint Logic Programming
(CLP) (for arbitrary logical combinations of SLOs) or constraint programming (only for
conjunctions of SLOs) techniques [Rossi et al. 2006] to check the constraint model’s
consistency [Miiller at al. 2008].

5.2.1.2. Coverage. SLA and service contract languages should be able to express in
an efficient and complete way both functional and quality terms. The functional term’s
description should include the description of the service functionality, operations, input,

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:39

Table X. Evaluation Results of SLA Languages

Life-cycle
Activity Criteria QML | WSLA |WS-A |SLAng | WSOL | RBSLA | QoWL | GXLA | TrustCom
Formalism |UML| inf inf. inf. inf. |RuleML| inf. inf. inf.
Description Coverage Pyl | byl | ypl | [yyl | [ppl | [pyl | [ypl | [p.pl KA
Reusability yes | yes yes | part yes yes part | yes yes
Composability | no no fair | fair no no fair | good fair
Metric yes | yes no yes no yes no no yes
. Definition
Matchmaking Alternatives |impl.| impl. |impl. | no impl. | impl. no | impl. impl.
Soft no no yes no no no no no yes
Constraints
Matchmaking | yes no no yes no no no no no
Metric
. L. Meta- poor | poor | fair | poor | poor poor | good | poor fair
Negotiation Negotiation
Negotiability no no | part no no no no no part
Monitoring Metr.lc Provider | no yes no yes yes no no no yes
Metric Schedule| no yes no yes no yes no no yes
Condition no yes no no yes no no no no
Evaluator
Qualifying no yes no no yes no no no no
Assessment Condition
Obliged no yes yes yes yes yes no yes yes
Assessment no yes no no no no no yes yes
Schedule
Validity Period | no yes no no no yes no yes yes
Recovery no yes no no yes yes no yes no
Actions
Penalties no no | SLO no SL SL SL no SLO
Settlement Rewards no no | SLO no no SL no no SLO
Settlement no yes no no no yes no no no
Actions
Archive Validity Period | no yes yes yes no no no yes yes

and output. Moreover, if the service is composite, then all of its tasks, both internal
and external, should also be described. All languages surveyed are able to define SLOs.
However, the quality term’s description should also include the description of the QoS
metrics to be measured and various other quality concepts in order to be complete. If
the SLA or service contract languages are not able to describe these additional quality
terms, they reference these terms’ external descriptions in respective SQSLs. Thus,
this criterion’s evaluation considers these two description aspects and provides the
following values for a language: [n, n] (no functional and no SLO description), [n, p] (no
functional and only SLO description), [n, y] (only complete quality description), [p, p]
(references to functional and only SLO description), [p, y] (reference to functional and
complete quality description), [y, y] (complete functional and quality description).

The evaluation results are presented in the second row of the Description activity
of Tables X and XI. All the languages reference or explicitly define functional terms.
Besides, the majority of these languages reference an external functional description
of the offered service (e.g., WSDL or BPEL). This result also applies in each partition.
Only four SLA languages enable the description of the functional terms of the SLA,
while no SCL enables this description. Moreover, the WS-agreement and TrustCom
SLA languages enable both the description and reference of the functional SLA terms.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:40 K. Kritikos et al.

Table XI. Evaluation Results of Service Contract Languages

Life-cycle Activity Criteria X-Contract | BCL | SweetDeal | CTXML SWCL
Formalism FSM inf. RuleML inf. ontology

Description Covera}ge [p,nl [p,n] [p.n] [p.p] [p.p]
Reusability no yes yes part part

Composability no no neutral no no

Metric Definition no no no no no

Matchmaking Alternative.zs impl. no no no no
Soft Constraints no no yes no no

Matchmaking Metric no no no no no
Negotiation Meta-Ne.goifi:fltion fair poor poor poor poor
Negotiability no no no no no

Monitoring Metric Provider no no no no yes
Metric Schedule no no no no no

Condition Evaluator yes no yes no no

Qualifying Condition no no no yes yes

Assessment Obliged yes yes yes yes yes
Assessment Schedule yes yes yes yes yes

Validity Period no yes no no no

Recovery Actions yes yes yes yes yes

Penalties no SLO SL SL SL

Settlement Rewards no no SL SL SL
Settlement Actions yes yes yes yes yes

Archive Validity Period no yes no no no

The latter language is an WSLA-based extension of WS-agreement, so it is reason-
able to inherit the majority of WS-agreement’s capabilities. As already explained in
Section 4, the syntactical separation of functional and SLA descriptions enables the
reuse of a specific contract among many services that exhibit the same quality ca-
pabilities. In addition, it facilitates the contract management and evolution (through
the manipulation of changing SLs [Tosic et al. 2003b]) and disables the repetition of
a service’s functional description in all the service’s contracts. On the other hand, the
inclusion of the service functional description inside an SLA mitigates the risk that the
client experiences a different functionality from the one requested without being able
to claim for this violation in the agreement. In this way, abnormal behavior of SPs that
change the service functionality and description externally and invisibly to an SLA is
avoided.

Concerning the description of additional quality terms apart from SLOs, almost half
of the languages only reference external quality descriptions usually found in SQMs.
In the SLA language partition, there is no language that does not describe or reference
additional quality terms and this result is quite reasonable. The CSLs that have been
constructed to accommodate for any possible electronic contract and not just SLAs are
not very efficient in this matter, as most of them do not reference any quality term but
could be extended to do so. It must be noted that referencing external descriptions of
the additional quality terms enables their reuse but may create problems in the match-
making activity of the SLA management life-cycle, which is analyzed in the next item.

5.2.1.3. Reusability and extensibility. An SLA/service contract language should en-
able the creation of templates and documents that can be reused or extended for creat-
ing new SLA or service contract specifications, respectively. Moreover, SLA or service
contract specification parts, like the functional and quality terms, should be reused
across many SLA or service contract documents or extended appropriately. Thus, this

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:41

criterion’s evaluation for each language could get the following values: no, part (i.e.,
only the whole SLA/service contract is reusable and extensible), and yes (i.e., parts and
whole SLA/service contract are extensible and reusable).

The evaluation results are presented in the third row of the Description activity of
Tables X and XI. Most SLA languages are reusable and extensible both in the SLA
specification entirety and in its parts. This result applies also to the SLA language
partition. Concerning the SCL partition, there is a balance between those SCLs that
are reusable and extensible only in their entirety and those that are also reusable and
extensible in their parts.

5.2.1.4. Composability. This property indicates the ability of an SLA or service con-
tract language to represent composite SLAs or service contracts, respectively. It can
be achieved when the language presents the following abilities: (a) describe or refer-
ence composite service descriptions; (b) define or reference metrics that are associated
to composite services and are computed based on aggregation rules that depend on the
composite service structure; (c) cater for the different party types (i.e., third-party SPs)
involved in composite contracts; (d) define composite and component-based SLs and
their associations; (e) define appropriate action guarantees that consider the contract’s
two-level hierarchy. Most of the languages possess at most both of the first two abilities.
For this reason, this criterion has been evaluated for each language depending on the
language’s satisfaction of these five abilities according to their order. So, if the language
does not possess any ability, it is evaluated with no (i.e., it is not composable). If it pos-
sesses one of the first two abilities, it is neutral. If it possesses the first two abilities,
it is considered fair (i.e., it has the basis for becoming composable). If it possesses the
first three or four abilities, it is considered good. Finally, if it possesses all the abilities,
it is evaluated with yes (i.e., it is composable).

The evaluation results are presented in the last row of the Description activity of
Tables X and XI. Most languages have not even the basis of being composable. This
result applies also to the SCL partition, where four out of five approaches are not
composable at all, while one approach possesses only the first ability. This actually
means that SCLs were not designed to represent composite service contracts or SLAs.
Concerning the SLA languages’ partition, there is a balance between approaches that
have fair/basic and no composability at all. Only one SLA (GXLA) language scores
“good” in its composability. This means that the SLA modelers have not yet understood
the need for representing composite SLAs.

5.2.1.5. Overall analysis for the description activity. Based on the preceding analysis,
there is no SLA or SCL that meets the high standards posed. Only GXLA can be
distinguished based on its capabilities with respect to composability. However, this
language lacks the appropriate formality (or transformation to such a formality) which
is needed for SLA validation and analysis.

5.2.2. Matchmaking. Only one research approach [Oldham et al. 2006] performs proper
matchmaking of SLA specifications so as to match the user QoS requirements with the
service QoS capabilities. In this approach, WS-agreement specifications are enriched
with semantic annotations from both domain-independent and domain-dependent
ontologies, whilst rules are also used to infer the matchmaking. The usual procedure
followed in the remaining approaches is that matchmaking is performed during
service negotiation, where one participant proposes a specific SLA (or service contract)
template and the other one accepts it or changes it, by implicitly checking every
SLO and changing its limits and by entering new SLOs, or proposes a new one. This
matchmaking type is inefficient for the following reasons: (a) QoS metrics are defined
inadequately and syntactically in possibly different languages leading to low-accuracy

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:42 K. Kritikos et al.

results; (b) no matchmaking metric is defined so each party utilizes its own metric
to infer if the proposed SLA template is the appropriate one; (c) the probability of
matching is low because SLOs are usually expressed as hard constraints; (d) it is time
consuming as in each iteration the receiving party has to parse and process an SLA
template, compute the answer, and send a modified version or a new template.

Based on the content of most SLA life-cycles (including the one proposed) and the
previous reasoning, SLA/service contract template matchmaking should be performed
before service negotiation in order to discover those services of the corresponding SPs
that suit the user quality requirements. This process can be effective and accurate
if some prerequisites are met by the SLA and service contract languages and there
is a common, unique, and fair matchmaking metric that can be used to perform the
matchmaking in such way that will always yield the same results for the same input. In
the following, three main description prerequisites and one specific requirement (i.e.,
the existence of a matchmaking metric) are analyzed, which must be met by an SLA
language in order to enable the matching of its specifications. In the end, an overall
analysis of the ability of the SLA languages to support this SLA management life-cycle
activity is given.

5.2.2.1. Metric definition. Metric modelling capabilities were analyzed in Section 4,
where four SLA languages were compared. The rest of the SLA (apart from TrustCom)
and service contract languages considered are not able to define QoS metrics but just
reference external metric descriptions of SQSLs. In this way, two main problems may
arise: (a) language incompatibility may occur, wherein the involved SQSLs may encom-
pass different metric metamodels so they can describe metrics in a different way and,
thus, it will be difficult to transform one SQSL's metric description into the other’s one
when matchmaking SLA descriptions; (b) even if the SQSLs are compatible, equiva-
lent metrics described in these different languages may have a different name, so their
descriptions have to be matched via metric matching rules [Kritikos and Plexousakis
2006] to infer their equivalence. These two problems reduce the matchmaking activity’s
accuracy. Thus, languages that define metrics or enforce the use of a specific SQSL to
define metrics are preferred. So, this criterion’s evaluation for each language would
be no, if the language does not define metrics or reference metric descriptions from a
specific SQSL, or yes otherwise.

The evaluation results are presented in the first row of the Matchmaking life-cycle
activity of Tables X and XI. Five SLA languages (four plus TrustCom that relies on
WSLA) satisfy this criterion, which are the approaches able to define QoS metrics and
other SLO quality terms on their own. So, by also considering the results of the coverage
criterion of the Description composite activity, it can be inferred that all languages that
can reference external metric descriptions do not determine which SQSL should be
used to specify these descriptions. Thus, based on the preceding analysis, the use of
these languages may lead to the low accuracy of the matchmaking results.

5.2.2.2. Alternatives. Two SLA/service contract specifications match when their part
corresponding to the offered or required SL is matched. Existing languages do not
encompass the SL concept but either assume it, is the conjunction of all SLOs defined
in the SLA or emulate it, either through the use of logical predicates that logically
connect the defined SLOs or by offering different SLAs for each service. However, the
ability to implicitly represent an SL is not enough as the probability that there is a
match between the encompassing SLOs of the compared SLs of two SLA specifications
is very low. Moreover, users have diverse needs that can be represented through trade-
offs between the requested SL and its cost. Thus, SLA and service contract languages
should be able to represent alternative SLs in order to increase the chances of matching
their corresponding specifications. Alternative SLs represent the different modes in

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:43

which a service can operate to suit the diverse needs of different user classes, and the
variations of a requested SL by an SR that trade off the SL with the price the SR is
willing to pay. Thus, this criterion’s evaluation for each language would be no if the
language is not able to represent SLs, impl if it can define them implicitly, and yes if
there is an explicit language construct that is used to represent alternative SLs.

The evaluation results are presented in the second row of the Matchmaking life-cycle
activity of Tables X and XI. Most language’s can implicitly define alternative SLs which
are needed to increase the chances of matchmaking with potential SRs. This result also
applies to the SLA languages’ partition. Moreover, there is no language that explicitly
defines SLs. Finally, among the SCLs, only X-Contract can implicitly define SLs. Thus,
both SLA and service contract languages were not designed to support SLs but only
SLA languages can implicitly define them.

5.2.2.3. Soft constraints. Even if many alternative SLs are represented in an SLA
template to be matched, there will always exist a problem [Kritikos 2008] where users
express overconstrained SLs that cannot be matched by any alternative SL of any
offered SLA template. An overconstrained SL means that its encompassing SLOs con-
tain very restrictive constraints that cannot be satisfied. As the root of this problem is
that SLOs are expressed as hard constraints that must be satisfied at all costs to infer
the matchmaking, its solution may come through the use of soft constraints [Zemni
et al. 2010]. In particular, if SLOs are expressed as soft constraints, where the user
expresses their significance through using weights or levels, then not all of them have
to be satisfied when matching. In this way, there can be a match between an offered
and requested SL, even if some insignificant requested SLOs are violated. Thus, this
criterion’s evaluation for each language would be no if the language cannot express
soft SLO constraints, or yes otherwise.

The evaluation results are presented in the third row of the Matchmaking life-cycle
activity of Tables X and XI. Only two SLA and one service contract language can define
soft constraints, while the rest define SLOs as hard constraints. Thus, only these three
languages could be used to express SLAs/service contracts that could be exploited to
solve the overconstrained user-requested SLs problem.

5.2.2.4. Matchmaking metric. As languages may differ in the way they define QoS
metrics and SLOs, it would be very useful when implementing SLA matchmaking
engines if a specific matchmaking metric was defined internally or externally in the
SLA language. This metric would be used for matching SLAs (defined by the respective
language) in a fair and uniform manner according to the matchmaking requirements
defined in Kritikos [2008] and Kritikos and Plexousakis [2009]. Thus, this criterion’s
evaluation for each language would be no if no matchmaking metric is defined, or yes
otherwise.

The evaluation results are presented in the last row of the Matchmaking life-cycle
activity of Tables X and XI. Only two SLA languages (QML and SLang) explicitly define
a matchmaking metric with which their SLA specifications can be matched.

5.2.2.5. Overall analysis for the matchmaking activity. There is no language that
satisfies all four criteria of the matchmaking activity. Only QML and TrustCom satisfy
three of the criteria. However, among these two languages QML is considered as the
best because the soft constraints criterion is the least significant one as it provides
additional and not basic support the SLA matchmaking activity. QML is the oldest
of all SLA languages and is not used any more. However, it was designed with the
explicit goal of contract conformance, which is actually used for the SLA specification
matchmaking. Thus, it can be deduced that the majority of the languages and especially

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:44 K. Kritikos et al.

the SCLs were not designed with the objective of matchmaking the quality terms of
their specifications.

5.2.3. Negotiation. Service negotiation is one of the most important activities as it
produces the final SLA document that will drive the service execution. For this reason,
SLA languages must describe all the appropriate information that will be provided as
input and assist the service negotiation process. This information can be categorized
into two parts: meta-negotiation, and negotiability. In the following, it is explained why
these two information types must be captured by SLA languages and what should be
their content, while it is inspected if the languages capture this essential information.
Finally, the overall performance and support of the examined languages for this SLA
management activity are assessed. As negotiation strategies represent private and
sensitive information for the participants which must not be exposed in SLA templates,
it was considered that they do not constitute appropriate SLA information for the
support of service negotiation.

5.2.3.1. MetaNegotiation. Metanegotiation is any information that can be used for ne-
gotiation establishment, that is, to enable and initiate the negotiation between the par-
ticipants. The following information has been identified as metanegotiation [Brandic
et al. 2009; Comuzzi et al. 2009]: (a) negotiation protocol support; (b) description of
negotiation capabilities; (c) authentication method reference.

The negotiation protocol is the allowable sequence of exchanged messages used to
negotiate and conclude (i.e., agree) an SLA/service contract. The protocol should also
unambiguously define the semantics and format, or schema, of the messages. Each
negotiation participant may be able to support a subset of all possible negotiation pro-
tocols. Thus, the supported negotiation protocols of all participants must be matched in
order to find the one appropriate for enacting the negotiation. For this reason, each par-
ticipant’s corresponding SLA/service contract template must reference all negotiation
protocols that can be supported. Moreover, this reference should include a pointer to
the supported negotiation protocol description for two reasons: (a) to enable reasoning
on protocol compatibility and substitutability, that is, if one protocol can be used in
place of the other, and (b) some negotiation protocols may not be not implemented in
negotiation engines and brokers, for example, are not widely used; therefore, they have
to be defined, for example, in BPEL, in order to be properly enacted by the negotiation
broker.

When no matching negotiation protocol is found, it is advocated in Comuzzi et al.
[2009] that the participant negotiation capabilities must be described in a more fine-
grained way along with the possibilities of delegating capabilities to trusted third
parties. Then, ontology-based reasoning can be used to infer if a specific negotiation
protocol can be supported by the participants and their trusted third parties. Thus,
based on the earlier analysis, the participant’s fine-grained negotiation capabilities
must be also advertised in their SLA templates apart from the coarse-grained ones.

While negotiating, the participants reveal and exchange important information
which should not be exposed to third parties listening on the insecure channels es-
tablished between the participants. For example, SPs do not want the offers they make
to specific (e.g., privileged) clients to be viewed by all other clients. For this reason, the
participants must describe in their SLA templates the authentication methods they
prefer to be used for securing the channels exploited when exchanging negotiation in-
formation. Then, preferred authentication methods will be matched so as to select the
most common one for the negotiation.

Each language is evaluated according to the number of metanegotiation information
it can describe. Thus, if it cannot describe any information, it is evaluated as poor. If it
describes only one of the aforesaid information types, it is considered fair. If it describes

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:45

two metanegotiation information types, it is considered good. Finally, if it describes all
possible negotiation information, it is considered rich.

The evaluation results are presented in the first row of the Negotiation life-cycle
activity of Tables X and XI. The vast majority of the languages are not capable of
modelling any metanegotiation information. This result holds also in every partition.
Only WS-agreement, TrustCom, and X-Contract determine or can represent negoti-
ation protocols, while QoWL is able to both specify the negotiation protocol and the
authentication method to be used for the SLA negotiation.

5.2.3.2. Negotiability. While meta-negotiation represents information that is used to
support the service negotiation enactment, negotiability represents information which
is used during the negotiation. In particular, negotiability is the ability of an SLA
language to describe which parts of its specifications are negotiable and in what way.
Focusing on quality, a language presents negotiability if it can characterize which
quality terms are negotiable or not and which are the allowable values in the quality
term’s upper and lower limits. Thus, this criterion’s evaluation for each language would
be no if the language does not define which terms are negotiable, part if the language
characterizes only the term’s negotiability, and yes if the language also determines
which are the allowed values or range of values for the quality term’s upper and/or
lower limits.

The evaluation results are presented in the second row of the Negotiation life-cycle
activity of Tables X and XI. Only two SLA languages (WS-agreement and TrustCom)
specify in a special part of their produced SLA templates which terms are negotiable.
However, they do not specify the way these terms are negotiable. On the contrary, the
constraints used to define the negotiable terms are hard and do not specify if a quality
term’s limits can take one or more values.

5.2.3.3. Overall analysis for the negotiation activity. According to the evaluation re-
sults of the two criteria of the negotiation activity, only WS-agreement (and TrustCom
that extends it) can partially provide information that can assist this activity. How-
ever, they should be extended by modelling the participant negotiation capabilities, the
authentication method used for the information exchange during the negotiation, and
specific constraints that define the allowed values for the negotiable quality term’s lim-
its. Considering the latter extension, one good solution is proposed in Andrieux et al.
[2004] which is, however, not adopted in the language’s formal specification. SCLs are
not able to properly support the quality-based term’s negotiation. This fact along with
the inability of the SCLs to support the SLA matchmaking activity prevents them
from being widely adopted as the languages for expressing a service’s quality-based
behavior.

5.2.4. Monitoring and Assessment. During service execution, the service is monitored so
as to assess if the SLOs defined in its SLA are violated. Service monitoring is performed
by producing measurements according to the information that is encapsulated in the
SLO metrics that are in the service scope. As both the metric definition and the associ-
ation of metrics to service objects were evaluated in previous parts of this article, the
only additional information needed for monitoring is who is in charge of performing the
metric measurements, that is, the Metric Provider, and how often the measurements
are produced, that is, the Metric Schedule. This information is encompassed in a met-
ric metamodel, but is usually specified concretely only when the SLAs are established
after service negotiation.

5.2.4.1. Metric provider. The Metric Provider is the responsible party for producing
a specific metric’s measurements. This criterion’s evaluation for each language would
be no if the language does not define this party, or yes otherwise.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:46 K. Kritikos et al.

The evaluation results are presented in the first row of the Monitoring life-cycle ac-
tivity of Tables X and XI. Almost half SLA and almost all service contract languages are
not able to specify the providers of SLO metrics as they assume that the measurements
are only provided by the SP. This is a major limitation because measurements may be
provided by other parties and the SLO evaluators, which may be different from SPs
or even SRs, would not be able to assess the SLOs if they do not know the place from
where SLO metric measurements can be obtained.

5.2.4.2. Metric schedule. The schedule of a metric determines the production fre-
quency of its measurements. This criterion’s evaluation for each language would be no
if the language cannot define metric schedules, or yes otherwise.

The evaluation results are presented in the second row of the Monitoring life-cycle ac-
tivity of Tables X and XI. Only four SLA languages are able to specify metric schedules.
Three (WSML, WSLA, and SLAng) of these four languages satisfy both the current
and the previous criterion. The rest of the SLA languages and all SCLs do not model
this feature. However, as this feature is used to specify the timing of the measurement
productions of the SLO metrics, its lack can cause problems in the assessment activity.

The SLA assessment is one of the most critical SLA life-cycle activities. Thus, SLA
languages must model all appropriate information that could be used to support this
activity. Apart from the main condition of the SLO (clause) that is modelled in all
SLA/service contract languages, other important SLA assessment information that
should be modelled is: (a) Condition Evaluator, (b) Qualifying Condition, (c) Obliged
Party, (d) Assessment Schedule, (e) Validity Period, and (f) Corrective Actions. In the
following, the purpose and content of this information is analyzed and it is evaluated
if the examined languages have modelled it.

5.2.4.3. Condition evaluator. Similarly to metric measurement, the SLO assessment
should be made by a (supporting) party which is named Condition Evaluator. This
party is in charge of collecting the measured values of all metrics involved in an SLO,
replacing the metrics with their values, and then checking if the SLO holds or not. This
criterion’s evaluation for each language would be no if the language does not define
this type of supporting party, or yes otherwise.

The evaluation results are presented in the first row of the Assessment life-cycle
activity of Tables X and XI. Only two SLA languages (WSLA and WSOL) and two
SCLs (X-Contract and SweetDeal) are able to model this information. All the other
languages presuppose that the SLA assessment activity is performed in the signatory
partie’s management systems based on the information coming or pulled from the mon-
itoring components. In this way, they limit the way an SLA management system can
be implemented or distributed as they exclude the existence of third-party assessment
components.

5.2.4.4. Qualifying condition. Apart from the SLO to be evaluated, there can be a
precondition, the qualifying condition, which must hold to assess the SLO. This pre-
condition may express assertions over service or other quality attributes or external
factors such as the SR’s service request rate. This criterion’s evaluation for each lan-
guage would be no if the language does not define qualifying conditions, impl if it
defines them implicitly through other constructs, or yes otherwise.

The evaluation results are presented in the second row of the Assessment life-cycle
activity of Tables X and XI. Only one SLA language (WS-agreement) and two SCLs are
able to explicitly model the qualifying condition attribute, while another SLA language
(WSLA) can implicitly define it through other constructs. All the other languages do
not offer this capability. This lack leads to inability of expressing preconditions for the
enactment of an SLO’s assessment, which would eventually lead to situations where

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:47

SLOs are assessed wrongly with regards to timing or other excluding conditions (e.g.,
client-side or management-related restrictions).

5.2.4.5. Obliged. The Obliged party is in charge of delivering what is promised in
an SLO. In many cases, this party is the SP, while in other cases it can be another
party, such as a service component’s third-party provider. Thus, every language should
associate an SLO with the party that promises it. This criterion’s evaluation for each
language would be no if the language does not define the obliged party in the SLOs, or
yes otherwise.

The evaluation results are presented in the third row of the Assessment life-cycle
activity of Tables X and XI. Most SLA languages are able to define which is the obliged
party in an SLO. Moreover, all SCLs model this information as their design is based
on policies expressing obligations and various other implication types.

5.2.4.6. Assessment schedule. An SLO is not assessed just one but several times
according to an Assessment Schedule. This schedule can be as simple as assessing when
new values are measured for the SLO metric or complex, representing a sequence of
regularly occurring events. This criterion’s evaluation for each language would be no if
the language cannot define assessment schedules, or yes otherwise.

The evaluation results are presented in the fourth row of the Assessment life-cycle
activity of Tables X and XI. Most of the languages specify an SLO’s assessment sched-
ule. This result applies also to the SCL partition, as SCLs have been designed to
support this criterion. However, most of the SLA languages do not model this informa-
tion. This limits their application only in expressing SLAs that involve services whose
performance should be checked at only one instant. The languages that model this
criterion follow two different approaches. In the first approach the schedule is defined
concretely with timing constraints, while in the second approach the schedule is based
on events originating from the SLA management system’s monitoring components. The
first approach is adopted by SLA languages, while the second approach is adopted by
all SCLs.

5.2.4.7. Validity period. While the assessment schedule determines when to assess an
SLO, the validity period determines the time period in which the SLO is guaranteed
and, thus, should be checked for validity. An example of the value set this field can
take is {business days, regular working hours, maintenance periods}. This criterion’s
evaluation for each language would be no if the language does not define the an SLO’s
validity period, or yes otherwise.

The evaluation results are presented in the fifth row of the Assessment life-cycle
activity of Tables X and XI. Most of the language’s do not model this information.
This result also applies to the SCL partition. However, it does not apply to the SLA
languages’ partition, as there is a balance between the approaches that model this in-
formation and those that do not. Thus, SLA language designers have better understood
the need of supporting this criterion with respect to those of the SCLs.

5.2.4.8. Corrective actions. When the signatory parties are informed about an SLO
violation, corrective actions must be carried out at the obliged party’s management
system or at the global level by renegotiating or canceling the SLA/service contract.
When corrective actions should be taken by the obliged party, the choice of which action
to perform depends on many situational factors and the obliged party’s business goals
and policies. So, this party would not desire or be possible to advertise in an SLA/service
contract what actions to perform in which SLO violation case. However, this party may
advertise some corrective actions to be taken for the corresponding SLO’s violations
to increase its reputation and trust with respect to the SR or to guarantee the high
gain that will come from assuring the agreed SL to a golden class customer. Thus,

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:48 K. Kritikos et al.

this information should be certainly modelled in an SLA/service contract. So, this
criterion’s evaluation for each language would be no if the language does not model
corrective actions, or yes otherwise.

The evaluation results are presented in the fifth row of the Assessment life-cycle
activity of Tables X and XI. The majority of the language designers have recognized
the significance of modelling this information. The same result also applies to the SCL
partition. However, it does not apply to the other partition, as there is a balance between
SLA languages that model corrective actions and those that do not. This means that
SCL designers have better understood the importance of this criterion with respect to
those of the SLA languages.

5.2.4.9. Overall analysis for the monitoring and assessment activity. Based on the
overall performance of the examined languages on the monitoring and assessment
criteria, WSLA is the best language that models all appropriate information that is
required for supporting the Monitoring and Assessment life-cycle activities, as the
support of these two activities was one of its design requirements and seems to be
successfully implemented. By inspecting the two different partitions, SCLs offer well
support, while apart from WSLA the rest of the SLA languages do not seem to support
well the SLA monitoring and assessment activities.

5.2.5. Settlement. This activity assesses what has happened during the service’s execu-
tion and what are each signatory party’s responsibilities according to the agreed SLA.
So, for example, if a specific SLO was violated, then the SP has to pay a small penalty
to the SR. As another example, if the service runs in a higher SL than requested, then
the SR has to pay, apart from the actual service cost, a reward for getting a better
SL. The appropriate information to be modelled by an SLA/service contract language
for supporting this activity is the following: (a) the incurred penalties, (b) the incurred
rewards, (c) settlement actions.

5.2.5.1. Penalties. Penalties are paid by the SP if one or more SLOs are violated. Each
SLO is usually associated with a specific penalty amount. However, in some cases, the
penalty to be paid could increase exponentially with the violation number [Paschke and
Schnappinger-Gerull 2006]. The latter penalty type is not modelled by most languages
as it would require the definition of the appropriate SL first and then its association to
a specific policy or function that would increase exponentially or linearly according to
the violation number in the SLOs that compose this SL. If a language is able to define
penalties at the SL, then it can also define penalties at the individual SLO level. Thus,
this criterion’s evaluation for each language would be no if the language does not define
penalties, SLO if it defines penalties at the SLO level, or SL if it defines total penalties
at the SL level.

The evaluation results are presented in the first row of the Settlement life-cycle
activity of Tables X and XI. Most of the languages are able to specify penalties. The
majority of these languages can define penalties for the whole SL, while only three
languages define penalties for each SLO. Considering each partition separately, the
majority of the SCLs are able to define penalties for each SL, while there is a balance
between those SLA languages that are able to define penalties and those that are not.
Moreover, there is a balance between the SLA languages that model penalties at the
SL level and those that model penalties at the SLO level. The results show that SCL
designers have better understood the need to model penalties, as opposed to the SLA
language designers.

5.2.5.2. Rewards. Rewards are paid by the SR if one or more SLOs are more than
respected. Rewards can be defined at the SLO (via a specific value) or SL level (via
a function). Rewards should be modelled as they would give extra motives to SPs to

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:49

provide even better SLs than the ones offered to respective SRs in the past. This SL
upgrade would lead to increase in profits, which is one main goal of SPs when they
offer their services. Moreover, the SLs trust and reliability would also increase. This
criterion’s evaluation for each language would be no if the language does not define
rewards, SLO if it defines rewards at the SLO level, or SL if it defines rewards at the
SL level.

The evaluation results are presented in the second row of the Settlement life-cycle
activity of Tables X and XI. The results are different with respect to those of the
previous criterion. Less than half of all languages are able to define rewards. Moreover,
there is a balance between the languages able to define rewards at the SL level and
those able to define rewards at the SLO level. In the SCL language partition, all SCLs
are able to define rewards at the SL level. Concerning the other partition, the majority
of the SLA languages are not able to define rewards as either no real-world case of
SLAs contains rewards or the SLA language designers have not recognized the need
of modelling rewards. As SLA languages represent the majority of all languages, this
explains the bad global result.

5.2.5.3. Settlement actions. Settlement actions are mutually taken by both signatory
parties to decide about the SLA/service contract final outcome. Thus, when there are
no severe SLO violations or the violation number is not high or zero, the SLA outcome
is successful and maybe only penalties or rewards have to be paid. However, in the
opposite case, it should be determined if the SLA must be canceled, renegotiated, or
reenforced (e.g., the service has to be reexecuted). Thus, SLA/service contract languages
should be able to model these settlement actions and the conditions on which they are
applied. So, this criterion’s evaluation for each language would be no if no settlement
actions can be defined, or yes otherwise.

The evaluation results are presented in the last row of the Settlement life-cycle
activity of Tables X and XI. Half of the languages are not able to model settlement
actions. Concerning the SLA partition, only two SLA languages are able to model
such actions. This is a significant limitation that would discourage potential SPs or
SRs from using them. Moreover, this explains the bad global result. This situation is
reversed in the SCL partition, as all SCLs support the modelling of this information.
This means that, indeed, the SCL design has been centered on the modelling of various
compensation actions, including the settlement ones.

5.2.5.4. Overall analysis for the settlement activity. Based on the evaluation results of
the settlement criteria, only RBSLA among the SLA languages satisfies all criteria and
can specify penalties and rewards on the SL. The same applies for three (SweetDeal,
CTXML, and SWCL) out of five SCLs. Thus, these four languages can be used for
appropriately supporting the Settlement life-cycle activity. However, these languages
require significant effort and extensions from the SLA modeler to express different
SLAs with different settlement actions and conditions. In addition, they force the
SLA management systems adopting them either to support one by one the different
settlement actions that may exist in the SLAs or to define appropriate extensions with
which the modelers may specify their SLAs. The latter may lead to a situation where
various different versions of the same language are adopted by different SLA/service
contract management systems. Thus, to avoid such situations and further increase
their adoption and universality, these languages should be extended appropriately to
specify explicit constructs that model the various settlement actions that may exist in
an SLA/service contract.

5.2.6. Archive. An SLA/service contract is archived in three distinct cases: (a) the SLA
is canceled, (b) the maximum number of service invocations has been reached, or (c) its

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:50 K. Kritikos et al.

validity period has expired. In the first case, settlement or corrective actions dictate
when the SLA is canceled. In the second case, the SLA has to determine this maximum
number of service invocations, and none of the existing languages is able to model this
information. In the third case, the language has to model the SLA’s validity period.
Besides the timing of SLA archiving, some parties desire to dispose of the SLA. In this
case, the SLA is first archived and then disposed of when a specific statutory period
is expired. Again, none of the existing languages models this information. Thus, for
this activity, each language is evaluated only based on its capability to model the SLA
validity period. Ifit does not model this period, the evaluation result is no, otherwise yes.

The evaluation results are presented in the last row of Tables X and XI. While the
modelling of an SLA’s (service contract’s) validity period is very important, less than
half of the languages are able to offer it. Concerning each partition separately, there is
a balance between SLA languages that support and do not support the modelling of this
information. On the other hand, only one SCL models this information. So, the SLA
language designers are starting to understand the need of modelling this information,
while the corresponding SCL designers do not. From the SCL side, this conclusion
can be explained by considering that these languages were designed with the focus on
functionality and not on quality. Thus, as functionality does not change so much, there
is no need to explicitly model the service contract validity period. The contract could be
invalidated as soon as the business relationship between the contracting organizations
ceases to exist for various reasons.

5.3. Overall Analysis

The analysis performed has revealed some significant facts and limitations of existing
SLA and service contract languages in their ability to appropriately support the SLA
life-cycle management activities. In this subsection, the analysis focuses on the overall,
global level of SLA management activity support so as to reveal other interesting facts
that are not obvious in a first sight.

First of all, by inspecting each activity’s overall results, it can be inferred that there
is no language supporting in a satisfactory way all activities. On the contrary, in each
activity a different language is awarded as the most appropriate one. In addition, there
are some SLA management activities that are not satisfactorily supported by any
language, including those of SLA Description, Matchmaking, and Negotiation, while
others are properly supported by few languages, including those of SLA Monitoring
and Assessment, Settlement, and Archive.

The preceding general results burden the SLA languages that were explicitly de-
signed to support all SLA management activities, as they signify that these languages
do not possess all appropriate modelling capabilities so they should be used for express-
ing only some SLA types. Based on the fact that the capabilities of the most widely used
SLA languages, that is, WSLA and WS-agreement, are complementary with respect to
the SLA management activitie’s support, one solution that could be adopted is to de-
sign a new SLA language that unifies the capabilities of these languages by extending
them and encompassing some modelling constructs of the one to the other. One such
paradigm is TrustCom, which is the only SLA language that has a good evaluation
score across all the activities. Another solution would be to design a new SLA language
that could use the best modelling features of the two standardized ones and explicitly
model the missing features.

Another interesting result derived from the previous analysis is that SCLs do not
fully support most of the SLA management activities apart from those of SLA Monitor-
ing and Assessment and Settlement. This is due to the focus of SCL design on service
functionality, which was inevitable during SCL modelling time. In this way, service
quality, which has the main focus now because of its dynamicity, is either neglected or

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:51

not appropriately modelled. Thus, although these languages were designed to accom-
modate for any electronic contract type, they cannot be used for specifying SLAs unless
they are extended appropriately. SWCL could be easily extended as it has the best
score among all SCLs across all SLA management activities. This language along with
TCXML are the most representative and recent SCLs which have included quality-
related constructs in order to accommodate for the change of focus from service func-
tionality to quality.

6. CONCLUDING REMARKS AND FUTURE WORK

This article has focused on investigating the issue of service quality description. To
this end, a systematic review of a large number of approaches has been conducted
in order to reveal their strengths and weaknesses and highlight where the need for
further research and investigation belongs. Initially, the approaches were separated
into three clusters according to their scope: (1) service quality models (SQMs) which
are taxonomies of service quality that can be used to annotate other types of qual-
ity documents like QSDs and SLAs, (2) service quality metamodels (SQMMs) which
are capable of expressing SQMs as well as service quality offerings and requirements
(i.e, QSDs), and (3) service-level agreement metamodels (SLA-MMs) which are capable
of describing SLAs. Then, there was a comparison of the approaches of each cluster
according to a set of scope-specific criteria aiming at unveiling which approaches are
the consolidated ones and which are the ones specific to given aspects. This compari-
son uncovered many interesting findings and has also identified particular aspects of
underperformance concerning each cluster’s approaches.

The next three subsections summarize the most important of these findings and
draw directions for further research and improvement.

6.1. Discussion on Service Quality Models

Various SQMs have been proposed, from small or flat categories of service quality at-
tributes to sophisticated taxonomies containing many categories and attribute types.
In order to compare these approaches in a fair and consistent manner, a set of criteria
were devised characterizing the extensiveness, information richness, structure, gen-
erality, and applicability of the considered SQMs. Concerning the first four aspects,
the evaluation results have shown a trend that the approaches are improving over the
years. In average, the SQMs have a satisfactory category number, where each cate-
gory contains a small quality attribute number. Most SQMs mainly cover general (i.e.,
domain-independent) quality attributes, while a small number of them also cover spe-
cific (i.e., domain-dependent) ones. As the inclusion of general attributes tends to cover
the SP view while the inclusion of specific ones tends to cover the SR view, most SQMs
mainly cover the SP view. Besides, most SQMs contain both composite and atomic qual-
ity attributes along with the connecting relation between them. The latter relation is
very important during service monitoring as it may be used to validate or enrich the
monitoring results of a service monitoring engine or component.

Another interesting finding is that the majority of the SQMs include only QoS at-
tributes but only the most recent approaches also include QoE attributes. The latter
result demonstrates how researchers in this field are starting to realize that quality
attributes that are assessed subjectively from user feedback are as important as ob-
jectively assessed quality attributes. This is because subjective attributes reveal the
service’s performance and usability from the perspective of actual service users, so they
also constitute critical service selection factors.

An important evaluation result shows that, compared to the very first approaches
which focused on quality attributes in the service layer, current approaches are in-
creasingly considering attributes that can be associated to one or both of the two other

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:52 K. Kritikos et al.

layers in our quality model, namely the application and infrastructure layers. While
this is a significant advance, it is outweighed by the lack of interattribute dependencies
not only within the same but also across the layers. Interattribute dependencies are
extremely important as they reveal the influence one attribute has on the other. In this
way, the service monitoring, assessment, and adaptation activities can exploit them to
perform dependency analysis in order to detect wrong monitoring facts and discover
the components of the same or different layer that caused an SLO violation.

The current state-of-the-art approaches scarcely consider data quality aspects. How-
ever, since the service output is mostly composed of information, data quality can be
considered as a part of service QoS and can drive thoroughly the analysis of the required
input and provided output.

Concerning the applicability comparison aspect, only one SQM [Colombo et al. 2005]
associates metrics with concrete assessment formulas to all the attributes it contains.
However, it does not perform well with respect to the first four aspects. Thus, this SQM
could be used to annotate QSDs and SLAs which can be used across all service life-cycle
activities but in specific scenarios. This is because this SQM contains a rather small
amount of domain-independent quality attributes and thus could not be used to capture
any possible case in which also some domain-dependent quality attributes are needed.
Most of the remaining approaches provide a metric description for some of the included
attributes which does not contain a precise assessment formula but an assessment
rules set. As the latter rules can be further used to create precise assessment formulas,
these approaches could be exploited in all the service life-cycle activities, if extended
appropriately.

Based on the previous analysis, no SQM can be considered as optimal according to
its evaluation on all the criteria considered. In fact, for particular partitions of the
comparison aspects, different approaches are distinguished as the best. Thus, a new
SQM is needed that should combine the characteristics of the best approaches in all the
considered aspects, describe all the possible but realistic interattribute dependencies,
and include also data quality attributes.

6.2. Discussion on Service Quality Metamodels

Many SQMMs have been proposed, which were separated into three partitions based
on their scope such that the analysis can be conducted globally for all approaches and
locally in each partition. Pure SQMMs are able to express QSDs and QSMs. SLA-
enabled SQMMs are additionally able to express SLAs. On the other hand, security-
based SQMMs focus on particular aspects of service quality description. All SQMMs
were evaluated based on a set of criteria capturing the aspects of formality, expressive-
ness, complexity, and applicability.

Concerning formality, the results have shown that the majority of the approaches use
either ontologies or informal formalisms. The former formalism is widely selected in
pure SQMMs, while the latter is the best modelling choice in the other two partitions,
that is, the SLA-enabled and security-based ones. The analysis has also revealed a re-
cent trend for pure and SLA-enabled SQMMs to use ontologies for their representation.
The adoption of ontologies can be explained by their ability to provide unambiguous
semantics to quality terms and, thus, to enable machines to automatically process and
reason on ontology-specified QSDs in order to support service life-cycle activities like
discovery and negotiation.

Three main criteria were used to evaluate the richness of the approaches. The first
criterion evaluated the SQM richness of the SQMM. The evaluation results have shown
that no SQMM is able to provide a rich SQM. Fortunately, pure SQMMs are starting to
improve on this aspect over the last years. However, SLA-enabled and security-based
SQMMs do not perform very well on this matter. The second criterion assessed the

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:53

richness of the quality metric model and its evaluation results were better with respect
to those of the previous one. Indeed, the majority of SQMMs are encompassing an
adequately rich quality metric model. Moreover, pure SQMMs are again improving on
this matter over the last years. Finally, the third criterion evaluated the richness in
constraint description. Here, the evaluation results are even better as the majority of
the approaches encompass a rich constraint model. In fact, there are some pure and
SLA-enabled SQMMs that encompass an excellent (i.e., very rich) constraint model.
Moreover, pure SQMMs are improving on this matter over the years. Security-based
SQMMs perform moderately under this evaluation criterion. By closely inspecting the
results of these three criteria, it can be inferred that pure SQMMs are continuously
increasing their expressiveness, while the approaches of the other two partitions are
more or less stable.

It was extremely difficult to assess the SQMM complexity by using good measures
based on various practical reasons. Therefore, it was decided to use a simple measure
on the number of concepts/entities included in the SQMM and specific thresholds in
order to evaluate the SQMMs in particular categories. The results show that most of
the SQMMs have low complexity and that there is a trend for pure and SLA-enabled
SQMMs to move towards higher complexity. By also considering the fact that SLA-
enabled SQMMs are increasing their expressiveness in pure SLA-based aspects, this
actually means that modelers are trying to increase the expressiveness of their SQMMs
and, in result, the complexity of their SQMMs increases with respect to the number of
concepts/entities.

The aspect of applicability was assessed based on two criteria. The first criterion eval-
uated the connection of an SQMM with a Service Functional Specification Language
(SFSL) in order to assess if the SQMM can be used in registries that are bound to
specific SFSLs. The results have shown that the majority of the SQMMs are connected
to an SFSL. Moreover, the most referenced language is WSDL followed by OWL-S.
The second criterion assessed if any service discovery and negotiation framework has
adopted the SQMM under inspection. By inspecting the functionality of existing frame-
works that use pure SQMMs and considering the fact that these SQMMs do not model
some critical information for service monitoring and assessment, it is inferred that
pure SQMMs are used until the service negotiation activity. The same result goes for
security-based SQMMs. On the other hand, if the SLA-enabled SQMMs are improved
on some modelling aspects, then they can be used across the whole service life-cycle.

In summary, from the preceding analysis, there is no SQMM that scores the best
value in all criteria. This drawback prevents the wide usage of SQMMs in service
management systems. Indeed, as already shown, there are no SQMMs that are used
in service discovery, negotiation, and SLA description and enforcement. Thus, there is
actually a gap that must be closed by introducing either a new SQMM or extending an
appropriate existing one.

6.3. Discussion on Service-Level Agreement Metamodels

Two agreement language types have been proposed in the literature: SLAs and service
contracts. The former mainly focus on quality aspects, while the latter have been
designed to accommodate for any electronic contract type. Both language types were
evaluated on a set of criteria that were grouped along the SLA life-cycle activities.
These criteria assessed these languages along the lines of the information they can
describe which is required for supporting the SLA life-cycle activities. In this way, by
supporting the SLA life-cycle activities, the service life-cycle is also supported.

By inspecting the overall evaluation results, there is no language that satisfacto-
rily supports all activities. On the contrary, for many activities a different language
is awarded as the most appropriate one, while only few languages properly support a

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:54 K. Kritikos et al.

subset of all activities. In addition, there are some SLA management activities which
are not properly supported by any language, including those of SLA description, match-
making, and negotiation.

Concerning SLA languages, the analysis has shown that all SLA languages, includ-
ing the two most widely used languages, namely WSLA [Keller and Ludwig 2003]
and WS-agreement [WS-Agreement 2003], do not possess all appropriate modelling
capabilities. Moreover, the capabilities of the WSLA and WS-agreement languages are
complementary with respect to the SLA management activitie’s support. For this rea-
son, there are some approaches that attempt to unify the best characteristics of these
two languages, such as TrustCom [TrustCoM Consortium 2007]. However, this unifica-
tion is not enough as those features that are inadequate should be improved and those
that are missing should be additionally modelled.

SCLs are not capable of fully supporting most of the SLA management activities
apart from those of SLA Monitoring and Assessment and Settlement. This can be ex-
plained by the focus of SCL design on service functionality, which was inevitable during
SCL modelling time. Thus, although these languages were designed to accommodate
for any electronic contract type, they cannot be used to specify SLAs unless they are
extended appropriately.

Based on the previous analysis, there is a need for a new language able to express
SLAs in a satisfactory way. This language should satisfy all the criteria of all the SLA
life-cycle management activities and be capable of explicitly defining SLs, their respec-
tive SLOs, and appropriate settlement actions when the SLs are violated or surpassed.
The encoding used in this language should enable it to be platform independent, simple,
easy to use, and both machine and human understandable and processable. However,
the formalism adopted should enable the analysis and the syntactic, semantic, and
quality validation of the language’s produced SLA specifications, either explicitly or
through its transformation to another more powerful formalism. Finally, the high goal
of automatability should be achieved with the creation of several assisting tools or SLA
management components for this new SLA language that could be used by prospective
SPs and SRs, or incorporated in their management systems.

APPENDIX
The Acronyms Used in the Article and their Expansion

ACRONYM ACRONYM EXPANSION
CG Constraint Group
CLP Constraint Logic Programming
FSD Functional Service Discovery
FSM Finite State Machine
TaaS Infrastructure as a Service
QBSM Quality-Based Service Matchmaking
QoE Quality of Experience
QoS Quality of Service
QSD Quality-Based Service Description
SCL Service Contract Language
SD Service Description
SFSL Service Functional Specification Language
SL Service Level
SLA Service Level Agreement
SLA-MM SLA Meta-Model

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:55

ACRONYM ACRONYM EXPANSION
SLA-SQMM | SLA-Enabled Service Quality Meta-Model
SLO Service Level Objective

SP Service Provider

SQM Service Quality Model

SQMM Service Quality Meta-Model

SQSL Service Quality Specification Language
SR Service Requester

WS Web Service

REFERENCES

ALLEN, P. 2006. Service Orientation, Winning Strategies and Best Practices. Cambridge University Press,
Cambridge, UK.

ANDRIEUX, A., Dan, A., Keany, K., Lupwic, H., aND Rorrano, J. 2004. Negotiability constraints in WS-
Agreement. Tech. rep. GRAAP-WG. Version 0.1. http:/www.mcs.anl.gov/~keahey/Meetings/GRAAP/
WSAgreement%20Negotiability%20Constraints.pdf.

Barini, C., CappieLo, C., FrancaLanc, C., AND MauriNo, A. 2009. Methodologies for data quality assessment
and improvement. ACM Comput. Surv. 41, 3.

Branbic, 1., Buyva, R., MATTESS, M., AND VENUGOPAL, S. 2009. Towards a meta-negotiation architecture for sla-
aware grid services. In Proceedings of the 2" International Workshop on Service Oriented Engineering
and Optimization (SENOPT’08) in conjunction with Conference on High Performance Computing. 1-9.

Branbic, 1., PrLaNa, S., AND BENKNER, S. 2006. An approach for the high-level specification of qos-aware grid
workows considering location affinity. Sci. Programm. J. 14, 3—4, 231-250.

CaprieLLo, C. 2006. The quality registry. In Mobile Information Systems — Infrastructure and Design for
Adaptivity and Flexibility, Springer, 307-317.

CaprieLLo, C., KriTikos, K., METZGER, A., ParkiN, M., Pernict, B., PLEBANI, P., AND TrREIBER, M. 2008. A quality
model for service monitoring and adaptation. In Proceedings of the Workshop on Monitoring, Adaptation
and Beyond (MONA+) at the ServiceWave Conference. Springer.

CorLomBo, M., NitTO, E. D., PENTA, M. D., DISTANTE, D., AND ZUCCAL, A. M. 2005. Speaking a common language:
A conceptual model for describing service-oriented systems. In Proceedings of the 3" International
Conference on Service Oriented Computing (ICSOC’05). 48-60.

Comuzzi, M., KriTikos, K., AND PLEBANI, P. 2009. A semantic based framework for supporting negotiation in
service oriented architectures. In Proceedings of the 11*" IEEE Conference on Commerce and Enterprise
Computing (CEC’09). 137-145.

CorrtEs, A. R., MarTiN-Diaz, O., Toro, A. D., anD Toro, M. 2005. Improving the automatic procurement of web
services using constraint programming. Int. J. Cooperative Inf. Syst. 14, 4, 439-468.

CranNor, L., Dosss, B., EceLmaN, S., HocBEN, G., HumpHREY, J., LANGHEINRICH, M., MARCHIORI, M.,
PRESLERMARSHALL, M., REAGLE, J., SCHUNTER, M., StaMPLEY, D. A., AND WENNING, R. 2006. Platform for
privacy preferences (p3p). Working group note, W3C. November. http://www.w3.org/P3P/.

DE Paoui, F., PaLmonari, M., CoMERIO, M., AND MAURINO, A. 2008. A meta-model for non-functional property
descriptions of web services. In Proceedings of the IEEE International Conference on Web Services
(ICWS’08). 393—400.

Dikaiakos, M. D., Paruis, G., Katsaros, D., MEHRA, P., aND Varari, A. 2009. Cloud computing: Distributed
internet computing for it and scientific research. IEEE Internet Comput. 13, 5, 10-13.

Dosson, G., Lock, R., aND SomMERVILLE, I. 2005. QoSOnt: A qos ontology for service-centric systems. In
Proceedings of the 31 EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO’05). 80-817.

FarreLL, A. D. H., SErcotr, M. J., TRASTOUR, D., AND CHrisTODOULOU, A. 2004. Performance monitoring of
service-level agreements for utility computing using the event calculus. In Proceedings of the 1¢ IEEE
International Workshop on Electronic Contracting (WEC’04). 17-24.

FosBrook, D. anD Laing, A. C. 1996. The A-Z of Contract Clauses. Sweet and Maxwell.

FroLunD, S. AND KoISTINEN, J. 1998. Quality of services specification in distributed object systems design. In
Proceedings of the 4" Conference on USENIX Conference on Object-Oriented Technologies and Systems
(COOTS’98). 179-202.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:56 K. Kritikos et al.

Fruros, H. M., KotsiopouLros, 1., GonzaLez, L. M. V., anp MErmo, L. R. 2009. Enhancing service selection
by semantic qos. In Proceedings of the 6" European Semantic Web Conference on The Semantic Web:
Research and Applications (ESWC’09). 565-5717.

GEorGakorouLos, D. aNnD Parazocrou, M. P., Eps. 2008. Service-Oriented Computing. MIT Press. http:/
mitpress.mit.edu/sites/default/files/titles/content/9780262072960_sch_0001.pdf.

GIALLONARDO, E. AND ZivMEo, E. 2007. More semantics in qos matching. In Proceedings of the International
Conference on Service-Oriented Computing and Applications. 163-171.

GREFEN, P. AND ANGELOV, S. 2002. On -, -, 7-, and e-contracting. In Proceedings of the International Workshop
on Web Services, E-Business, and the Semantic Web (WES’02). Lecture Notes in Computer Science,
vol. 2512, Springer, 68-77.

Grosor, B. N. anp Poon, T. C. 2004. SweetDeal: Representing agent contracts with exceptions using semantic
web rules, ontologies, and process descriptions. Int. J. Electron. Commerce 8, 4, 61-97.

HorrnER, Y., FieLD, S., GrereN, P., aND Lupwig, H. 2001. Contract-driven creation and operation of virtual
enterprises. Comput. Netw. 37, 111-136.

Hwang, C. anp Yoon, K. 1981. Multiple criteria decision making. Lecture Notes in Economics and Mathemat-
ical Systems. Tech. rep. ISO/IEC 2001. ISO/IEC 9126-1 Software Engineering. Product Quality - Part 1:
Quality model. ISO/IEC.

J1aNG, Y., SHAO, W., ZHANG, L., Ma, Z., MENG, X., AND Ma, H. 2004. On the classification of umls meta model
extension mechanism. In Proceedings of the 7" International Conference on The Unified Modeling Lan-
guage: Modeling Languages and Applications (UML'04). 54—68.

KazaamiakiN, R., Pistore, M., aND ZENGIN, A. 2009. Cross-layer adaptation and monitoring of service-
based applications. In Proceedings of the International Conference on Service-Oriented Computing
(ICSOC/ ServiceWave’09). Lecture Notes in Computer Science, vol. 6275, Springer, 325-334.

KELLER, A. AND Lupwic, H. 2003. The wsla framework: Specifying and monitoring service level agreements
for web services. J. Netw. Syst. Manag. 11,1, 57-81.

Kritikos, K. 2008. QoS-based web service description and discovery. PhD thesis, Computer Science De-
partment, University of Crete, Heraklion, Greece. December. http://ercim-news.ercim.eu/qos-based-web-
service-description-and-discovery.

Kritikos, K. anD PLExoUSAKIS, D. 2006. Semantic qos metric matching. In Proceedings of the European Con-
ference on Web Services (ECOWS’06). 265-274.

KriTikos, K. anD PLExoUSAkTs, D. 2009. Requirements for qos-based web service description and discovery.
IEEE Trans. Serv. Comput. 2, 4, 320-337.

LaMaNNA, D. D., SKENE, J., AND EMMERICH, W. 2003. SLAng: A language for defining service level agreements.
In Proceedings of the 9" IEEE International Workshop on Future Trends of Distributed Computing
Systems (FTDCS’03).

LiniveToN, P. F., MiLosgvic, Z., CoLE, dJ., GiBSON, S., KULKARNI, S., AND NEAL, S. 2004. A unified behavioural
model and a contract language for extended enterprise. Data Knowl. Engin. 51, 1, 5-29.

Ma, Y., Jin, B, anp FEng, U. 2010. Semantic-oriented ontology cohesion metrics for ontology-based systems.
J. Syst. Softw. 83, 1, 143-152.

Magrouk, N. B., GEorcanTas, N., aND Issarny, V. 2009. A semantic end-to-end qos model for dynamic ser-
vice oriented environments. In Proceedings of the Principles of Engineering Service Oriented Systems
collocated with the International Conference on Software Engineering.

MaximiLieN, E. M. anp SincH, M. P. 2002. Conceptual model of web service reputation. SIGMOD Rec. 31, 4,
36-41.

MaxmMILIEN, E. M. aND SiNGH, M. P. 2004. A framework and ontology for dynamic web services selection. IEEE
Internet Comput. 8, 5, 84-93.

Mens, T. anD Lanza, M. 2002. A graph-based metamodel for object-oriented software metrics. Electron. Notes.
Theor. Comput. Sci. 72, 2.

MoLINA-JIMENEZ, C., SHRIVASTAVA, S., SOLAIMAN, E., AND WARNE, J. 2003. Contract representation for run-time
monitoring and enforcement. In Proceedings of the IEEE International Conference on E-Commerce
Technology (CEC’03). 103-110.

MGULLER, C., CorTEs, A. R., AND REsiNAs, M. 2008. An initial approach to explaining sla inconsistencies. In
Proceedings of the 6" International Conference on Service-Oriented Computing (ICSOC’08). Lecture
Notes in Computer Science, vol. 5364, Springer, 394-406.

MuLLER, N. J. 1999. Managing service level agreements. Int. J. Netw. Manag. 9, 3, 155-166.

NapALIN, A., GOODNER, M., GUDGIN, M., BARBIR, A., AND GraNQVIST, H. 2007. WS-trust specification, Tech. rep.
OASIS working draft. http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

A Survey on Service Quality Description 1:57

NeJspr, W., OLMEDILLA, D., AND WINSLETT, M. 2004. PeerTrust: Automated trust negotiation for peers on the
semantic web. In Proceedings of the VLDB International Workshop on Secure Data Management in a
Connected World (SDM’04). Lecture Notes in Computer Science, vol. 3178, Springer, 118-132.

Ness1 OpEN FramMEWORK. 2009. Quality model for nexof-ra pattern designing. Tech. rep. http:/ec.europa.ew/
information_society/apps/projects/logos/6/216446/080/deliverables/001_D10220100901.pdf.

THE OASIS Groupr. 2005. Quality model for web services. Tech. rep., The Oasis Group. http:/www.clip.dia.
fi.upm.es/Projects/S-CUBE/papers/oasis05:WSQM-2.0.pdf.

TueE OMG Group. 2005. UMLTM profile for modeling quality of service and fault tolerance characteristics
and mechanisms. Tech. rep. ptc/2005-05-02, The OMG Group.

OrpHaM, N., VERMA, K., SHETH, A., AND HAKIMPOUR, F. 2006. Semantic ws-agreement partner selection. In
Proceedings of the 15" International Conference on World Wide Web (WWW06). ACM Press, New York,
697-706.

OrEN, N., PreECE, A., AND NormaN, T. 2005. Service level agreements for semantic web agents. In AAAI Fall
Symposium Series.

O’suLLIVAN, dJ., EDMOND, D., AND TER HOFSTEDE, A. 2002. What'’s in a service? Towards accurate description of
non-functional service properties. Distrib. Parall. Datab. 12, 2-3, 117-133.

ParkiN, M., Bapia, R. M., AND MARTRAT, J. 2008. A comparison of sla use in six of the european commissions fp6
projects. Tech. rep. TR-0129, Institute on Resource Management and Scheduling, CoreGRID - Network
of Excellence.

PascHkE, A. 2005. RBSLA: A declarative rule-based service level agreement language based on ruleml. In
Proceedings of the International Conference on Computational Intelligence for Modelling, Control and
Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCAIAWTIC06). Vol. 2, 308-314.

PascHKE, A. AND SCHNAPPINGER-GERULL, E. 2006. A categorization scheme for sla metrics. In Service Oriented
Electronic Commerce: Proceedings zur Konferenz im Rahmen der Multikonferenz Wirtschaftsinformatik.
LNI, vol. 80, 25—40.

RaN, S. 2003. A model for web services discovery with QoS. SIGecom Exch. 4, 1, 1-10.

Repman, T. C. 1997. Data Quality for the Information Age. Artech House, Inc., Norwood, MA.

Rossi, F., van BEEk, P., aANp WaLsH, T. 2006. Handbook of Constraint Programming (Foundations of Artificial
Intelligence). Elsevier Science, New York.

SaBaTA, B., CHATTERJEE, S., Davis, M., SYDIR, J., AND LAWRENCE, T. 1997. Taxonomy for qos specifications.
In Proceedings of the 3" International Workshop on Object-Oriented Real-Time Dependable Systems.
100-107.

SAKELLARIOU, R. AND YARMOLENKO, V. 2008. Job scheduling on the grid: Towards sla-based scheduling.
http://www.cs.man.ac.uk/~rizos/papers/hpc08.pdf.

SetH, N., DESMUKH, S. G., AND VRaT, P. 2005. Service quality models: A review. Int. J. Qual. Reliab. Manag. 22,
9, 913-949.

SKENE, dJ. 2007. Language support for service-level agreements for application-service provision. Ph.D
thesis, Department of Computer Science, University College London, London, UK. http:/discovery.
ucl.ac.uk/5607/.

SkoGSRUD, H., BENATALLAH, B., AND CasaTi, F. 2004. Trust-serv: Model-driven lifecycle management of trust
negotiation policies for web services. In Proceedings of the 13t" Conference on World Wide Web.

STrRONG, D. M., LEE, Y. W., AND WaNG, R. Y. 1997. 10 pitholes in the road to information quality. Comput. 30,
8, 38—46.

TEBBANI, B. AND A1B, 1. 2006. GXLA a language for the specification of service level agreements. In Proceedings
of the 1t International IFIP TC6 Conference on Autonomic Networking. Lecture Notes in Computer
Science, vol. 4195, Springer, 201-214.

TiaN, M., Gramm, A., NaBULsi, M., RirTER, H., SCHILLER, J., AND VoiaT, T. 2003. QoS integration in web services.
Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop Technologien und Anwendungen von
XML.

Tosic, V., Esranpiari, B., PAGUREK, B., AND PaTEL, K. 2002. On requirements for ontologies in management of
web services. In Revised Papers from the International Workshop on Web Services, E-Business, and the
Semantic Web (CAiSE’02/WES’02). Springer, 237—247.

Tosic, V., Ma, W., PAGUREK, B., AND EsranDIARI, B. 2003a. On the dynamic manipulation of classes of service
for xml web services. Research rep. SCE-03-15, Department of Systems and Computer Engineering,
Carleton University, Ottawa, Canada.

Tosic, V. anD PAGUREK, B. 2005. On comprehensive contractual descriptions of web services. In Proceedings
of the IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’05). 444—449.

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

1:58 K. Kritikos et al.

Tosic, V., PacUrek, B., anp Parter, K. 2003b. WSOL — A language for the formal specification of classes of
service for web services. In Proceedings of the International Conference on Web Services (ICWS’03), L.-d.
Zhang, Ed. CSREA Press, Las Vegas, NV, 375-381.

Truong, H.-L., SAMBORSKI, R., AND FAHRINGER, T. 2006. Towards a framework for monitoring and analyzing qos
metrics of grid services. In Proceedings of the International Conference on e-Science and Grid Computing.

Trustcom ConsorTiuM. 2007. TrustCom framework v4 — Appendix a: Profiles. Report Deliverable D63,
European Union.

Wang, X., VITvar, T., KERRIGAN, M., AND Toma, 1. 2006. A qos-aware selection model for semantic web services.
In Proceedings of the 4'"International Conference on Service-Oriented Computing (ICSOC’06), A. Dan
and W. Lamersdorf, Eds. Lecture Notes in Computer Science, vol. 4294, Springer, 390-401.

WELTY, C., KaLra, R., AND CHU-CARROLL, J. 2003. Evaluating ontological analysis. In Proceedings of the ISWC-
03 Workshop on Semantic Integration.

WS-AGREEMENT. 2003. WS-agreement framework. https:/forge.gridforum.org/projects/graap-wg.

Y1, T., Wy, F., aND Gan, C. 2004. A comparison of metrics for uml class diagrams. SIGSOFT Softw. Engin.
Notes 29, 5, 1-6.

Yoa, H., Orem, A. M., aND ETzKORN, L. 2005. Cohesion metrics for ontology design and application. J. Comput.
Seci. 1,1, 107-113.

ZeMnI, M. A., BENBERNOU, S., AND CARRO, M. 2010. A soft constraint-based approach to qos-aware service
selection. In Proceedings of the 8" International Conference on Service Oriented Computing (ICSOC’10).
Springer.

Zuov, C., CHia, L.-T., anp LEeg, B.-S. 2004. DAML-qos ontology for web services. In Proceedings of the IEEE
International Conference on Web Services (ICWS’04). 472-479.

Received November 2009; revised July 2012; accepted October 2012

ACM Computing Surveys, Vol. 46, No. 1, Article 1, Publication date: October 2013.

