
Persistence of workflow control
data in temporal databases

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Thomas Sonnleitner
Matrikelnummer 00751500

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn

Wien, 19. September 2019
Thomas Sonnleitner Jürgen Dorn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Persistence of workflow control
data in temporal databases

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Thomas Sonnleitner
Registration Number 00751500

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn

Vienna, 19th September, 2019
Thomas Sonnleitner Jürgen Dorn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Thomas Sonnleitner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. September 2019
Thomas Sonnleitner

v

Danksagung

An dieser Stelle möchte ich all jenen danken, die durch ihre fachliche und persönliche
Unterstützung zum Gelingen dieser Diplomarbeit beigetragen haben.

Dabei gebührt insbesondere Herrn Prof. Dorn mein Dank, welcher meine Diplomarbeit
betreut und begutachtet hat. Für die hilfreichen Anregungen und die konstruktive Kritik
bei der Erstellung dieser Arbeit möchte ich mich herzlich bedanken.

Mein besonderer Dank gilt meiner Familie, die mir mein Studium ermöglicht und mich
in all den Jahren während und auch bereits vor dem Studium bedingungslos unterstützt
hat. Meine Eltern, Stiefeltern, Großeltern und Firmpaten haben mir dadurch den Weg
zur Matura und einen Abschluss an einer Universtität ermöglicht.

Ebenso herzlich bedanken möchte ich mich auch bei meiner Lebensgefährtin, die mich
während des Studiums unterstützt und in dieser Zeit auch viele Entbehrungen hinnehmen
musste. Beim Schreiben der Diplomarbeit hat sie mich immer wieder ermutigt und durch
die Korrekturlesung auch einen Teil zum Gelingen beigetragen.

Schließlich danke ich meinen Freundinnen und Freunden während der Studienzeit für
sehr schöne Jahre an der Technischen Universität Wien. Ohne deren Geduld, Interesse
und Hilfsbereitschaft wäre mein Studium nicht ebenso spannend und lehrreich gewesen.
Besonderer Dank gilt auch meiner Schwester, die mit mir gemeinsam viele Tage intensiver
Schreibarbeit durchgestanden hat.

vii

Acknowledgements

At this point I would like to thank all those who contributed to the success of this diploma
thesis with their professional and personal support.

In particular, I would like to thank Prof. Dorn, who supervised and reviewed my diploma
thesis. For the helpful suggestions and the constructive criticism with the production of
this work I would like to thank him cordially.

My special thanks go to my family, who made my studies possible and supported me all
the years during and even before my studies. My parents, stepparents, grandparents and
godfathers made it possible for me to graduate from university.

I would also like to thank my girlfriend, who supported me unconditionally during my
studies and also had to accept many hardships during this time. She has constantly
motivated me to write my thesis and also contributed to its success by proofreading it.

Finally, I would like to thank my friends and colleagues for wonderful years at the Vienna
University of Technology. Without their patience, interest and helpfulness my studies
would not have been as exciting and educative. Special thanks go to my sister, who has
spent many days of intensive writing with me.

ix

Kurzfassung

Diese Arbeit zeigt, dass die Verwendung eines temporalen Datenbankmanagementsystems
(DBMS) im Geschäftsprozessmanagement (GPM) von Vorteil sein kann. Im Vergleich zur
Verwendung eines herkömmlichen DBMS ist die Unterstützung von temporalen Datenab-
fragen ein großer Vorteil. Diese sind deutlich kürzer und in der Struktur einfacher als
herkömmliche Abfragen nach Periodendaten. Zusätzlich wurden Planungs- und Ausfüh-
rungszeiten der Datenbankabfragen ausgewertet. Teils konnte auch eine bessere Leistung
in der Verarbeitung von Abfragen in der temporalen Datenbank beobachtet werden.
In dieser Hinsicht konnte jedoch kein allgemeingültiger Leistungsvorsprung festgestellt
werden.

Um beide Datenbanken zu vergleichen, wurden dreizehn GPM-relevante Datenbankab-
fragen in Standard- und temporalem SQL implementiert, die dann in einer Standard-
und einer temporären PostgreSQL-Installation ausgeführt wurden. Zweitere ist eine
PostgreSQL-Erweiterung, die als Forschungsprototyp von Dignös, Böhlen, Gamper und
Jensen entwickelt wurde und in deren Arbeit Extending the Kernel of a Relational DBMS
with Comprehensive Support for Sequenced Temporal Queries näher beschrieben ist.

Um einen umfassenden Vergleich zu ermöglichen, wurden innerhalb einer Simulations-
anwendung unter Verwendung der Activiti Workflow Engine drei unterschiedlich große
Datensätze von Prozessausführungsdaten erzeugt und im Activiti Datenmodell gespei-
chert. Bis zu 4.000 Prozessiterationen eines beispielhaften Kreditgenehmigungsprozesses
wurden simuliert. Die generierten Daten wurden wiederholt unter Verwendung von
Standard- und temporalen SQL Statements in dem jeweiligen DBMS abgefragt.

xi

Abstract

This work shows that the use of a temporal Database Management System (DBMS)
can be advantageous in Business Process Management (BPM). Compared to the use
of a conventional DBMS, the support of a temporal query language and the respective
temporal query processing is a major advantage. It enables a less difficult retrieval of
process execution data. Additionally, query planning and execution times have been
evaluated. In some cases, also a better execution performance could be observed in the
temporal database. However, in this respect no general advantage could be identified.

To evaluate the execution performance of both DBMS, thirteen BPM-relevant query
statements have been implemented in standard and temporal SQL and executed in a
standard and a temporal PostgreSQL installation. Second is a PostgreSQL extension
developed as research prototype by Dignös, Böhlen, Gamper and Jensen and described
in their work Extending the Kernel of a Relational DBMS with Comprehensive Support
for Sequenced Temporal Queries.

In order to enable a comprehensive comparison of the query execution performance,
three differently sized sets of process execution data were generated within a simulation
application, utilizing the Activiti workflow engine and its underlying data model. Up
to 4,000 process iterations of a sample credit approval process have been simulated.
The generated data has been queried repeatedly utilizing standard and temporal SQL
statements being executed in the respective DBMS.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Aim of the work . 2
1.3 Structure and methodological approach 3

2 State-of-the-art 5
2.1 Relevance of process execution data in BPM 5
2.2 Process modelling with BPMN . 9
2.3 Activiti framework . 12
2.4 Managing temporal data in databases 16
2.5 Complexity metrics for SQL queries 19

3 Methodology 21
3.1 Benchmark approach and setup . 22
3.2 Benchmark architecture . 25
3.3 Requirements on supportive artifacts 27

4 Implementation 31
4.1 Application architecture and shared resources 31
4.2 Simulation application: Generating Activiti process execution data . . 35
4.3 Simulation app input: Business process definition (BPMN model) . . . 43
4.4 Benchmark application: Querying process execution data 48
4.5 Benchmark app input: BPM relevant database queries 55

5 Benchmark: Processing queries on workflow control data 65
5.1 Benchmark configuration and technical setup 65
5.2 Results and analysis . 67
5.3 Summary of benchmark results . 74

xv

6 Conclusion 75
6.1 Limits of work and results . 76
6.2 Future work . 76

A Query Code Listings 79
A.1 Query Q01 Count of open processes over time 80
A.2 Query Q02 Count of active processes over time 81
A.3 Query Q03 Non-active (idle) periods per process 83
A.4 Query Q04 Periods with no open processes 84
A.5 Query Q05 Count of assigned tasks to user over time 85
A.6 Query Q06 Count of claimed user tasks over time 86
A.7 Query Q07 Count of not-yet claimed tasks per user 87
A.8 Query Q08 Periods with no assigned tasks to user 88
A.9 Query Q09 Count of assigned tasks to department 89
A.10 Query Q13 Count of assigned tasks to service 90
A.11 Query S01 Distinct periods with claimed tasks per user 91
A.12 Query S02 - Special: Parallel processing of specific user tasks 92
A.13 Query S03 - Parallel processing of activities 93

B Results 95
B.1 Halstead metrics of queries . 96
B.2 Execution times querying data of simulation A 97
B.3 Execution times querying data of simulation B 98
B.4 Execution times querying data of simulation C 99
B.5 Planning times querying data of simulation A 100
B.6 Planning times querying data of simulation B 101
B.7 Planning times querying data of simulation C 102

List of Figures 103

List of Tables 105

Listings 107

List of Listings 107

Acronyms 109

Bibliography 111

CHAPTER 1
Introduction

1.1 Motivation and problem statement

Every organization has to manage a number of processes of different kinds such as order,
purchase, issue-resolution or other internal processes. A process contains activities, tasks,
events, decision points, a number of actors as well as physical or immaterial objects and
leads to one or several outcome(s). It might be rather simple or more complex.
The way of how a process is designed and executed affects the quality of service which is
perceived by customers, employees or other involved persons. Therefore, organizations do
have interest to set up their processes in the most effective way. A process analysis founds
the basis for process improvements (or redesign). “Typical example of improvement
objectives include reducing costs, reducing execution times and reducing error rates”
[DRMR13].

The possibility to analyze but also monitor and execute processes more efficiently moti-
vates organizations to digitalize their processes, or at least support process execution with
IT-systems. This happens e.g. in the financial services industry. Financial institutions
expect ongoing digitalization to result not only in lower costs but also in faster execution
times. On the one hand, there is a need to because of regulatory requirements on
reporting timeliness such as demanded by IASB financial reporting standards IFRS 9
[Int14]. On the other hand, also clients demand fast processing times of loan applications,
account openings or other services, as they are already used to in other (online) services.

A digitalized process management is supported by a business process or Workflow Man-
agement System (WfMS), which governs or automatizes the process flow, supports the
approval management and furthermore tracks and monitors process execution. Digital-
ization of processes and the availability of process metadata (e.g. information about
process executions) enables organizations to analyze and improve processes.

1

1. Introduction

However, conventional database systems, in which process metadata is usually stored, do
not adequately support the handling of time-related data. Combi and Pozzi discussed
architectures of temporal workflow management systems and claimed, that no WfMS
was built on top of a temporal Database Management System (DBMS) ”due to the
lack of a high-performance an reliable temporal database system“ [CP04], even though
they identified various aspects on how a WfMS can benefit from a temporal database
[CP03, CP09]. In their work From time to Temporal Information, Tang et al. recognized
the ”expression and inference of temporal knowledge and temporal algebra“ as well as
the application of research to fields of ”temporal workflow, temporal data mining, etc.“
as relevant research areas [TPLZ11].

In particular, querying data in conventional database systems with regard to time-
related aspects can be complex and associated with long run-times during execution, “in
particular for [data] aggregation” [JG18]. Temporal databases focus on temporal aspects
in data and promise easier querying and faster execution times. Therefore, they offer
various kinds of time oriented statements, specialized data types and a more applicable
data organization [Sno00].

To get better insights into the benefit of using such temporal databases, this work will
deal with the following research questions:

1. What are typical queries executed on process execution data during process analysis,
considering temporal aspects?

2. Can the use of temporal databases and temporal queries be beneficial for querying
time-related data in terms of time efficiency or simplicity in context of business
process management?

1.2 Aim of the work
To improve a process, the current process and thus its process execution data needs to be
analyzed. In a first step, this thesis will determine possible information needs which arise
during process analysis and their according database queries on process execution data.
The result will be a list of typical queries which are executed during business process
analysis.

Furthermore, the thesis will identify features of temporal databases which improve the
handling of workflow related data, being relevant for process management. Thus, extended
query features, but also data types and other characteristics of temporal databases will be
reflected in context of process management. Additionally, dimensions that could represent
such an improvement will be selected and respective metrics defined, e.g. dimension time
efficiency with metric execution time of queries.

2

1.3. Structure and methodological approach

The thesis will perform an evaluation of a temporal database in comparison to a con-
ventional databases in context of process management, considering previously defined
benchmark dimensions. Therefore, a sample process as well as sample queries on pro-
cess execution data will be defined. A prototype will be developed which generates
mock-up process execution data, performs sample query executions and captures metrics
of benchmark dimensions. The thesis will document and interpret captured metrics
to subsequently determine if and how temporal databases be beneficial for process
management.

1.3 Structure and methodological approach
In addition to the introductory chapter and the concluding chapter, the work is divided
into five chapters with the following contents:

1. State-of-the-art
Literature provides the theoretical background in the field of process and workflow
management, including approaches and metrics for quantitative process analysis
and notations for process modelling. Furthermore, literature will be reviewed
regarding features and capabilities of temporal databases. Additionally, already
existing approaches on how to compare different database technologies and measure
performance of query executions will be screened as basis for determination of
benchmark dimensions and metrics.

2. Methodology
A sample process will be designed using BPMN 2.0 in order to generate sample
process execution data.

3. Implementation of a simulation application: Creation of sample process
execution data
Sample process execution data of various process runs will be generated with the
help of a workflow engine. The created data should be representative for Business
Process Management (BPM) related data sets with focus on temporal data.

4. Implementation of benchmark application: Definition and execution of
queries on process execution data
Based on literature review, a variety of different queries on process execution data
will be defined. These queries should cover the whole range of different kinds of data
requirements for process analysis. A sample process will be designed using BPMN
2.0 in order to generate sample process execution data. The sample process should
also be used as scenario to show how process execution data can be used to find
process optimization potential. The process execution data will be stored using two
different database management systems: PostgreSQL as a conventional relational
database system and a research prototype by the University of Bozen-Bolzano as
temporal database system.

3

1. Introduction

5. Evaluation of query execution performance
For the benchmark defined queries will be executed on a conventional and a temporal
database system. The performance of these database systems in handling the query
requests will be evaluated in the defined dimensions with the defined metrics.

4

CHAPTER 2
State-of-the-art

This chapter provides an overview of related work. At first, a brief introduction into
BPM is followed by more detailed information regarding BPM phase process analysis.
Subsequently, data requirements on process execution data and its availability in WfMS
are outlined. Furthermore, a brief introduction into modelling in Business Process Model
and Notation (BPMN) is provided. On the more technological side, the WfMS tool
and its capabilities are described. Furthermore, temporal databases and possibilities
for querying temporal data in SQL are discussed. Lastly, metrics for determining the
complexity of Structured Query Language (SQL) statements are described.

2.1 Relevance of process execution data in BPM

2.1.1 A brief introduction into BPM

In the 90s, processes and process design moved into the focus of companies for the first
time. In the period before, management’s attention was primarily dedicated to the
functional organization of companies. As this led to inefficient and bureaucratic way
of work, the management’s attention moved from the distribution of responsibilities
and tasks along a hierarchical organization to the design of more efficient processes
[DRMR13].

As not only processes have been re-designed, but also organizations it-self became process-
oriented, BPM arose. “BPM provides concepts, methods, techniques and tools that cover
all aspects of managing a process - plan, organize, monitor, control - as well as its actual
execution” [DRMR13]. So BPM is not only about planning and organizing processes,
but also about managing a company process-centered.

Thereby, BPM can be seen as continuous cycle including the phases process identification,
process discovery, process analysis, process redesign, process implementation as well as

5

2. State-of-the-art

process monitoring and controlling as described by Dumas et al [DRMR13]. The process
as defined by Dumas et al. is visualized in figure 2.1.

In literature, “there are many views of the generic BPM life cycle” [KLWL09]. The
design and the concrete steps of the BPM cycle vary in nuances, but the principle idea
stays the same: Identified processes are documented in their current form in a first
step. Within process analysis, processes are evaluated qualitatively as well as based on
quantitative metrics. Observations are compared with target values, historical process
analysis and/or with similar processes in other environments (e.g. other but comparable
organizations). Based on the findings from the process analysis, the process is redesigned
and implemented. During execution, the process is then monitored and controlled in
order to draw further conclusions in a new process improvement iteration.

Figure 2.1: BPM life cycle according to [DRMR13]

2.1.2 BPM phase process analysis

BPM phase process analysis refers to the systematic analysis of processes in order to
gain an understanding of the process and to identify weak points and potential for
improvement. On the one hand, it includes a qualitative analysis of the process. On the
other hand, and this is why the phase is particularly relevant to this thesis, a quantitative
evaluation is done based on historic process execution data.

Not only the calculation of classical performance metrics, but also other process analysis
techniques, such as flow analysis, queuing theory and simulation rely on process execution
data. Furthermore process execution data is needed to perform process mining. Process
mining refers to the extraction of knowledge on event logs to discover, monitor and

6

2.1. Relevance of process execution data in BPM

improve processes [Vai13] which can also be performed on data from systems which do
not execute an explicit process model, e.g. ticketing or Enterprise Resource Planning
(ERP) systems.

In this thesis we will focus on classic performance measures of a process which are
quantified based on process execution data. This is done in order to determine how
well a process is performing with respect to its performance targets or reference Key
Performance Indicators (KPIs) from process execution data of similar processes. Typical
performance measures are e.g. processing time and waiting time but also quantifications
of the dimensions quality, cost and flexibility [DRMR13]. As this work examines poten-
tial advantages of using temporal databases in BPM, aspects of process analysis and
monitoring which involve a time dimension are specifically of interest.

The consideration of KPIs does not necessarily have to be static, in sense of aggregated
aggregated over the entire observation period. Changes or fluctuations over time are
often also relevant in process analysis.

2.1.3 Temporal data in WfMS

The development of BPM went hand in hand with technological progress. “Information
technology in general and information systems in particular deserve an important role in
business process management, because more and more activities that a company performs
are supported by information systems” [Wes12]. Different types of IT system emerged,
most notably Enterprise Resource Planning (ERP) systems and Workflow Management
Systems (WfMSs), which enabled a central data retention and easy control but also
monitoring of business processes [DRMR13]. Already in 1990, Davenport highlighted the
importance of IT for process-centered management and described a “recursive relationship
between IT capabilities and business process redesign” [DES89].

For WfMSs relevant process execution data1 is usually stored in DBMSs. Workflow
control data in particular, but also so called workflow relevant data, is “necessary for
the operation of the workflow and the realisation of routing“ [Jó06]. Whereas workflow
relevant data may be manipulated by workflow applications as well as by the WfMS,
workflow control data is exclusively ”managed by the WfMS and/or a workflow engine.
Such data is internal to the WfMS and is not normally accessible to applications“ [Wor99].

Different kinds of time-related process execution data have been identified and listed in
the following subsections. They might be used as input in process analysis or as basis for
the calculation of KPIs in Business Process Management.

1[Wor99] defines application data as one kind of BPM relevant data. Application data is only known
to evoked applications and not relevant for process control and therefore not in focus of the thesis.

7

2. State-of-the-art

Event data

Events within a process execution occur to a certain point in time. This timestamp is
captured.

Examples: Login to a system or delivery of goods.

Duration of processes or process steps

Usually, a WfMS keeps track of the duration of a process or activity execution. This
information can contribute to BPM in many ways. The duration of executions might be
analyzed along particular process characteristics such as values of input variables, the
actual process path or involved capacities. The duration might also correlate with or
even influence defined quality indicators and therefore provides information on potential
improvement approaches.

Furthermore, duration is used as basis to calculate various KPIs. The duration is
also needed to determine adherence to delivery dates or schedules. Additionally, the
identification of tasks with the highest / lowest share on total execution time helps to
identify process improvement strategies with the potentially highest impact.

Examples: Based on the duration, it might be discovered that whenever a certain
ressource is involved in a process, the duration is significantly shorter. The customer
satisfaction with the process execution might drop at a certain duration or the delivered
quality of service might be low when certain process steps are executed too fast (e.g. due
to a higher error rate).

Validity periods of data

Instead of deleting data, its period of validity is documented as ended. This helps to
analyse changes in data over time or to join the correct process-execution-independent
data to time-related execution data.

Examples: Process variables might change over time such as the status of a credit
approval decision. Another example are changes to the organizational structure of a
company, such as assigning employees to a department or taking over the management
of a department.

Execution periods

The count of active process executions or execution times of activities might vary over
time. The determination of an execution curve helps to recognize seasonal or time-of-
day-dependent variations.

Examples: The number of unattended customers of an ice cream shop varies over time.
In the afternoon, there is a long queue of customers in front of an ice cream shop. In
terms of BPM: A lot of processes are started and executed in the afternoon.

8

2.2. Process modelling with BPMN

Utilization periods

The utilization of a resource or service might vary over time. The determination of a
utilization curve helps to recognize seasonal or time-of-day-dependent variations. Knowing
demand for resources helps to make resources available at the right times.

Examples: Automatic batch processes of a financial institution run over night. Required
computing power needs to be available.

Idle periods of resources or processes

Idle times of resources or periods of times where no process is executed give insights into
possible savings potentials or the possibility to re-allocate resources.

Examples: Ice cream shop workers have little to do in the morning. The shop owner
might ask them to better work in the afternoon.

2.2 Process modelling with BPMN
In BPM process models are often used to document current but also target processes.
E.g. in phase process discovery, identified processes are documented in form of as-is
process models. In comparison to textual descriptions of processes, a graphical model
allows stakeholders to more easily comprehend a process and avoids misinterpretations
originating in the ambiguity of text [DRMR13].

Before 2002, only proprietary process execution language definitions existed, such as
IBM’s Web Service Flow Langauge (WSFL) and Microsoft’s XLANG specification. With
the final release of a standardized specification of WS-BPEL 2.0 by OASIS in 2007, a
first and quite successful industry wide standard to define execution models for business
processes was born. However, it was rather focused on the actual execution of processes
and lacking relevant features, such as human tasks or cyclic control flows, to be also used
in a more business related context [Rad12].
At similar time, the Business Process Management Initiative (BPMI) released BPMN
1.0 in 2004, ”which was widely used as a modeling notation for business processes. As
a process developer, you may have received a BPMN 1.x model for requirements or
documentation purpose from information or business analysts. But then, you had to
convert those models into an execution language, such as WS-BPEL“ [Rad12].

With the release of BPMN 2.0 in 2011 as the first standard for modeling and implementing
a business process execution model, there was no need to convert business-defined
process models into implementable execution models anymore. ”New features of BPMN
2.0 created a standardized bridge between the business process design and process
implementation.” [WB11]. Subsequently, it became one of the most well known graphical
notations for business process modelling [Wes12]. BPMN 2.0 has been defined by the
Object Management Group (OMG) [Obj11], which “is a well-known standardization
organization that develops and maintains the Unified Modeling Language (UML) standard,

9

2. State-of-the-art

for example“ [Rad12]. The implementation of BPMN 2.0 processes is supported by a
broad range of WfMS, such as Activiti.

BPMN 2.0 describes various constructs to graphically documented business processes
e.g. to describe parallel activities, the handling of events and exceptions, gateways
influencing the process flow as well as message flows and data objects. Since the standard
is very comprehensive and distinguishes a large number of graphic elements, these are
often grouped in secondary literature. E.g. Robert Shapiro from Workflow Management
Coalition (WfMC) classifies the BPMN 2.0 elements into four categories [Sha10]:

• Simple (8 elements) for high-level process modeling

• Descriptive (+17 elements) for more extended process modeling including data
input and -output as well as timer

• DoDAF (+29 elements) for detailed modeling containing a wide range of BPMN
2.0 elements

• Complete palette (+50 elements), offering numerous more specific modeling elements

As part of this work, we limit ourselves to the use of the notations categorised as simple
elements, extended by the differentiation of tasks to service and user tasks. All utilized
notations can be found in table 2.1.

10

2.2. Process modelling with BPMN

Symbol Name Description

Start event The start event is the trigger to start a new
process instance.

End event The end event causes the process execution
to terminate.

Sequence flow The sequence flow connects activities,
gateways and events and therefore represents
the orchestration of the process.

User task A user task is performed by a human with
help of a computer interface. It might be
assigned to a single user or a user group.

Service task A service task represents an automatic
activity, e.g. a web service call or a simple
script.

Exclusive
gateway

An exclusive gateway is used for conditional
logic. Only one of the outgoing sequences
will be followed, based on the condition.

Parallel
gateway

A parallel gateway is used to start
simultaneous execution of activities or to
indicate that all ingoing process flows need
to be ended before continuing the overall
process flow.

Sub Process A sub process is a compound process
containing various BPMN elements such as
activities or gateways and can be called from
a parent process.

Table 2.1: BPMN notations used in context of this work [Rad12]. Notation according to
BMPN 2.0 [Obj11], selection of simple elements according to [Sha10], design as available
in Activiti Modeler.

11

2. State-of-the-art

2.3 Activiti framework

Activiti is an open-source Workflow Management System (WfMS) to create and execute
BPMN 2.0 processes. It is mainly funded by company Alfresco but developed by a broad
community of developers. An overview of the framework is provided in figure 2.2, as
summarized by Tijs Rademakers in his book Activiti in Action [Rad12].

Figure 2.2: Overview of the Activiti tool stack [Rad12]

Design tools Activiti offers a web-based graphical modeler to create simple BPMN
2.0 processes and a more powerful, yet more technical, graphical designer as plugin for
the integrated development environment (IDE) Eclipse.

Process engine ”The core component of the Activiti framework is the process engine.
The process engine provides the core capabilities to execute BPMN 2.0 processes“ [Rad12].
It might be used as stand alone application, but may also be embedded in Java project.
The component Activiti REST offers a REST API to interact with the process engine
within a distributed system.

Supporting tool Additionally, a web-based supporting tool called Activiti explorer is
offered to start processes and tasks as well as to manage the Activiti process engine in a
web browser.

2.3.1 Business process modeling in Activiti modeler

With the Eclipse plugin Activiti modeler, BPMN 2.0 diagrams can be created from scratch
or imported from Activiti designer. The modeler offers a graphical interface to edit
BPMN 2.0 XML files and, in comparison to the Activiti designer, it offers functionality
to add technical details to process models. Thereby, a wide range of BPMN 2.0 XML
standard elements is supported.

12

2.3. Activiti framework

2.3.2 Business process execution in Activiti

Basically, the Activiti process engine is a state machine which executes BPMN elements
one by one. It can be easily facilitated in Java applications and therefore e.g. integrated in
Maven projects. The process engine uses the standard java.util.logging API. Therefore,
the Apache Log4J framework can be easily utilized to get better configuration options.

The Activiti API offers various functions to interact with the Activiti process engine.
The following core API interfaces are specifically relevant in context of this work and the
ones which are most frequently used [Rad12]:

• RepositoryService to deploy, query, delete and retrieve process definitions

• IdentityService to create users and user groups

• RuntimeService to start and query process instances and to retrieve and set
process variables

• TaskService to retrieve a list of open tasks of a specific user. Additionally, a task
can be claimed and completed by a user

• HistoryService to retrieve information about completed process instances

After the deployment and start of a process, the Activiti engine “executes the process
until a wait state is encountered. A user task is an example of such a wait state” [Rad12].
In this case, additional code needs to constantly query the TaskService to check for
queued user tasks. Those can then be handled e.g. by interaction with a user asking
him/her for input via the command line or a graphical user interface (GUI) or by using
Activiti’s task form within the Activiti Explorer.
Another task type which requires to be handled are service tasks. The execution of
programme code is delegated to another class specified in the model definition. This
might be a handler class implementing the interface JavaDelegate. The according service
task business logic needs to be implemented in method execute.
In case of script tasks, script code which is defined within the process definition is
executed. The integration of business rule tasks with the help of Drools, a business rules
management system, is still experimental.

2.3.3 Activiti database

The Activiti process stores process execution data in an Activiti database. Activiti can
interact with several database technologies, amongst others with the in-memory database
H2 and PostgreSQL. The names of all Activiti tables start with prefix ACT_, followed by
a two-character identification of the use case of the table [AS17]. Please find an overview
of table prefixes and their intended meaning in table 2.2.

13

2. State-of-the-art

Prefix Use Case Description
ACT_RE_ repository Static information such as process definitions and process re-

sources.
ACT_RU_ runtime Runtime data of process instances, user tasks, variables, jobs, etc.

Activiti only stores the runtime data during process instance
execution, and removes the records when a process instance
ends.

ACT_ID_ identity Identity information, such as users, groups, etc.
ACT_HI_ history Historic data, such as past process instances, variables, tasks,

etc.
ACT_GE_ general data Data which is used in various use cases.

Table 2.2: Table prefixes in Activiti database [AS17].

For process analysis, tables containing historic data are most relevant, as Activiti removes
all information from runtime tables after a process has been completed to keep their size
as small as possible. Please find some details on history tables in table 2.3.

Table name Description
ACT_HI_procinst For each process-flow, a process instance is created. The

table stores information such as processing start and end
time. If no end time is set, this means that the process has
not yet been completed.

ACT_HI_actinst Instances of activities (visited process nodes). If no end
time is set, this means that the activity has not yet been
completed.

ACT_HI_taskinst Instances of user tasks
ACT_HI_varinst Latest valid variable values of tasks (no change/update his-

tory is stored in this table)
ACT_HI_detail All updates on process variables; Only filled, if level of historic

information to keep has been set to full in activiti.cfg.xml.
ACT_HI_identitylink Links groups or users as candidates or assignees to tasks.

Table 2.3: History tables in Activiti database.

In addition, information about the organization structure is important for the definition
of BPMN processes and analysis of workflow control data. Within an Activiti BPMN
process definition, users or groups can be defined as potential candidates to complete
the task. During process execution, a user is then selected by the process engine and
assigned to the task. It is worth to notice that changes to the organizational structure
over time cannot be stored (and queried), as data about users, groups and the allocation
of users to groups is not historized in Activiti. Please find some details about all relevant
identity tables in table 2.4.

14

2.3. Activiti framework

Table name Description
ACT_ID_user Users and their master data including user id, first name and

last name.
ACT_ID_group User groups that, for example, represent organizational units.
ACT_ID_membership Allocation of users to one ore more than one group.

Table 2.4: Relevant ID tables in Activiti database.

2.3.4 Period data in Activiti

Activiti stores period data on three different levels of granularity, namely process, activity
and task level. A process execution period consists of several activity periods. If an
activity is a user task, then the task level forms the lowest in the hierarchy. A period
will never end until the lower level of the period has ended. All period start and period
end times are stored in column start_time_ and end_time_ on all three levels. On user
level, additionally a claim_time_ splits the task execution time in two parts: The period
part before the claim time represents the time from assignment of a task to a user to
the acceptance of the task. The period part from claim time to end time represents the
actual processing time of the task. Please see a visualization of the different period levels
in figure 2.3.

Figure 2.3: Periods in Activiti database, with activity a2 being a user task.

As processes, activities and tasks can be performed in parallel, different process, activity
or task periods do usually overlap. So, it is very unlikely that tables store disjoint period
data.

15

2. State-of-the-art

2.4 Managing temporal data in databases

2.4.1 Brief history on research and implementations

Temporal aspects in data are highly relevant for BPM as they are crucial for workflow
control data, but also for event logs of process executions. Even though there was a
growing need to handle temporal data already in the mid-90s when BPM arose, there
was only a weak support of temporal aspects as part of database standards for quite a
long time [Zan08].

Recently, however, the interest in temporal aspects of data management has increased
in science, but also among commercial providers. On the one hand, data organization
of temporal data, such as effective storage and index structures were in focus. On the
other hand, research and vendors focused on the development of a query language that
better meets the requirements for processing temporal data and on the correspondingly
optimized query processing. Böhlen et al. provide a comprehensive overview of the history
and current state of database technologies for processing temporal data [BDGJ18a].

In recent times, industrial databases have increasingly devoted themselves to the imple-
mentation of temporal aspects. “For instance, Teradata supports ’temporal modifiers’
where queries can be declared temporal. At implementation level they do query rewriting
and currently support temporal joins. SAP is also advancing in this field and is starting
to implement temporal aggregation and join. PostgreSQL for now supports range types
with predicates and functions that are very useful at single tuple level” [Mos16]. However,
commercially available software tools continue to still offer quite limited support for
temporal data management [BGJ06]. “Database systems largely remain designed for
processing the current state of some modeled reality.“ [BDGJ18a].

The implementation of temporal features in commercial databases was also triggered by
the release of SQL:2011 [ISO11]. Most DBMS vendors have begun to offer limited support
for the new standard. SQL:2011 is ”arguably the first SQL standard to introduce explicit
support for the storage and manipulation of temporal data“ [BDGJ18a]. It introduced
the standardization of temporal data types, temporal queries and support to store meta
data such as valid time, transaction time or decision time [KM12]. However, it still lacks
support of more advanced operations, such as various forms of temporal aggregations or
temporal joins [BDGJ18a].

The publication of SQL:2011 was preceded by a scientific discourse in which different
proposals for temporal query languages were discussed. Snodgras made a first compre-
hensive proposal with TSQL2 [Sno95]. Others followed, such as IXSQL, SQL/TP or
ATSQL [BDGJ18a]. Some temporal queries are still more easy to formulate in these
temporal query languages, than in standard SQL:2011 [DBGJ16].

16

2.4. Managing temporal data in databases

So, even though standards have been extended and some conventional ”SQL-based
DBMSs are capable of supporting the management of interval data, the support they
offer can be improved considerably“. Commercial DBMSs implementations focus “on the
representation of intervals and neglecting the implementation of the query evaluation
engine. [...] While the querying of temporal data is quite well understood, the key
remaining problem is how to achieve an industrial-strength and systematic DBMS
implementation of a comprehensive temporal query language” [DBGJ16].

2.4.2 Temporal extension of a DBMS at Free University of
Bozen-Bolzano

With the temporal alignment framework, Dignös, Böhlen, Gamper and Jensen from
the Free University of Bozen-Bolzano introduced the “first approach to achieve system-
atic and comprehensive support for so-called sequenced temporal queries in relational
database engines without limiting the use of queries with so-called nonsequenced se-
mantics” [BDGJ18a]. The term sequenced semantics refers to queries that go beyond
the consideration of data at a static point in time, i.e. queries that consider the data
and its development over time. With their research prototype, the Free University of
Bozen-Bolzano adapted the evaluation engine of a common DBMS, the proposed solution
was integrated into the kernel of a PostgreSQL. Their approach reduces temporal queries
to non-temporal queries over data with adjusted intervals. “It integrates, in a systematic
and wholesale manner, temporal support into an existing system without affecting the
system’s support for non-temporal queries” [DBGJ16].

The query processing described in the temporal alignment framework was implemented
as PostgreSQL extension. The reduction of temporal queries to non-temporal operators
is performed in four steps [BDGJ18b]:

1. Timestamp propagation: Period timestamps used as temporal arguments in
query statements are replicated, so that the original values can be used in subsequent
steps after intervals have been adjusted. Original timestamp values are used to
scale attribute values and to evaluate query predicates and functions that reference
the original timestamps.

2. Interval adjustment: Technically, “interval adjustment is achieved by introduc-
ing two new relational operators, a temporal normalizer and a temporal aligner,
into the database engine” [DBGJ16]. The normalizer splits relations so that periods
of temporal arguments do not overlap. Duplicates of input relations are created
and new sub-interval timestamps are assigned in a way that the sum of intervals
of the newly created tuples represent the whole period of the original relation.
The temporal aligner has been desigend for tuple-based operators and “adjusts an
argument tuple according to each individual tuple of a group”.

17

2. State-of-the-art

3. Attribute value scaling: Certain attributes of the newly created tuples need
to be scaled according to their new (shorter) intervals. “For example, attributes
that record total (cumulative) quantities over time, such as project budgets, total
sales or total costs, often must be scaled if the timestamp is adjusted” [DBG13],
if the relationship has been split into several shorter periods. The scaling of the
attributes can be done according to user-defined functions (e.g. uniform or trend
scaling).

4. Evaluation of non-temporal operator(s): The preparatory steps now make it
possible to process the temporal query as a non-temporal query. Therefore, the
temporal query has been transformed to a non-termporal query, utilizing standard
operators and the two new operators normalize and align. Subsequently, the
non-temporal operators can be evaluated utilizing the standard operators of the
DBMS.

Compared to other implementations, this implementation stands out for the following
unique advantages [DBGJ16]:

• All operators of a comprehensive sequenced temporal algebra are supported.

• Tight integration into existing non-temporal DBMS, leveraging existing query
optimization and indexing techniques. Instead of introducing new evaluation
algorithms for temporal operators, temporal queries are reduced to non-temporal
statements with minimally invasive changes to the DBMS.

• It supports snapshot reducibility, change preservation, extended snapshot reducibil-
ity and attribute value scaling - features being identified to be relevant for temporal
data processing by Böhlen and Jensen [BJ09]. “Snapshot reducibility ensures that
each snapshot in the result of a temporal operator is equal to the result of the
equivalent non-temporal operator evaluated on the corresponding snapshots of the
argument relations” [DBG12]. Change preservation ensures that a natural and
unique grouping of time points into intervals is not dissolved, even though it would
be possible semantically (e.g. merge of two directly successive periods with the
same values in other input parameters). Extended snapshot reducibility means that
references to interval timestamps can be used along with snapshot reducibility.

Core of the implementation of the reserach prototype are temporal primitives normalize
and align and the respective changes to the query engine. Additionally, an extension on
SQL:2011 is proposed, which advances the standard at operator level, so that temporal
queries can be rewritten into their non-temporal counterparts. Currently, the follow-
ing rewrites are supported in the implemented PostgreSQL extension: SELECT PERIOD

DISTINCT, GROUP BY PERIOD, temporal joins except anti-joins, and temporal set operations
UNION, EXCEPT and INTERSECT.

18

2.5. Complexity metrics for SQL queries

Known limitations of the SQL extension are that only binary join operations and distinct
non-ambiguous column names can be used for operator GROUP BY PERIOD. “The second
problem is that [the utilized] Common Table Expressions (CTEs) do not support selection
push-down, or similar performance enhancements, because they get parsed, optimized,
and executed as independent queries” [Mos16].

2.5 Complexity metrics for SQL queries
To retrieve process execution data from a database, respective query statements need
to be developed. This might be done during the implementation of a BPM analysis
software to offer users a comfortable analysis cockpit. Or, data might be queried directly
by an end-user within process analysis if he/she is capable to do so. Irrespective of who
is coding those queries: Complex statements lower the readability of query statements
(for the user or the software engineer) and increase the susceptibility to errors [BW10].
Therefore the complexity of queries is a key dimension of the benchmark.

Unfortunately, not all software complexity metrics are applicable to be used for SQL
statements. A database query is not a usual program code that implements sequential
program flows. Code complexity metrics that result from the analysis of a program flow
or are based on a detailed interpretation of the program code are not applicable for SQL
statements. An early, but well known, example of such non applicable metric is McCabe’s
cyclomatic complexity, a quantitative measure of the number of linearly independent
paths through a program’s source code [McC76].

When measuring the code complexity of SQL statements, the focus must be on the actual
program code (SQL code) itself. Facing a similar problem, Bowen et al. followed the
same approach, utilizing Halstead’s program length as complexity measure in their work.
They used one dimension of Halstead’s metrics for code complexity, the program length:
“The total number of operators and operands in each model query were used to measure
complexity. [...] To calculate the complexity value, each operand and operator was given
a count of 1. Pairs of symbols, e.g., “(),” were given a count of 1” [BFLR03].

Halstead bases several complexity metrics on program length, but also on program
vocabulary [Hal77]. The program length counts the total occurance of operators and
operands, as it was applied by Bowen et al. The program vocabulary counts distinct
occurrences of operators and operands. As Halstead bases his metrics on operators and
operands, they are less sensitive to the actual code layout as other metrics, such as
lines-of-code [Ver19].

An example for the computation of the program length N and vocabulary η for an SQL
query can be found in table 2.5. To make the example easier understandable, a distinction
is made between operators (subscript 1) and operands (subscript 2) in a first step to
then calculate the metrics for the whole query.

19

2. State-of-the-art

Query η1 η2 N1 N2
SELECT NAME, ACTINST.DURATION 3 3 3 3
FROM PROCINST, ACTINST 2 2 2 2
WHERE PROCINST.PROC_INST_ID = ACTINST.PROC_INST_ID 3 4 4 4
AND ACTINST.DURATION > (0.2 * PROCINST.DURATION); 6 5 7 5
Total, differentiated between operators (1) and operands (2): 11 8 16 14
Total query length N and vocabulary η: 19 30

Table 2.5: Example query complexity computation, based on [Hal77].

Other Halstead metrics, namely programe volume, difficulty and effort are calculated
based on the determined program length and program vocabulary. Halstead’s basic idea
is that an expression is “easier to understand if it is shorter or contains more redundancy
of operators and operands because the number of different concepts that a programer
must retain in memory at once will be smaller” [OW10].

Halstead’s volume describes the size of the implementation of an algorithm based on the
number of operations performed and operands handled in the algorithm:

Program volume V = N ∗ log2(η1 + η2)

The difficulty is postulated to be proportional to the number of distinct operators:

Program difficulty D = η1
2 ∗ N2

η2

The effort is a function of volume and difficulty and describes the effort to implement or
read a code:

Program effort E = V ∗D

20

CHAPTER 3
Methodology

This work will identify potential benefits of using a temporal database in Business Process
Management. It will focus on potential advantages of temporal databases when working
with already existing process execution data, with an emphasis on database operations
performed within process analysis and monitoring. This work will not examine potential
advantages of using temporal databases for write, update or delete operations during
workflow process execution.

Within a benchmark, the performance of a temporal database in query processing will
be compared to the performance of its non-temporal equivalent. The following major
steps have been carried out:

1. Definition of benchmark dimensions and identification of BPM relevant queries
which can be used as basis for the benchmark

2. Setup of a benchmark environment to execute queries and measure query processing
performance in a temporal and a non-temporal DBMS

3. Definition of a sample process (BPMN model), whose process execution data can
serve as data set to be queried during the benchmark

4. Generation of simulated process execution data for the defined BPMN model

21

3. Methodology

3.1 Benchmark approach and setup
In order to compare a temporal and a non-temporal database and their capabilities relevant
to BPM as well as their performance in querying workflow control data, appropriate
metrics for quantification must be defined. Furthermore, a suitable setup to gather data
in order to calculate these metrics need to be specified. Therefore, BPM relevant database
queries which are to be used during the benchmark need to be defined. Additionally,
since several measurement points are expected per metric and database technology, the
statistical handling of the collected data must be defined.

3.1.1 Definition of benchmark dimensions and metrics

For process analysis and monitoring, no data manipulation is expected on process execu-
tion data. Temporal databases must therefore simplify and/or improve the performance
of data retrieval in order to achieve added value in BPM. Consequently, the following
benchmark dimensions have been defined along database operations to retrieve data,
rather than manipulate data:

Complexity of query statements

To determine and compare the complexity of query statements, Halstead complexity
metrics will be calculated for the temporal and the non-temporal query statement.
Halstead metrics are based on the total number of operands and operators of a statement
(program length) and the distinct count of utilized operands and operators (program
vocabulary). An example for the computation of the program length and program
vocabulary for an SQL query can be found in table 2.5. Other metrics are calculated
based on these figures. Details on the different Halstead metrics can be found in chapter
2.5.

To identify operators, the implementation of the complexity calculation will be based
on operators and functions of a temporal PostgreSQL 9.6 installation. Therefore, a
list of operators has been created based on dictionary tables pg_proc, pg_operator and
pg_get_keywords (with category code Reserved).
Additional to the extracted operators from dictionary tables, 23 operators1 have been
added to the list based on the documentation of operators in the PostgreSQL user manual.
Furthermore, the following symbols have been added as operators, as they have been
missing so far: ’(’, ’[’, ’{’, ’)’, ’]’, ’}’,’*’, ’.’, ’;’, ’,’.

To calculate the complexity value, we follow the same approach as Bowen et al. and
give each operand and operator a count of 1. Pairs of symbols are seen as one operator
[BFLR03]. Implementation wise, only the opening token should be counted while closed
tokens should not be considered when counting operators.

1Added PostgreSQL operators based on the manual: xip_list, xmax, xmin, is not distinct from, is
distinct from, not in, exists, least, greatest, nullif, coalesce, case when, is document, xmlroot, xmlpi,
xmlforest, xmlelement, xmlconcat, at time zone, extract, similar to, trim, !=

22

3.1. Benchmark approach and setup

Execution performance of query

For the user it is relevant how long it takes from sending a query to getting results,
including processing time within the business logic of his/her administration tool, network
transmission costs and I/O conversion costs. Even though the complete processing time
is in focus of user experience, this work will only focus on the time to retrieve a result set
for a given query statement within the DBMS, as only differences in database technology
should be compared.

Usually, the execution time of queries can be split in two parts:

• Planning time (or start-up time) before the first row can be returned

• Execution time to return all the rows

The query planning time reflects the start-up costs before the first row can be returned.
Essentially, it is the time the query planner of a DBMS takes to determine the most
cost efficient way to retrieve data. Whenever a full set of data is required, the execution
time is of major interest. If only a first row needs to be fetched (e.g. queries containing
EXISTS operator), the planning time is the more relevant measure [Gro19], as the smallest
start-up costs instead of the smallest data retrieval costs are of relevance.

Most DBMS provide tools to measure these two performance metrics. E.g. in PostgreSQL,
command EXPLAIN ANALYZE can be used to retrieve this information. A sample output of
this command can be found in table 3.1.

EXPLAIN ANALYZE command

EXPLAIN ANALYZE

SELECT * FROM ACT_HI_PROCINST

JOIN ACT_HI_ACTINST ON ACT_HI_PROCINST.ID_=ACT_HI_ACTINST.PROC_INST_ID_

EXPLAIN ANALYZE query plan (output)

1 Hash Join (cost=4.22..8.49 rows=11 width=3654) (actual time=0.060..0.099 rows=36 loops=1)

Hash Cond: ((act_hi_actinst.proc_inst_id_)::text = (act_hi_procinst.id_)::text)

-> Seq Scan on act_hi_actinst (cost=0.00..4.11 rows=11 width=1320) (actual time=0.0...

-> Hash (cost=4.10..4.10 rows=10 width=2334) (actual time=0.032..0.032 rows=4 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 9kB

-> Seq Scan on act_hi_procinst (cost=0.00..4.10 rows=10 width=2334) (actual t...

2 Planning time: 0.351 ms

3 Execution time: 0.146 ms

Table 3.1: Example for an EXPLAIN ANALYZE command and its output

23

3. Methodology

3.1.2 Characteristics of benchmark queries

Usually, process execution data is analyzed in BPM phase process analysis as well as
during process monitoring and controlling as described by [DRMR13]. The queries used
to measure the differences of query execution performance will be formulated to meet
data requirements originating in these BPM phases.

The query statements should be selected so that all features of the temporal database
are covered in the benchmark. Also all relevant data requirements on work flow control
data within BPM phases process analysis and monitoring should be covered.

The query statement for the temporal database might differ from the one for the non-
temporal database, so that temporal features are utilized. However, the defined queries
should be similar in structure and approach as well as produce the same result set in
the temporal and the non-temporal database. If query statements can be formulated
differently, the one with the highest expected execution performance should be chosen.
Both queries, the one for the temporal and the one for the non-temporal database, should
be constructed as efficient as possible to achieve minimum execution times from a query
design point of view. Bad execution times should not result from bad query design, but
rather from the database’s capabilities in processing it.

3.1.3 Benchmark data evaluation and interpretation

Within the benchmark it is relevant to avoid capturing one-time effects when executing a
query. Therefore, queries should be executed more than one time and the average and/or
median execution and planning time should be considered.

To determine, if the average execution (or planning) times are significantly different in
the temporal and the non-temporal DBMS, a statistical test is going to be applied on
the captured data points per query. The two samples will have the same sample size
and will be unpaired according to the benchmark setup and are assumed to be normally
distributed. If the assumption is correct, a Welch’s t-test (t-test for samples with unequal
variances) should be applied. This test can be applied to samples with equal and unequal
variances without any substantial disadvantages compared to a Student’s t-test (t-test
for samples with equal variances) [KRM09, RKM11].

24

3.2. Benchmark architecture

3.2 Benchmark architecture

This chapter describes the technological basis on which the benchmark was carried out.
The choice of the DBMS and the underlying data model are discussed and requirements
for the data set of process execution data are defined.

3.2.1 DBMS technologies

With the extension of a PostgreSQL database by temporal aspects, the prototype of
the University of Bozen-Bolzano enables a direct comparison between the use of a
temporal and non-temporal database in BPM. As it is not an entirely new DBMS, but
a modification of an already existing DBMS [DBGJ16]. Therefore, the benchmark can
focus on the (potential) advantages utilizing the additional temporal functionality in
context of BPM.

Thus, two PostgreSQL databases of the same release, one with and one without temporal
extension, are used for benchmarking query processing, having the same system resources
assigned. To compare query execution on a temporal and non-temporal database, the
two databases need to be running under the same conditions, in regards to hardware
configuration and setup. In both databases, the same workflow execution data needs to
be available. To ensure that, the data of one database will be entirely copied to the other
database.

3.2.2 Data model for process execution data

In order to make the benchmark as accurate as possible, the data structure of the process
execution data and thus the data model of the database used should be as close as
possible to databases of “real-life” Workflow Management Systems (WfMSs). So it was
our first choice to actually build our prototype on the database of an already existing
conventional WfMS and not to design our own database or to use a database of a pure
process simulation tool.

Therefore we needed to identify a WfMS fulfilling the following requirements.

• The software is mature enough to be potentially used in business context. In best
case, a dedicated business suite is offered.

• A comprehensive Java Application Programming Interface (API) is offered, so that
the simulation application can easily utilize the process engine of the WfMS to
create simulation process execution data.

• A certain relevance in scientific publications has been achieved.

• It can be used under a cost-free license in scientific context, so that our work can
be reproduced easily by the scientific community.

25

3. Methodology

Activiti, as one of the leading open-source BPMN engines, fulfills these needs and does
also offer support for various database back-ends, such as PostgreSQL [AS17]. It can
be seen as continuation of another business process modelling framework called jBPM
[Rad12] and is backed by Alfresco, which does also offer an enterprise version of Activiti.
A third viable candidate would have been Camuda, an Activiti fork for which also
an enterprise version is offered. As Camuda’s significance in literature is rather small
compared to Activiti and as the data structures of both are anyhow quite similar, it was
decided to use Activiti’s database to store process execution data for the benchmark.
Other competitors which have been evaluated for our purpose were Intalio and Bonitasoft
[BB13]. But as they are more tool-based and not so developer-focused [Rad12], Activiti
seemed to be the better option for our purpose.

3.2.3 Execution data and process model characteristics

To measure differences in performance when executing database queries, an appropriate
set of process execution data has to be chosen or generated. The data set must be
dimensioned large enough so that possible differences in performance can be detected in
the two databases. Furthermore, it should be legally possible to publish the data set so
that the benchmark can be reproduced on the same basis.

The process execution data’s underlying business process needs to be documented in
form of a BPMN 2.0 model. To allow various BPM relevant queries, the process needs to
at least have the following characteristics:

• Possibility to have process iterations with different durations, correlating with
characteristics in input data, resource allocation or process paths

• Possibility to have process iterations following different paths

• Process steps performed by more than one resource with different capacities

• Potential idle time of resources

• Organization of resources in organization units

• Utilization of internal and external resources

• Parallel execution of activities and processes

Unfortunately, no existing Activiti data set was found that meets the requirements
defined at the beginning of this chapter. In addition, using an existing dataset would have
meant that we would have been limited to the corresponding business process definition.
Defining a sample business process specifically for the purpose of the benchmark allows
us to define it in such a way that a variety of BPM relevant analysis and a broad range
of different temporal queries can be applied to its subsequent process execution data.
Therefore we decided to use simulated process execution data. The definition of the
corresponding process will be documented in the form of a BPMN diagram.

26

3.3. Requirements on supportive artifacts

3.3 Requirements on supportive artifacts

Two technological artifacts have been implemented in order to perform the benchmark:
A benchmark application for the repeated execution of queries and for the calculation,
processing and storage of measurement data. And a simulation application to create
different sets of workflow control data which can be used as basis for the benchmark.

3.3.1 Requirements on benchmark application

A user should be able to conduct the benchmark in an easy and fast way. Therefore, a
Java application has been implemented, which copies data from an existing database
within a non-temporal PostgreSQL database into a temporal PostgreSQL installation to
then automatically execute queries in both databases and measure their performance.
This Java command line program had to implement the following requirements:

Repeated execution of queries When queries are executed only once, the execution
performance might be affected by one-time effects, such as short-term CPU load from other
processes, but also by the possible execution of database functions that are performed
during the initial execution of a query. To avoid these factors influencing the measurement
of query performance, each query statement should be executed several times on the
same DBMS. Hereby, the count of iterations should be parameterizable by the user.

Capturing of query execution performance measures The application executes
given query statements in two databases and captures performance measures of the query
execution. It documents planning and execution time and detailed execution cost analysis.
When measuring the query execution performance, database external factors influencing
the execution time (e.g. network latency) should be excluded. This is achieved via using
PostgreSQL’s command EXPLAIN ANALYZE.

Calculation of query complexity The benchmark application calculates the queries
complexity according to Halstead’s complexity measure. Hereby the program length and
vocabulary per query statement should be calculated. The special features of the new
temporary SQL dialect should be handled accordingly.

Dynamic load of queries Query statements whose performance is to be measured
shall be provided by the user in form of a comma-separated values (CSV) file. This file
should be dynamically read by the benchmark application for the application’s resources.

User configured database connections The connection properties to both databases
should be easily configurable by the user and provided via a properties file in the applica-
tion’s resources.

27

3. Methodology

Automatic copy of database data If both databases do not yet have the same data
available, the user might facilitate a benchmark application’s feature to remove all data
from one of the two databases and copy data from the other database.
Constraints defined in the default Activiti database are non-deferrable and therefore
checked immediately at every statement. To enable bulk data copies, all constraints
should be altered to deferred, so that they are checked not until the transaction is
committed.

Providing results as CSV files For each simulation run, two CSV files have to be
created to document results:

• aggregated results, capturing performance measures per query including cal-
culated average and median execution and planning times as well as Halstead
complexity measures.

• detailed results, capturing performance measures per query as well as entire
ProstreSQL’s query plan of each query execution.

Verbose output Information regarding the status of the benchmark execution should
be visible to the user, either via command line or a log file. The level of granularity of
information should be configurable as well as the output format.

3.3.2 Requirements on data simulation

To generate workflow control data of for a given business process definition, an application
to simulate Activiti process executions has been implemented. It takes a BPMN 2.0 model
as input and generates Activiti process execution data, utilizing Alfresco’s Activiti process
engine. This Java command line program had to implement the following requirements:

Random start and execution of processes The application should randomly start
and execute processes according to a given process definition. It generates process
execution data for one to several process iterations and stores it into a PostgreSQL
database.

Dynamic load of BPMN model The simulation application should be able to
perform simulation runs for any given business process definition. Therefore, it takes
a BPMN 2.0 model and a corresponding data simulation class as input. The BPMN
model should be defined as specified by the Object Management Group in its BPMN
2.0 standard [Obj11]. The data simulation class adds business logic for the simulation
data creation. It should be specified by the user so that it matches to the corresponding
business process and its user and service input requirements.

28

3.3. Requirements on supportive artifacts

Provision of CSV mockup data A mechanism shall be implemented which reads a
CSV file from the application’s resources and provides the data to the data simulation
class via an interface. This makes it possible to easily use mockup data in the data
simulation class.

Configuration of simulation parameters The count of to-be-started process itera-
tion as well as the overall time frame for the simulation should be parameterizable for
each simulation run. Furthermore, a minimum and a maximum execution time of one
process execution should be configurable.

Verbose output Information regarding the status of the process execution should be
visible to the user, either via command line or a log file. The level of granularity of
information should be configurable as well as the output format.
Additionally, the process execution history captured by the Activiti process engine should
be printed to the command line on user’s demand.

29

CHAPTER 4
Implementation

This chapter documents the implementation of the simulation and the benchmark
application and describes how they can be used. It does also describe the BPMN
2.0 model of the process for which process execution data is simulated. Additionally, the
queries which are used within the benchmark are defined.

4.1 Application architecture and shared resources

Although both applications, the simulation and the benchmark application, work in-
dependently, they share configuration files and some generic helper classes. This was
the reason to implement them within one Java Maven multi module project persistence-
OfWorkflowControlData. The Java project contains three modules, implemented as
sub-projects:

• Simulation Application (pwcdSimulation) - Executes a BPMN process utilizing
the Activiti process engine, simulating user- and service tasks

• Benchmark Application (pwcdBenchmark) - Compares the performance of query
executions in two Activiti databases. To do so, the content of database 1 is copied
to database 2 beforehand.

• Shared (pwcdShared) Shared classes, such as PostgreSQL and CSV file handlers,
but also shared resources, like SQL scripts and the log4j.properties file.

Figure 4.1 visualizes the application architecture schematically. This section describes
classes, resources and input files which are shared between both applications. The
following sections describe details of classes, resources and output files of the two
implemented applications.

31

4. Implementation

Figure 4.1: Schematic visualization of the application architecture

4.1.1 Technical setup and external libraries

The applications were developed according to Java 11 and tested with PostgreSQL
databases in version 9.6. The following external Java libraries are used:

• Activiti 6.0.0 Activiti BPMN engine

• Log4j 1.7.21 Apache Framework for logging

• PostgreSQL 42.2.5 PostgreSQL JDBC driver

• OpenCSV 4.6 Library to parse CSV files

• CommonsCLI 1.4 as API for parsing command line options

The applications use an Activiti database in version 6.0.0, which has been installed on a
standard PostgreSQL database installation and a temporal PostgreSQL installation, by
using the respective setup scripts provided by Alfresco [AS17].

32

4.1. Application architecture and shared resources

4.1.2 Shared classes

Similar to external libraries, a common project module named pwcdShared offers context
free, generically implemented classes with mostly static methods to both applications.
These classes are grouped in Java package com.ext and intended to be used by the
simulation and the benchmark application but maintained within the shared project
module at a single point of truth. Partly, they contain methods provided by external
third parties. The following classes are contained in the package:

com.ext.PostgreSQLHelper

Contains static helper methods for interacting with a PostgreSQL database. It provides
methods for initializing a DataSource and checking its functionality. It also provides
methods to read SQL scripts from a file in the application context to then execute them
in a PostgreSQL database. It provides methods to copy data from one database to
another database. And there is a method which compares two ResultSets to determine if
they are equal.

com.ext.CsvFileHelper

Contains static helper methods to read from and write to CSV files, utilizing the external
library OpenCSV.
The method to read CSV data returns an ArrayList whose elements represent rows of
the CSV file. Technically, a row is represented as HashMap with the CSV column header
name as key. Therefore, files to be written require to contain a header. The write method
requires a two dimensional String array, representing rows and columns of the CSV file.

4.1.3 Shared scripts

As both applications offer a database clean-up functionality, respective database scripts
are maintained in the shared project module in resource folder activiti_postgres_-

database. The following scripts are used to remove data from an Activiti 6 database,
to prepare the database structure for bulk data removals, but also to improve database
query capabilities by adding indexes to relevant columns.

alterConstraintsToDeferrable.sql

Alters all constraints in Activiti database to deferrable, so that they are checked not
until a transaction is committed. This enables e.g. bulk data copies.

addIndexes.sql

Alters tables ACT_HI_PROCINST, ACT_HI_ACTINST, ACT_HI_TASKINST to add indexes to columns
of data type timestamp.
Additionally, indexes are added to the following columns acting as foreign keys in the
benchmark setup: ACT_HI_TASKINST.assignee_ and ACT_HI_ACTINST.task_id_.

33

4. Implementation

removeAllData.sql

Removes data from all Activiti database tables. It does not consider the correct order to
avoid foreign key violations and therefore needs to be executed within one transaction
and deactivated constraint checks on statement level.

4.1.4 Shared configuration files

To avoid the same configurations being maintained in parallel in both applications,
configuration files of the two applications might be maintained centrally in context of
the shared module. By default, however, only the log4j.properties is maintained in the
resource folder of the maven module pwcdShared.

log4j.properties

Configuration file as to be interpreted by Apache’s logging service framework Log4j. The
two applications utilize logging levels DEBUG, INFO, WARN and ERROR. Among other log4j
properties, the output format can be configured. Default values as configured in the
default project setup are log level INFO with output on console. The ConversionPattern

has been slightly adapted to get a better readable output.

34

4.2. Simulation application: Generating Activiti process execution data

4.2 Simulation application: Generating Activiti process
execution data

Goal of the application is to simulate process executions of a given business process.
Therefore, the application takes a BPMN process model as input to then start a specified
number of process executions within a given time frame. If the process model contains
user or service tasks, the simulation application will automatically create data for input
requirements of these tasks instead of asking a user for input or calling external services
for data. Additionally, the application might also simulate task processing times, blocking
the execution of a process for a certain period of time. In case of user tasks, the respective
user will also not work on other tasks in parallel (as he/she is blocked as a resource).

To enable the simulation application to specifically create data for a defined business
process, a second file needs to be provided to the simulation application. This file defines
how the data of user and service tasks should be created. Therefore, a subclass of
SimulationDataGenerator needs to be developed, which implements two methods: One
method to define the generation of simulation data for user and service tasks of the
process. And another method which defines processing times of the tasks.

For the process execution, the BPMN engine Activiti is utilized. Generated process
execution data is stored in a corresponding Activiti PostgreSQL database. The runtime
of the application equals the time frame of process executions, which means, if simulated
process execution data of one week should be generated, the application needs to run for
one week.

This chapter documents the application and its capabilities. Chapter 4.3 describes how
the application has been used to generate data for the benchmark of a temporal database.
It can also be seen as example on how to use the simulation application.

4.2.1 Installation, prerequisites and configuration

The application is part of a Java Maven multi module project called persistenceOf-
WorkflowControlData and is dependent on another module called pwcdShared which
contains configuration files, script files and generic helper classes. Basically, the maven
project is configured in a way that commands like mvn clean verify and mvn compile

package work as to be expected.

To successfully compile the project, dependent libraries need to be available in java class
path. The libraries have been listed in chapter 4.1.1 (see also the respective pom.xml
of the root project and the simulation module). To successfully run the application, an
Activiti database in version 6 within a PostgreSQL database installation is required to
be running. Information on how to set up the database is available in the Activiti User
Guide [AS17].

35

4. Implementation

If a user wants to generate data for his/her own BPMN process, he/she needs to make
the following files available as resource in the application context:

• Process definition file (BPMN 2.0 XML)

• Implementation of Java class SimulationDataGenerator to generate simulated data

• Optionally, mock-up data (CSV file) to be used in the SimulationDataGenerator

implementation

Before running the application, the configuration file of the project needs to be adapted.
Among other things, the database credentials must be specified and references to the
user files must be set accordingly. All available configuration parameters which are
to be set for the simulation module can be found in tables 4.1. The settings in file
config.properties are assumed to be stable over time, containing general settings and
process related, stable configurations.

Property name Description
db.* Configuration of a database connection to an Activiti

database instance in PostgreSQL
process.file Path to the BPMN 2.0 model definition. The file

needs to be available in the application’s context
process.key Key of the BPMN model, as specified in the respective

XML tag id

process.simulationDataGeneratorClass Full qualified name of a class implementing class
SimulationDataGenerator to generate input data for
task fields

Table 4.1: Mandatory config.properties for simulation application

Table 4.2 lists optional parameters which can be provided by the simulation application’s
user. All optional properties are related to the process whose executions should be
simulated. The properties allow the use of extended functionality when implementing
the SimulationDataGenerator class. E.g., the minimum and maximum process execution
time can be retrieved or mock-up-data provided within a CSV file can be easily accessed.
If provided, the simulation application ensures the existence of a user / group hierarchy
in the Activiti database. However, please mind, if no users are specified, only a single
user is simulated who is not processing any tasks in parallel.

Additional details on how single parameters change the behaviour of the application can
be found in the subsequent sections describing the capabilities and functionality of the
simulation application in detail (e.g. section 4.2.3).

36

4.2. Simulation application: Generating Activiti process execution data

Property name Description
process.maxProcessExecutiontimeInSec Maximum run time of a single process execution in

seconds; The time frame to start processes will be
lowered by the maximum process run time.

process.minProcessExecutiontimeInSec Minimum process run time in seconds
process.userGroupMemberships List of users and their group membership(s) to as-

sign user tasks; Format of configuration property:
userA,groupOfUserA,userB,groupOfUserB,userC...

mockup.csvfile Path to a CSV file containing mockup data. The file
needs to be available in the application’s context

mockup.csvSeparator Separator used in the CSV file

Table 4.2: Optional config.properties for simulation application

In the default installation of the project, two sample processes including classes to generate
simulated data are already available to be able to run a simulation out-of-the-box, if the
database connection has already been configured correctly:

• BPMN process definition creditApproval.bpmn20.xml and the corresponding data
generator class com.pwcd.dat.CreditApprovalSimulationData

• BPMN process definition onboarding.bpmn20.xml and the corresponding data gen-
erator class com.pwcd.dat.OnboardingRequestSimulationData

4.2.2 Running the app and command line arguments

To run a simulation, the main method of class ProcessSimulation needs to be called. To
easily start the application, the generated jar is configured to be executable, having the
ProcessSimulation class set as manifest’s mainClass.
The command line arguments can be used to set additional execution-specific parameters
like the count of to be simulated processes or the time frame within the processes should
be started. All available command line arguments are documented in table 4.3.

In table 4.4 two example command line calls of the simulation application are listed. In
row one, an application call can be found, which is recommended after a new Activiti
database has been setup to initially adapt it to the simulation application’s needs. In
row two, a usual application call to simulate a simulation is shown.

37

4. Implementation

Argument Description
e Adjustments to the Activiti database after initial installation. The application

alters constraints to deferrable, to enable database resets.
r Reset of the Activiti database. All data of the database will be deleted without

any further warning.
g Generate process simulation data, executing i iterations of the process in s

seconds.
i <num> Option to specify count of process iterations (default 4)
s <num> Option to specify maximum time frame to start and end process executions in

seconds (default 30). The approach of working with a time frame specified via
command line arguments makes it easy to define this parameter at runtime,
without having the need to rewrite any code or process definition.

h To show Activiti history for simulated process runs

Table 4.3: Simulation application: Command line arguments

Description

1 Initial adaptations to Activiti database (to be executed once)
2 Removing all data from Activiti database
3 Generating data of 10 process iterations, starting within a timeframe of 30 sec.

Command

1 java -jar pwcdSimulation/target/

pwcdSimulation-<version>-jar-with-dependencies.jar -e

2 java -jar pwcdSimulation/target/

pwcdSimulation-<version>-jar-with-dependencies.jar -r

3 java -jar pwcdSimulation/target/

pwcdSimulation-<version>-jar-with-dependencies.jar -gh -i 10 -s 30

Table 4.4: Simulation application: Examples for command line calls

38

4.2. Simulation application: Generating Activiti process execution data

4.2.3 Documentation of classes and program flow

This section contains details on the implementation of the simulation application. The
classes specifically implemented for the simulation application are grouped in Java package
com.pwcd.sim. For user provided implementations of class SimulationDataGenerator it is
recommended to use package com.pwcd.dat.

com.pwcd.sim.ProcessSimulation

This is the process simulation application’s main class to configure, start and monitor
the creation of process execution data and its persistence in an Activiti database. The
class contains the main method which will be called by the user. The following major
steps are processed within the main method:

1. Reading configuration properties and command line arguments
Configurations set in config.properties as well as command line arguments are
parsed, checked and prepared to be used by other methods and classes.

2. Establishing a database connection
A connection to a PostgreSQL database is established according to configuration
properties with prefix stddb.

3. Setup of database
Depending on whether the corresponding command line argument has been set, a
setup script is executed on the database to change constraints to deferrable. The
executed commands are listed in files alterConstraintsToDeferrable.sql. This
enables the command to reset the database and remove all data without facing any
restrictions caused by constraints during a database transaction.

4. Reset of database
Depending on whether the corresponding command line argument has been set
existing data in the Activiti database is being removed from all tables. This is by
use of SQL script defined in file removeAllData.sql.

5. Setup of user-group hierarchy
If a user list has been defined in config.properties file, the application checks the
existence of each user, group and membership in the Activiti database. Missing
users, groups and/or memberships will be created.

6. Start of process executions
At first, process execution starts of all iterations are timed. Therefore, random
future timestamps are generated within a time frame from now until the maximum
simulation time reduced by the maximum execution time of one process iteration
(specified in the config.properties file).
Then, the process definition is deployed to the Activiti process repository and an
instance of Activiti’s process engine is built. Activiti is configured, so that the

39

4. Implementation

specified PostgreSQL database is used to capture process execution data.
Each process execution is started at the randomly defined start time. For each pro-
cess execution, an instance of a sub-class of SimulationDataGenerator is generated.
If a user list has been defined in config.properties, for each user an corresponding
thread to handle user tasks is started. Otherwise, one catch-all-user-tasks thread is
started.
After all iterations have been successfully completed, the Activiti process history
might be written to the logfile on log level INFO.

com.pwcd.sim.UserTaskHandler

For each user, one thread to handle user tasks is created by the main process. The
UserTaskHandler processes open user tasks of all process instances utilizing the process
engine’s taskService. The thread terminates after the process execution of all iterations
has ended.
To process the task, methods generateSimulatedTaskData and generateSimulatedTask-

TimeInMilliseconds of the SimulationDataGenerator implementations are called. Task
variables are set accordingly and, to simulate the task execution time, the user task
handler thread sleeps for the calculated simulation task time before the task is reported
to the engine as completed.

com.pwcd.sim.ServiceTaskHandler

The ServiceTaskHandler is intended to be called by the Activiti engine in case of service
tasks are to be processed. Therefore, the user needs to register this class in his/her
BPMN model accordingly. The service task needs to have task type “Java class” and the
ServiceTaskHandler needs to be set as class name.
Method execute of the implemented interface JavaDelegate processes the execution of one
task similar as it is done in the UserTaskHandler. The respective SimulationDataGenerator
instance is loaded via the Activiti’s process id to generate data and determine the sleep
time.
To also be able to handle asynchronous service tasks during process execution, async-
ExecutorActivate of Actviti’s ProcessEngineConfiguration is set to true.

com.pwcd.sim.SimulationDataGenerator

Child-classes of class SimulationDataGenerator are to be implemented specifically for one
BPMN model and contain the business logic for the generation of simulated data. These
classes are thought to be provided by the user which defined the BPMN model.

To create an instantiable sub-class, two methods need to be implemented. Both receive the
Activiti’s activity task id as parameter to identify the kind of the requested data. Method
generateSimulatedTaskData returns a map containing values for variables which need to
be set in the respective task. Method generate-Simulated-Task-Time-In-Milliseconds

returns the simulated execution duration to process the task.

40

4.2. Simulation application: Generating Activiti process execution data

The retrieved map containing simulated data will be added as task variables to the
process instance by the calling function. And, to simulate execution times, the thread of
the calling function will sleep for the simulated execution duration to process the task.

To implement a sub class of SimulationDataGenerator, the super class offers some sup-
portive methods which might be called by sub-classes:

• Getter for min/max process execution time The super class offers methods
to determine the user provided minimum and maximum execution time of a process
iteration. This is crucial, as the actual simulated execution time of single tasks
is determined in the user implemented SimulationDataGenerator subclass. The
compliance with the user configured min/max process execution times depends on
whether the implementation of SimulationDataGenerator takes them into account.

• Getter for random CSV mockup data Method to easily retrieve data from
mock-up data CSV files in the application’s resources.

The user’s implementation of SimulationDataGenerator might keep track of already
generated data within the process iteration to implement stateful simulation data creation.
When creating data for a task, already created data for previous tasks can be accessed
and interpreted. This might be of use, if the values creation in later tasks depends on
values in previous tasks.

From an application architecture point of view it is recommended to put all user created
sub-classes of SimulationDataGenerator into package com.pwcd.dat.

4.2.4 Documentation of resources

The following files are loaded from the simulation application’s resource context:

Process definition file (BPMN 2.0 XML)

The business process which should be executed within the simulation application needs
to be defined in form of a BPMN 2.0 model. A corresponding XML file is to be created.
It is recommended to use Activiti’s designer provided within the Activiti web server
application or within Activiti’s Eclipse plugin.

For all user tasks data is generated within the simulation application by calling the
respective method in the subclass of SimulationDataGenerator. If service tasks are
modeled and data should be generated / simulated within the simulation application, class
ServiceTaskHandler needs to be registered as handler. Please mind that it was decided
to not handle Activiti business rule tasks by the simulation application, as the integration
of the business-rule-management-system Drools in Activiti is still experimental[AS17].

It is recommended to store BPMN models in folder bpmn_models. This is not mandatory,
as the path to the BPMN model is configurable in file config.properties.

41

4. Implementation

Mock-up data in CSV file

Super class SimulationDataGenerator provides functionality to load random data from
CSV file columns. To utilize this feature, a corresponding CSV file needs to be provided
in the application context. The first row of the CSV file is required to be the header of
the data set.

Several internet platforms, such as Mockaroo [Moc19], provide quite decent sets of
mockup data in the requested format. Due to restrictions in the terms of use, no such file
could be provided out-of-the-box as part of the standard installation of the simulation
application.

It is recommended to store CSV mockup data in folder mockup_data. This is not
mandatory, as the path to the mockup data is configurable in file config.properties.

42

4.3. Simulation app input: Business process definition (BPMN model)

4.3 Simulation app input: Business process definition
(BPMN model)

The simulation application of project persistenceOfWorkflowControlData will be utilized
to create a data set which is used to perform the benchmark of the temporal DBMS.
To generate simulated process execution data with help of the simulation application, a
process definition and an implementation of class SimulationDataGenerator are needed.
Both types of resources are described in section 4.2.

In order to be able to conduct different queries during the benchmark, the selected BPMN
process must be correspondingly manifold. Rademakers and Weske [Rad12, Wes12] use
a loan /credit request model as examples in their books. As they are a good choice to
use different BPMN elements and show various functionalities, this work will use their
processes as basis to model another credit approval process. By doing so, a process
example was chosen which has the highest practical relevance, as the optimization of
lending processes is highly relevant in the financial services sector.

Please find details on the process definition, but also about the corresponding Simulation-

DataGenerator implementation in the following sections. The sources of both are contained
in project package persistenceOfWorkflowControlData and can be (re-)used out of the
box by setting the corresponding config.properties.

4.3.1 Process idea and model definition

Let’s assume, a financial services institution wants to improve their credit application and
approval process to be fit for the future. Therefore, they standardized their processes and
made them partly digital, dependent on the actual credit amount and the creditworthiness
of the applicant. The process was designed as shown in figure 4.2.

Figure 4.2: Defined sample business process in BPMN 2.0 notation (visualization in
Activiti editor)

43

4. Implementation

4.3.2 Process steps, input data fields and identity candidate groups

The following process steps have been defined:

Retrieve Credit Application Data (asynchronous service task)
A credit application might reach the financial institution via several channels, such as
mobile app, website, phone hotline or branch office. The credit approval process starts
with retrieving this information to start assessing the application. The following data
fields are being loaded:

• fullName Name of the applicant

• monthlyIncome Monthly income (according to application)

• requestedCreditAmount Requested loan amount

• requestedCreditEndDate Requested end date of the loan

Retrieve Account Statement (synchronous service task)
At first, his/her bank account will be read and analyzed to check whether the income
is equal to the specified one. The calculated income is stored in field monthlyIncome-

AccountStatement.

Retrieve External Client Rating (asynchronous service task)
In case of applications for loans with a nominal amount higher than 5000, an external
service will be utilized to check his/her creditworthiness. A rating is stored in field
externalClientRating.

Manual Risk Assessment (user task; group loanSpecialist)
Based on the data in the application form and in the rating of the external service, an
internal rating will be calculated and stored in field internalManualClientRating. If
additional collateralization is needed, a flag is set by the user(collateralCheckRequired).

Provide Collateralization Information (user task; group collateralSpecialist)
In case of additional collateralization is needed, a specialist is checking for collaterals
and captures their nominal value (collateralAmountNominal) and the actual collateral
value, which is the reduced nominal amount to represent resale costs, risk factors e.g. in
case of sureties (collateralAmountWeighted). The flag collateralCheckPerformed is set
to indicate that collateralization information has been provided.

Manual Credit Approval Decision (user task; group management)
Based on the internal rating a credit approval decision is taken by the head of department
for larger loans manualApprovalDecision.

44

4.3. Simulation app input: Business process definition (BPMN model)

Manual Information of Denial (user task; group loanSpecialist)
If a loan cannot be granted, an officer will get in contact with the applicant. This is done
in personal contact to lower the risk losing the client. A flag indicates, if this step has
been performed (manualInformationDone).

Payout of Loan (user task; group loanSpecialist)
In any case, the payout of the loan will be done manually. A flag indicates, if this step
has been performed payoutDone. Additionally the payoutAmount is captured;

Automatic Credit Approval Decision (asynchronous service task)
For smaller loans, an automatic credit decision is taken. Therefore, the share of the
loan amount in the monthly salary is calculated for this and stored in field internal-

AutomaticClientRating. Based on this, an automatic credit decision is taken and stored
in (automaticApprovalDecision). The credit will be approved if the amount of the credit
does not exceed twice the monthly income.

Automatic Information of Denial (asynchronous service task)
If a loan cannot be granted, an automatic message will be sent to the applicant for
smaller loans. The mail informs the client and offers to call a service line in case of any
questions. A flag indicates, if this step has been performed (automaticInformationDone).

4.3.3 Configuration of BPMN process related config.properties

The settings set in config.properties can be found in table 4.5. The BPMN file and the
corresponding SimulationDataGenerator class are specified. The user and their group
memberships as well as the minimum and maximum process execution time can be
adapted according to your own needs. However, the process definition would require at
least one user in groups management, loanSpecialist and collateralSpecialist.
As always, it is recommended to keep the min/max process execution times in relation
to the overall simulation time frame and the count of process iterations, which are to be
passed as command line arguments.

45

4. Implementation

Description

1 Path to the BPMN 2.0 process model XML
2 Process definition key as set in the BMPN XML
3 SimulationDataGenerator implementation to be called for data creation
4 Maximum time of a process execution in seconds
5 Minimum time of a process execution in seconds
6 Activiti users and their group memberships: Cecilia Chef and Bert Boss are in group

management, Kunibert Knowledge and Evelyn Expert are in group loanSpecialist and
Susanne Stuff is in group collateralSpecialist.

Properties

1 process.file=bpmn_models/creditApproval.bpmn20.xml

2 process.key=creditApproval

3 process.simulationDataGeneratorClass=com.pwcd.dat.CreditApprovalSimulationData

4 process.maxProcessExecutiontimeInSec=20

5 process.minProcessExecutiontimeInSec=10

6 process.userGroupMemberships = Cecilia Chef,management,Bert Boss,management,

Kunibert Knowledge,loanSpecialist,Evelyn Expert,loanSpecialist,

Susanne Stuff,collateralSpecialist

Table 4.5: Config.properties for credit approval process

4.3.4 Implementation of SimulationDataGenerator

To create simulated process execution data for the credit approval process, an implemta-
tion of class SimulationDataGenerator was developed. The class offers functionality to
simulate user and service task execution times and to create simulated input data for
these tasks.

Calculation of task execution times

Within the simulation application, a minimum and maximum process execution time
can be configured in the config.properties. The values are then available in class
SimulationDataGenerator. To make process simulation adaptive to the indicated process
execution times, no fixed task times or task time ranges are set. Random task execution
times between a minimum and a maximum task execution time are calculated based on
user input.

To not have (on average) the same execution times per task, time shares of tasks on
the overall process execution times are distributed irregularly. E.g. certain user tasks
will take longer than some service tasks. Therefore single task’s average time shares of
the overall process execution under consideration of the actual possible process path is
defined. The actual execution time is then calculated according to the logic as shown in
algorithm 4.1.

46

4.3. Simulation app input: Business process definition (BPMN model)

In a perfect world, the task share of all executed tasks within a process execution would
add up to 100%. However, this cannot be assured, as the complete journey of tasks
cannot be predicted beforehand (e.g. loops or skipping tasks according to decision criteria
in BPMN model).

Listing 4.1 Calculation of task time
1 taskExecutionTime =
2 ThreadLocalRandom.current().
3 nextInt(minProcessExecutionTime ∗ taskShare, minProcessExecutionTime ∗ taskShare);

Generation of task data

Input data for task execution will be created by generating random values. As some
input data is semantically dependent on others, such as a credit approval decision on the
corresponding risk rating, the generation of input data will be done under consideration
of values generated in previous steps. Therefore, the class will also keep track of already
generated values.

47

4. Implementation

4.4 Benchmark application: Querying process execution
data

The benchmark application compares the execution of SQL queries in two different
databases. Therefore, the performance of the query execution is measured and compared.
Additionally, measures for the complexity of the query statements are determined, as
the query statements for the two database technologies may differ despite semantic
equivalence.

The initial idea of this application was to compare the performance of a temporal database
to the performance of a standard installation of PostgreSQL. Therefore the two databases
will be called stddb and tempdb in the following chapter, even though any PostgreSQL
based database technology might be compared with help of the implemented benchmark
application.

The application takes a CSV file with queries as input and executes them in two databases.
Each statement is executed several times to avoid any incorrect measurement. The query
planning and execution times of each query execution are captured to then calculate
median and average values per query and database. All data manipulations are rolled
back after the query has been executed. Results might be exported as CVS file(s).

4.4.1 Installation, prerequisites and configuration

The application is part of a Java Maven multi module project called persistenceOf-
WorkflowControlData and is dependent on another module called pwcdShared which
contains configuration files, script files and generic helper classes. Basically, the maven
project is configured in a way that commands like mvn clean verify and mvn compile

package work as to be expected.

To successfully compile the project, dependent libraries need to be available in java class
path. The libraries have been listed in chapter 4.1.1 (see also the corresponding pom.xml
of the root project and the simulation module). To successfully run the application,
Activiti databases in version 6 are required to be running both databases.

In context of this work, the following two database technologies are being used:

• Standard PostgreSQL 9.6.9 installation

• Temporal PostgreSQL installation in version 9.6beta3 by university of Bozen-
Bolzano. Information on how to install a Temporal PostgreSQL can be found in
the installation package [Dig18].

As basis for the benchmark, a CSV file containing benchmark queries needs to be available
as resource in the application context. The file contains two queries per row, one for each
database technology. Both queries are thought to be semantically equal and subsequently
called query set.

48

4.4. Benchmark application: Querying process execution data

Before running the application, the configuration files of the project need to be adapted.
Among other things, the database credentials must be specified and references to the
user provided file containing benchmark queries must be set accordingly. Additionally,
the count of executions per query can be specified. The application does also offer the
option to compare the result sets of two queries within a query set to warn the user or
stop the benchmark if they are not equal.

All available configuration parameters which are specifically to be set for the benchmark
module can be found in table 4.6. Some more details on how single parameters change
the behaviour of the application can be found in the subsequent sections describing the
capabilities and functionality of the benchmark application in detail 4.4.3 and 4.4.4.

Property name Description
db1.* Configuration of a database connection to an Activiti

database, e.g. in a non temporal PostgreSQL DBMS
db2.* Configuration of a database connection to an Activiti

database, e.g. in a temporal PostgreSQL DBMS
benchmark.csvfile Path to a CSV file containing benchmark queries. The file

needs to be available in the application’s context
benchmark.csvSeparator Separator used in the CSV file
benchmark.queryRepetition Count of executions per query and database. Executing

a query only once leads to doubtful-leading performance
measures. Therefore, queries are executed more often and
average/median performance measures are calculated.

benchmark.outputfolder Path of output folder for result files within the application’s
context

benchmark.checkSameResultset Indicates if the application should check if two queries of
a query set return the same result set before starting the
benchmark; Options: IGNORE, WARN, STOP

Table 4.6: Mandatory config.properties for benchmark application

4.4.2 Running the app and command line arguments

To run the application, the main method of class DbBenchmark needs to be called. To
easily start the application, the generated jar is configured to be executable, having the
DbBenchmark class set as manifest’s mainClass.
While the settings in file config.properties are static, the command line arguments
can be used to set additional execution-specific parameters. All available command line
arguments are documented in table 4.7.

In table 4.8 two example command line calls of the benchmark application are listed.
In row one, an application call can be found, which is recommended after new Activiti
databases have been setup to initially adapt them to the benchmark application’s needs.
In row two, a usual application call to copy data from one to another database and then
benchmark the query processing is shown.

49

4. Implementation

Argument Description
e Adjustments to the Activiti databases after initial installation. The

application alters constraints to deferrable to enable database resets and
adds indexes to columns with type timestamp in tables ACT_HI_PROCINST,
ACT_HI_ACTINST and ACT_HI_TASKINST.

c Copies all data from default database to the temporal database. Therefore,
all existing data in temporal database will be removed.

v Performs PostgreSQL vacuum command, a garbage-collect feature, in
both databases.

b Running the benchmark determining query complexity and measuring
query execution performance in both databases for user specified SQL
queries.

f Writes aggregated results to CSV file; Option will be ignored if no
benchmark has been performed.

d Writes detailed results to CSV file; Option will be ignored if no benchmark
has been performed.

Table 4.7: Benchmark application: Command line arguments

Description

1 Initial adaptations to Activiti databases
2 Example for a usual application call to benchmark query processing

incl. copying data from the default to the temporal database
3 Example for a usual application call to benchmark query processing

without copying data beforehand

Command

1 java -jar pwcdBenchmark/target/

pwcdBenchmark-<version>-jar-with-dependencies.jar -e

2 java -jar pwcdBenchmark/target/

pwcdBenchmark-<version>-jar-with-dependencies.jar -cvbfd

3 java -jar pwcdBenchmark/target/

pwcdBenchmark-<version>-jar-with-dependencies.jar -bfd

Table 4.8: Benchmark application: Examples for command line calls

4.4.3 Documentation of classes and program flow

This section contains details on the implementation of the benchmark application. The
classes specifically implemented for the simulation application are grouped in Java package
com.pwcd.benchmark.

50

4.4. Benchmark application: Querying process execution data

com.pwcd.benchmark.DbBenchmark

This is the benchmark application’s main class to copy data from a conventional to a
temporal Activiti database and to start and monitor database query benchmarks. The
class contains the main method which is the entry point to the application and will be
called by the user. The following major steps are processed within the main method:

1. Reading configuration properties and command line arguments
Configurations set in config.properties as well as command line arguments are
parsed, checked and prepared to be used by other methods and classes.

2. Establishing database connections
A connection to a standard installation of a PostgreSQL database is established
according to configuration properties with prefix stddb. Another connection to
a temporal installation of a PostgreSQL database is established according to
configuration properties with prefix tempdb.

3. Optional: Setup of databases
Depending on whether the respective command line arguments have been set, two
setup scripts are executed on the databases to change constraints to deferrable

and to add indexes to columns with type timestamp in tables ACT_HI_PROCINST,
ACT_HI_ACTINST and ACT_HI_TASKINST. The executed commands are listed in files
alterConstraintsToDeferrable.sql and createIndexes.sql.

4. Optional: Copying data
To perform the query execution performance measurement on the same basis, the
benchmark application offers a feature to remove all data from the Activiti database
in the temporal PostgreSQL installation (usage of script in removeAllData.sql)
to then copy all data from the Activiti database in the standard PostgreSQL
installation.
This should be done after every change to the data stored in the standard Activiti
database, e.g. after a new simulation run has been performed.

5. Optional: Performing vacuum
Before the benchmark, PostgreSQL’s garbage-collect functionality VACUUM might be
called in both databases.

6. Performing benchmark
The query CSV file contains two SQL queries per row, one for each database. The
SQL queries of a row are semantically identical and should return the same result set.
These pairs of queries are called query sets. If the corresponding config.properties

entry is set, the application checks whether the two result sets are actually the
same and skips processing the row if not.
Each query statement is executed as often as indicated in the command line
arguments. PostgreSQL’s function EXPLAIN ANALZE is used to measure the planning

51

4. Implementation

and execution time. The measures of all executions are stored and per query a
median and an average planning and execution times are calculated. Additionally,
complexity measures according to Halstead are calculated for each query.

7. Optional: Export of result data files
Beside of a verbose output of the benchmark results to console or a log file,
performance indicators and the calculated query complexity measure might also be
exported to CSV files. A detailed file contains information on aggregated level, a
detailed CSV file contains data about every single query execution.

Java classes encapsulating data

The application uses three types of Plain Old Java Objects (POJOs) to process the
benchmark and store result data.

com.pwcd.benchmark.DbBenchmarkQuerySet It represents one row in the input
file providing queries for the benchmark. The encapsulated data follows the CSV data
structure. Therefore, each query set has an ID, a comment explaining the intended
meaning of the queries and a pair of SQL queries, one for each database technology. The
single queries are represented as object of DbBenchmarkQuery.
Additionally, the class offers functions to generate an array of strings, containing ag-
gregated performance measures for the set of queries, to be used as basis for a CSV
export.

com.pwcd.benchmark.DbBenchmarkQuery It represents a single query and en-
capsules an SQL statement as String. Additionally, it offers to set a query type. In the
benchmark application, the type is populated with column name in the corresponding
CSV file and is used to differentiate between stddb and tempdb queries.
Additionally, a list of execution performance measures can be stored, represented as
list of DbBenchmarkQueryExecutionResult instances. The class does also offer func-
tions to calculate average and median values of all execution performance measures
of this query. These aggregated measures are also represented in form of an object of
DbBenchmarkQueryExecutionResult.
The class does also offer functionality to calculate complexity measures for the query,
based on Halstead’s definition [Hal77].

com.pwcd.benchmark.DbBenchmarkQueryExecutionResult It stores query ex-
ecution measures and therefore encapsulates results of PostgreSQL’s command EXPLAIN

ANALYZE. The object encapsulates planning time and execution time as numerical values
(row 2 and 3) as well as the complete query plan as text (row 1).

52

4.4. Benchmark application: Querying process execution data

4.4.4 Documentation of resources

The following files are loaded from the benchmark application’s resource context:

Benchmark SQL queries (CSV file)

CSV file containing benchmark queries and at least the following headers described in table
4.9. The separator can be freely chosen, but needs to be configured in config.properties.
The queries of the query set are intended to be semantically equivalent and should therefore
return the same result when executed on the same data. Their syntax may differ due to
different query languages of the utilized DBMS.

Column Description
query_set_id Unique ID for the set of queries. The uniqueness is not checked and also

not mandatory for benchmark application but facilitates any subsequent
use of results.

query_stddb Query to be executed on the database configured as stddb.
query_tempdb Query to be executed on the database configured as tempdb.
comment Comment explaining the meaning or intention of the query set.

Table 4.9: Columns of SQL queries CSV file

SQL operators

Files postgresql_operator.csv and postgresql_operator_pure.csv contain operators of
the DBMS used in the benchmark. They are needed as basis to calculate Halstead’s
complexity measures. Both files contain operators sorted by operator length in descent
order. The second file contains operators which can also be used as separators between
two operands (or operators).

4.4.5 Documentation of result files

The benchmark application exports benchmark results to CSV files. All files are written
to a folder defined in the config.properties (default folder name is results).

Results aggregated (CSV file)

The file with aggregated result data is similar in structure to the SQL queries input file.
Actually, all columns of the input file are also exported with slightly changed order, but
enriched with in table 4.10 listed additional columns containing benchmark result data.

53

4. Implementation

Column Description
execution_average Average execution time of query
execution_median Median execution time of query
planning_average Average planning time of query
planning_median Median planning time of query
iterations_count Count of execution results
halstead_length Halstead complexity measure: program length
halstead_vocabulary Halstead complexity measure: program vocabulary
halstead_volume Halstead complexity measure: program volume
halstead_difficulty Halstead complexity measure: program difficulty
halstead_effort Halstead complexity measure: program effort

Table 4.10: Columns per database, exported to results_aggregated CSV file

Results detailed (CSV file)

In addition to the aggregated results file, the results can also be exported in a higher
granularity. Whereby the detailed results file is structured differently. Each row represents
one execution of one query in one database. For example, if a benchmark with 100
iterations is performed, 200 lines per line in the aggregated results file would be exported
to the detailed results file (100 query executions per query and database).
For details on the exported columns, see the table 4.11.

Column Description
query_set_id Unique ID for the query set, according to the benchmark query input file
comment Comment on the query set, according to the benchmark query input file
type Type of query, indicating the database in which it was executed
iteration_nr Counter for query executions per query and database
execution Total execution time of query
planning Planning time of query
query_plan Textual query_plan output from PostgreSQL’s EXPLAIN ANALSE command

Table 4.11: Columns in results_detailed CSV file

54

4.5. Benchmark app input: BPM relevant database queries

4.5 Benchmark app input: BPM relevant database
queries

To compare the time-related query capabilities and the query execution performance
of a non-temporal and a temporal PostgreSQL installation, not only workflow control
data needs to be available, but also sample queries that can be used to perform the
benchmark.

At first we will show which kind of queries on process execution data are of special
interest for the benchmark. In a second step, concrete queries will be defined for the in
chapter 4.3 defined credit approval process. The last section of this chapter discusses the
design of period data queries in the non-temporal database.

4.5.1 Benchmark relevant query types

As described in chapter 2.4.2, the temporal PostgreSQL database by the Free University
of Bozen-Bolzano offers extended functionality to handle queries for period data. This
functionality should be evaluated in comparison to a standard installation. When defining
the queries it should be ensured that all additional features of the temporal database
are utilized. All queries on the temporal database should utilize the preliminary SQL
extension which enables the user to simpler query period data in SQL. “It supports
temporal aggregation, distinct, inner and outer joins and set operations, by using manual
query rewriting to the two new operators” [Mos16]. The implemented temporal primitives,
namely NORMALIZE and ALIGN, will not be used in the benchmark, as they would add
unnecessary complexity to the temporal query statement.

At the current state of implementation, some limitations are known which need to be
considered when defining our benchmark queries. Currently, the temporal DBMS can
only process periods which are already closed, as “unbound ranges and NULL values are
not supported yet” [Mos16]. Therefore it is not possible to utilize the temporal SQL
features on data of ongoing process execution, e.g. to monitor process execution.
Furthermore the temporal DBMS requires input relations of set operations (UNION, EXCEPT,
INTERSECT) to be disjoint [Mos16]. Therefore the processing of DISTINCT PERIOD on non-
disjoint input relations is required before calling set operations, even if the pure set theory
driven perspective would not infer that.

4.5.2 Benchmark relevant BPM data requirements

In order to perform the benchmark in the context of Business Process Management,
queries should be relevant to the respective data requirements. In chapters 2.1.2 and 2.1.3
time related process execution data being relevant to Business Process Management and
its availability in WfMSs has been discussed. To reveal performance differences of query
processing, we will focus on queries where we expect an improved query processing in the
temporal database, which offers enhanced performance in querying for data “over time”

55

4. Implementation

or extracting a status within “at a certain period of time”. So, not time but specifically
period related data requirements are of interest for the benchmark.

To retrieve the duration of a process, activity or task execution from the Activiti database,
no feature of the temporal DBMS needs to be utilized. So, even though this kind of
data requriements have been identified as relevant to BPM, the respective queries are
not temporal in sense of reflecting developments “over time”. Queries for events and
durations are therefore not of interest for our benchmark as no differences are to be
expected in the performance of a non-temporal and a temporal database.

Whenever values within a certain period or developments over time are part of the data
requirement, the respective queries for process execution data are expected to benefit
from temporal database features. This is e.g. the case for periods discussed in the
following paragraphs.

Execution periods In Activiti, data about execution periods is available on process,
activity and task level. To determine e.g. the count of active processes or activity
executions over time, period data needs to be aggregated to process definition or activity
definition level. This aggregation over periods is supported by the temporal database.

Utilization periods To determine e.g. the count of tasks allocated to or processed
by a resource or service, the perspective needs to change from execution to resource
utilization. Period data has to be rearranged accordingly, which is supported by the
temporal database.

Idle times of resources or processes To identify idle times of resources, services or
periods in which no process execution is active, periods need to be identified for which
no execution data is available. The temporal database supports these kind of queries.

Validity periods of data Queries considering the validity of data would be of relevance.
However, Activiti does not keep track of the validity periods of historic values of variables
or ID information.

4.5.3 Dealing with period data in non-temporal SQL

The temporal database not only promises faster processing of temporal queries. It also
provides an extension to standard PostgreSQL to better formulate temporal queries.
While defining the temporal queries for the benchmark it became obvious that “natural
queries are very difficult to formulate in SQL, but are easy to formulate in these temporal
query languages” [DBGJ16].

Particularly it is challenging to identify the respective period start and end times in
order to adjust periods. It is necessary to identify a set of shortest possible periods,
covering the entire course of time being relevant to a certain fact. E.g. if the count
of active process executions should be determined, a new period needs to be defined

56

4.5. Benchmark app input: BPM relevant database queries

whenever a process starts or ends. Therefore, the set of all start and end times of the
complete dataset of interest defines the period borders. Listing 4.2 provides an example
for identifying all times of either starting or ending process executions. The statement
generates a dataset with one column, which contains the start time of the current period
which is equal to the end time of the previous period.

Listing 4.2 Identification of maximum set of period borders
1 SELECT start_time_ as border FROM ACT_HI_PROCINST

2 UNION SELECT end_time_ as border FROM ACT_HI_PROCINST

3 ORDER BY border;

To have both, start and end time of a period, available in one dataset row, a second
column needs to be joined as it is shown in listing 4.3. This complicates the query
significantly. At first, all period borders need to be identified (line 3+4), similar to as
it is shown in listing 4.2. The first column can be seen as start times of periods. To
add end times, the same data (line 7+8) must be added, but offset by one row (line
9). In PostgreSQL this can be achieved via joining the row number to the two datasets
representing start and end times (line 2+6).

Listing 4.3 Identification of periods
1 SELECT period_start.border AS p_start, period_end.border AS p_end FROM

2 (SELECT ROW_NUMBER() over (order by border) r, border FROM

3 (SELECT start_time_ as border from ACT_HI_PROCINST

4 UNION SELECT end_time_ as border FROM ACT_HI_PROCINST) AS period_borders) period_start

5 JOIN

6 (SELECT ROW_NUMBER() over (order by border) r, border FROM

7 (SELECT start_time_ as border from ACT_HI_PROCINST

8 UNION SELECT end_time_ as border FROM ACT_HI_PROCINST) AS period_borders) period_end

9 ON period_end.r=(period_start.r+1)
10 ORDER BY period_start.border;

In some cases, not all periods are relevant to all analysis / query dimensions. E.g. if the
count of tasks being assigned to a user over time needs to be determined, period borders
of tasks being not assigned to him/her are not of relevance, as they will not change the
count of assigned tasks for this user. To avoid too large intermediate result sets, this
must be taken into account. Only relevant periods should be identified, e.g. querying
periods per user in the case of the given example.

57

4. Implementation

4.5.4 Queries for defined BPMN process

Based on the identified types of benchmark relevant period related data requirements,
concrete queries for process execution data have been implemented for the in chapter
4.3 defined credit approval process. Queries are defined to be executed in an Activiti
database.

Each query is written in two forms: Once in standard SQL for a non temporal PostgreSQL
database installation, once in form of a query involving symbols of the preliminary SQL
extension utilizing features of the temporal PostgreSQL installation. Basically, the
temporal and standard SQL query should return the same data in the same structure to
make their query execution compareable.

For the benchmark, 13 queries have been selected so that all features of the temporal
database are utilized at least once. Furthermore, we aimed to query all period data
available in Activiti at least once and to extract data on all three available levels of detail:
process, activity and task. For queries at task level, we also differentiate between the
view by users and groups.
Variations of the same query (e.g. by applying additional filter criterias) were not
considered. Additionally, if two queries are identified to be almost equal in their extraction
logic and queried data fields, only one is used for the benchmark.

Table 4.12 lists all queries, their level of data granularity and the utilized temporal feature
in the temporal SQL statement. Queries with ID-prefix Q can be seen as basic type
queries, covering assignment, active and non-active periods per granularity level. Queries
with ID-prefix S are additional queries which are specifically added to the benchmark
set to utilize not yet covered temporal features of the temporal DBMS. References to
other queries in column EQ mean that those queries have been identified as almost equal.
These queries have been excluded from the benchmark, as two queries of the same kind
would not add value to the benchmark.

The following paragraphs describe intention, business meaning and expected results of
the queries. In addition, the idea and structure of the corresponding SQL queries are
described and specifics are highlighted. The actual source code of all queries can be
found in appendix A as well as in the digital appendix in format of a Benchmark SQL
queries CSV file which can be used as input for the benchmark application.

58

4.5. Benchmark app input: BPM relevant database queries

Level Query ID Temp. feature EQ
Process Count of open processes over time (o.t.) Q01 GROUP BY PERIOD

(PROCINST) Count of active processes o.t. Q02 GROUP BY PERIOD

Idle periods of processes Q03 EXCEPT PERIOD

Periods with no open processes Q04 EXCEPT PERIOD

User Count of assigned tasks o.t. Q05 GROUP BY PERIOD

(TASKINST) Count of claimed tasks o.t. Q06 GROUP BY PERIOD

Count of not-yet claimed tasks o.t. Q07 GROUP BY PERIOD

Periods with no assigned tasks Q08 EXCEPT PERIOD

Distinct periods with claimed tasks S01 DISTINCT PERIOD

Parallel processing of specific user tasks S02 INTERSECT PERIOD

Department Count of assigned tasks o.t. Q09 GROUP BY PERIOD

(TASKINST) Count of claimed tasks o.t. Q10 GROUP BY PERIOD Q06
Count of not-yet claimed tasks o.t. Q11 GROUP BY PERIOD Q07
Periods with no assigned tasks Q12 EXCEPT PERIOD Q08

Service Count of assigned tasks o.t. Q13 GROUP BY PERIOD

(ACTINST) Periods with no assigned tasks Q14 EXCEPT PERIOD Q08
Parallel processing of activities o.t. S03 PERIOD JOIN

Table 4.12: Overview: Benchmark queries and their targeted level of granularity in
workflow execution data as well as their utilized temporal SQL feature.

Q01 Count of open processes over time

At any given time, how many processes have been startet but not yet ended? This helps
to identify seasonal fluctuations in count of credit applications. Discovering a higher
demand at certain times within a day, week or year helps to ensure the availability of
resources.

The data should show time periods and the respective count of active processes. Whenever
the total count of active processes has changed (e.g. an additional process has been
started or a process has been completed) a new row should be created in the result set.
Period borders are start and end times of processes (stored in table ACT_HI_PROCINST).
All processes whose start time is equal or earlier and whose end time is equal or later
than a period’s start and end time are counted.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.1
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.3

Appendix listing A.2 illustrates how the standard SQL query would look like if it was
sufficient to have period start times available only (with the respective period end time
shown in the next result set row as start time of the subsequent period). This option of
a simplified SQL statement has been discussed in chapter 4.5.3. However, it will not be
used during the benchmark to base the comparison on same conditions for both database
types.

59

4. Implementation

Q02 Count of active processes over time

At any given time, how many processes exist on which users are currently working or
services operating on? In comparison to Q01, this shows processes which utilize internal
or external resources.

The data should show distinct count of processes over time, which have either active
tasks claimed by a user (period from claim_time_ to end_time_ in table ACT_HI_TASKINST)
or ongoing activities (period from start_time_ to end_time_ in table ACT_HI_ACTINST,
excluding activities with a duration of 0). Activities which are not tasks can be identified
as having a task_id_ of NULL.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.4
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.5

The for the benchmark chosen standard SQL statmeent avoids a costly GROUP BY for the
DISTINCT process count via starting the SELECT statement on process level. A similar
approach can not be used for the temporal statement, as a GROUP BY cannot be avoided as
it is needed to determine the set of periods. To further improve the execution performance
of the non temporal statement, a CTE has been used for the periods.

Appendix listing A.6 shows a standard SQL statement following the same approach as
the temporal statement. As the execution performance was as bad as the execution
performance of the temporal statement, a different approach was chosen.

Q03 Idle periods of processes over time

At any given time, processes are not handled by a user or a service. In these periods, no
progress is to be expected in the processing of the credit application. These periods are
caused by waiting times from the assignment of a task to an employee until the actual
start of working on that task. They are also caused by the time which the WfMS needs
to assign tasks or to call external services.

Both queries use the total process execution periods as basis, from which active user task
periods and active service periods are deducted. In the temporal statement, temporal
SQL symbol EXCEPT PERIOD simplifies the query a lot. The standard SQL statement
determines at first the set of shortest periods to then join active process times. If no
active process time could be joined (proc_inst_id_ is NULL in the interim result data set),
the process is idle.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.7
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.8

Q04 Periods with no open processes

In which periods does not a single credit approval process run? This helps to identify
seasonal fluctuations in count of credit applications. Discovering periods with no demand

60

4.5. Benchmark app input: BPM relevant database queries

at certain times within a day, week or year helps to reallocate the availability of resources
to periods with a higher demand.

The approach querying for the desired data is similar to Q03. Whereas the temporal
query can utilize EXCEPT PERIOD, the standard SQL statement starts from the set of
shortest periods to check if there is at least one active process running at each period.
If this is not the case (ACT_HI_PROCINST.id_ is NULL in the interim result data set), the
period is identified as having no active process running.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.9
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.10

Q05 Count of assigned tasks to user over time

At any given time, how many tasks are assigned to an employee? This is of interest, as
data about the development of task assignments over time enables the recognition of
high and low utilization periods of a resource.

The query identifies a set of shortest periods of task assignments per user. Period borders
are start and end times of task assignments (stored in table ACT_HI_TASKINST). For each
period, all task assignments per user (with start and end times within the period) are
counted.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.11
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.12

Q6 Count of claimed user tasks over time

At any given time, on how many tasks is an employee working on. The claim of a user
task indicates that an employee is working on that task, or at least startet to do so. To
get knowledge about the actual utilization, not the number of assigned tasks, but the
number of already accepted (claimed) tasks is of relevance.

The query identifies a set of shortest periods of task claims per user. Period borders
are claim and end times of task assignments (stored in table ACT_HI_TASKINST). For each
period, all claimed tasks per user (with claim and end times within the period) are
counted. In case of users are not working in parallel on several tasks, the count of
accepted tasks can be seen as indicator if or if not he/she is working on a task.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.13
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.14

Q7 Count of not-yet claimed tasks per user

At any given time, how many tasks are assigned to an employee which he/she did not
yet claim and is therefore not working on (e.g. because he/she is working on other tasks,
making a break or is on vacation). Such periods should be avoided, as no progress is to
be expected in the processing of the credit application.

61

4. Implementation

Period borders are start times of task assignments and claim times of tasks (stored in
table ACT_HI_TASKINST). For each period, all not yet claimed tasks of employees (task
with start and claim times within the period) are counted.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.15
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.16

Q08 Periods with no assigned tasks to user

In which period of times does an employee not have any tasks assigned? This helps to
identify gaps in the utilization of resources and thus to recognize savings potential.

The query identifies a set of shortest periods of task assignments per employee. Period
borders are start and end times of task assignments (stored in table ACT_HI_TASKINST).
For each period, all task assignments per employee (with start and end times within the
period) are counted.
In standard SQL, the count result needs to again be joined to the periods to determine
rows with no assignments. Additionally, periods from the very start of process executions
to the first task assignment and from the last task assignment to the end of the last
process also taken into account as non-utilization period.
The temporal SQL statement can utilize the functionality of symbol EXCEPT to simply
deduct task assignment times from the total process execution time distance.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.17
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.18

Q09 Count of assigned tasks to department

At any given time, how many tasks are assigned to a department? This might help to
recognize savings potential or identify the need to enlarge the workforce of a department.

The query is similar to Q05, but groups periods not by employee but by department.
Therefore, a join to tables ACT_ID_USER and ACT_ID_MEMBERSHIP which store the organiza-
tional structure is necessary before grouping the periods and counting task assignments.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.19
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.20

Q10 / Q11 / Q12 Further queries for periods on department level

Queries Q10, Q11 and Q12 are to query period data on department level and have been
identified as being almost equal to Q06, Q07 and Q08 querying for periods on user level.
The only difference is the level of grouping. Q09 shows how this can be achieved. Since
these queries are not to be expected to add any additional value to the benchmark, they
have not been implemented.

62

4.5. Benchmark app input: BPM relevant database queries

Q13 Count of assigned tasks to service over time

At any given time, how many activities are operated by an internal or external service?
Therefore data about the development of service utilization over time enables the recog-
nition of high and low utilization periods. This is e.g. of interest if the count of parallel
service utilization should be avoided to e.g. reduce the count of licences to use an external
service, such as to externally check the creditworthiness of an applicant.

The query identifies a set of shortest periods of activity assignments to services. Period
borders are start and end times of activities of type serviceTask stored in table ACT_HI_-

ACTINST). For each period, all service calls per activity name (with start and end times
within the period) are counted.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.21
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.22

Q14 Period count per service

At any given time, how many user tasks are executed within the same department in
parallel? This might help to recognize savings potential (if such periods are rather rare).

The query was identified as almost equal to Q06, except the joins to the department,
which is shown in Q09.

S01 Distinct periods with claimed tasks per user

In which periods does a user work on at least one task? Similar to Q06, the data provide
information on employee utilization.

This additional query was added to the benchmark set to show the usage of temporal
operator DISTINCT PERIOD. The standard SQL follows the same design as the non-temporal
SQL statement of Q06, but has no count of assigned tasks.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.23
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.24

S02 Parallel processing of specific user tasks

How often is a particular task processed in parallel with another specific task? This helps
e.g. to identify if there is a possibility to pool resources (human resources, rooms, etc.).
In the benchmark we query how often ’manualRiskAssessment’ is executed in parallel to
’manualCreditApprovalDecision’. Currently, the two consecutive tasks are handled by two
different departments. It is assumed that both could be handled by the same department
in order to reduce the number of handovers. However, the number and duration of the
parallel execution periods of these tasks must be as low as possible in order to avoid
additional idle times in the second process resulting from the reorganization.

63

4. Implementation

This additional query was added to the benchmark set to show the usage of temporal
operator INTERSECT PERIOD. The standard SQL determins the set of shortest periods for
task executions of tasks with a task_def_key_ of ’manualRiskAssessment’ or ’manual-
CreditApprovalDecision’ to then join twice to the task table (once for each task) to check
whether there are executions of both tasks in parallel.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.25
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.26

S03 Parallel processing of activities

In which periods of time are services operated in parallel within a process execution? If
there are no dependencies, service calls can be executed in parallel which saves time and
speeds up the process execution. The query shows how often this possibility was seized.

This additional query was added to the benchmark set to show the usage of temporal
operator PERIOD JOIN. Additionally it shows that not always a period-centric query
approach is of advantage. The standard SQL statement does not determine the number
of periods to reduce it in a second step, but uses a classic join with corresponding criteria.

Query in standard SQL for the conventional PostgreSQL database: appendix listing A.27
Query in temporal SQL for the temporal PostgreSQL database: appendix listing A.28

64

CHAPTER 5
Benchmark: Evaluation of

temporal database handling
queries on workflow control data

The following chapter describes how the actual benchmark was performed to compare
the capabilities and performance of executing periodic queries in a temporal and a non-
temporal DBMS. First, the overall benchmark setup and the data sets generated by the
simulation application are described. These data sets were queried using the benchmark
application. In the second part of this chapter benchmark results are presented and
commented.

5.1 Benchmark configuration and technical setup

For the benchmark, we use a ThinkPad T410s in the following configuration:

• Operating system: Ubuntu 18.04 64 bit

• CPU: Intel Core i5 CPU, 2.67GHz

• Memory: Total size of 3.65 GB

On the notebook, two PostgreSQL 9.6.9 DBMSs have been installed. One as out-of-the-
box installation (hereinafter referred to as standard database) and one with temporal
extensions by university of Bozen-Bolzano (hereinafter referred to as temporal database).
Both run in parallel on two different listening ports.

65

5. Benchmark: Processing queries on workflow control data

The DBMSs have been configured equally. All parameters of the PostgreSQL servers are
kept to default values, besides the following four values in the postgres.conf which have
been set to best meet the hardware configuration of the notebook:

• Postgres effective_cache_size = 2.00 GB

• Postgres shared_buffers = 512 MB

• Postgres work_mem = 8 MB

The data which is used to benchmark the query executions is kept in instances of the
Activiti 6.0.0 default database which includes indexes on some columns. To not bias our
benchmark by patchy configured indexes, we added additional indexes to ACT_HI table
columns of data type timestamp and to columns which act as foreign keys. Additionally,
constraints have been configured to be deferrable, which should not affect the processing
of SELECT statements. Apart from that, no changes have been made to the databases.

The queries are executed on three different datasets originating in 250, 1,000 and 4,000
simulated process iterations. The period timestamps are recorded at the granularity of
milliseconds and have durations up to 4 minutes. Beginning and end of a period are
stored in two different columns of data type timestamp (data type tsrange is not used in
Activiti database). Table 5.1 lists detailed information on the benchmark data sets and
the size of benchmark relevant tables.

simulation A simulation B simulation C
Process iterations 250 1,000 4,000
Rows in ACT_HI_PROCINST 250 1,000 4,000
Rows in ACT_HI_ACTINST 3029 11,999 48,308
Rows in ACT_HI_TASKINST 934 3,659 14,852
Rows in ACT_ID_USER 5 5 5
Rows in ACT_ID_GROUP 3 3 3
Rows in ACT_ID_MEMBERSHIP 5 5 5

Count query executions 200 100 50

Table 5.1: Figures of databases used in benchmark

To avoid potential influences on the benchmark resulting from inadequate data organiza-
tion, a clean-up is performed beforehand. Therefore PostgreSQL’s command VACUUM was
executed prior to every benchmark. “VACUUM reclaims storage occupied by dead tuples.
[..] Therefore it’s necessary to do VACUUM periodically, especially on frequently-updated
tables” [Gro19].

66

5.2. Results and analysis

To avoid any benchmark external temporary system utilization to affect our benchmark,
each query has been executed several times over a longer period of time. Due to shorter
expected query execution times on lower volume of data in database of simulation A,
queries have been executed more often than e.g. in database of simulation C.

5.2 Results and analysis
The following sections describe and comment on the results of the standard to temporal
DBMS comparison. Results are mainly presented in diagrams. Blue bars visualize values
that refer to the standard PostgreSQL installation, while blue is used for temporal
database-related metrics. Detailed figures can be found in appendix B.

5.2.1 Query complexity

At the beginning of the benchmark we compare the query statements themselves. Figure
5.1 shows differences in Halstead metrics of all benchmark queries. The actual values can
be found in appendix table B.1. Details on the definition of Halstead metrics in chapter
2.5.

The formulation of statements in standard SQL that query periodic data requires the
use of significantly more operators and operands in the total number, but also as
distinct symbols, compared to statements in preliminary proposed temporal SQL. This is
visualized in figure 5.1a as programme length and vocabulary according to Halstead.
Both influence Halstead’s volume, which describes the size of the implementation and
Halstead’s difficulty, a metric to describe error proneness (both shown in 5.1b). The
effort to implement or understand a program is proportional to the volume and to the
difficulty level of the program and defined as Halstead effort (see figures on logarithmic
scale in diagram 5.1c).

In summary, the temporal database allows a much easier retrieval of period related data.
The database queries are significantly shorter and less complex and therefore simpler
to formulate. If technically experienced end users are to query process execution data
directly in the database, the use of a temporal database is worth considering. But also in
the development, extension or customization of BPM software, the possibility of simplified
querying of period data can be beneficial to the implementation.

67

5. Benchmark: Processing queries on workflow control data

(a) Halstead program length and vocabulary

(b) Halstead program volume and difficulty

(c) Halstead program effort

Figure 5.1: Benchmark result: Halstead metrics

68

5.2. Results and analysis

5.2.2 Query planning performance

Since all defined benchmark queries can also occur as sub queries which only need the
first row to be fetched (e.g. usage of EXISTS operator), we also take a look at the planning
times of the queries.

Figure 5.2 visualizes planning times of queries being executed in a standard and a
temporal database. Queries with non-significant differences in the average planning times
when executed in a temporal and a non-temporal database are marked with ’*’. Detailed
figures can be found in appendix B. In the majority of the query benchmarks, the less
complex temporal statements also lead to shorter planning times. In two cases, the
standard query statement outperformed the temporal statement independent from the
size of the queried data set:

Disjoint periods In some queries we had to perform DISTINCT PERIOD before applying
set operations such as EXCEPT PERIOD or INTERSECT PERIOD. This is due to a known
limitation of the temporal database, which requires input relations of set operations
(UNION, EXCEPT, INTERSECT) to be disjoint [Mos16]. The additional step does not only
increase the query execution time but also the planning time.
The planning time of the temporary database develops negatively with increasing size of
the queried database compared to the planning time in the non-temporary database. As
Q04 is in both dialects rather short, the use of DISTINCT PERIOD did cause the temporal
statement to underperform compared to the standard SQL query independent from the
size of the queried database. In the case of S02 the planning time becomes siginificantly
shorter in the non-temporal database when querying the data set of simulation C.

As Q04 is in both dialects rather short, the use of DISTINCT PERIOD did cause the temporal
statement to underperform compared to the standard SQL query independent from the
size of the queried database. Also in the case of S02, the planning time of the temporary
database develops negatively with increasing size of the queried database compared to
the planning time in the non-temporary database and becomes siginificantly better in
the non-temporal database when querying the data set of simulation C.

Non period centric alternatives In S03, a different, non-period focused and con-
siderably simpler query structure has been chosen in standard SQL, which lead to a
significantly lower planning time.

In most of the cases, lower query complexity of temporal statements is also reflected
in lower planning times. In one of the two significant cases where this could not be
observed we faced a known limitation in the temporal database (and open topic for
implementation). In the second case, we followed a complete different query approach
in the standard query, which could anyhow also be used having a temporal database in
place.

69

5. Benchmark: Processing queries on workflow control data

(a) Simulation A - 250 process iterations

(b) Simulation B - 1,000 process iterations

(c) Simulation C - 4,000 process iterations

Figure 5.2: Benchmark results: Average and median query planning times of query
processings on different sized databases.

70

5.2. Results and analysis

5.2.3 Query execution performance

Diagrams in figure 5.4 show differences in the performance of query executions in a
standard and temporal PostgreSQL database. Queries having no significant differences in
the average execution times in both databases are marked with ’*’. Figure 5.3 compares
the average execution times of queries in the temporal database relative to the execution
times in the standard database on all three simulation data sets.

Compared to the benchmark results for complexity and planning times of queries, the
results regarding the query execution times have no general tendency for the temporal or
standard database to perform better. Even though almost all query execution metrics
show a significant difference between the performance of the two databases, there is no
principle advantage or overall trend. In 7 out of 13 queries, the standard DBMS was able
to retrieve data significantly faster from all three different sized databases. However, the
other results differ from query to query and depend on the data volume of the queried
database. The following paragraphs try to isolate and name indicators and reasons which
cause differences the performance of both DBMSs to the disadvantage of the temporal
database:

Limited query fine tuning The temporal DBMS offers dedicated features for querying
period data. However, independent from the utilized DBMS technology, it is always
important to adapt and fine tune a query based on the expected volume of data and
query planner results. In that respect, the abstraction of determining the set of relevant,
disjoint periods in temporal SQL can be a hindrance as early delimitation and filtering
of data cannot be done.
As an example we would like to take a closer look at the outlier Q02: When processing
Q02 the planner chooses a costly Merge Join in the temporal database. This would have
been also the case in the standard database when using the alternative statement A.6,
as we did in our first attempt. Rewriting the statement to A.4 avoids an INNER JOIN

and reduces the execution time dramatically. A similar approach was not possible when
utilizing temporal SQL for period related parts of the temporal statement, as it always
comes to a GROUP BY to determine the set of smallest disjoint periods.

Periods in CTEs The temporal DBMS makes unexceptional use of CTEs for generated
periods. ”CTEs do not support selection push-down, or similar performance enhancements,
because they get parsed, optimized, and executed as independent queries“ [Mos16]. CTEs
are not generally detrimental, as in some cases they also speed up query processing.
Querying period data in standard SQL allows this decision to be made individually from
query to query.

Disjoint periods The temporal DBMS requires input relations of set operations
(UNION, EXCEPT, INTERSECT) to be disjoint [Mos16] and therefore requires the processing
of DISTINCT PERIOD on non-disjoint input relations beforehand. This is not of relevance
if input relations are disjoint by design (e.g. periods of responsibility for departments

71

5. Benchmark: Processing queries on workflow control data

in organizations). However, in BPM related data set, overlapping periods are rather
common. An example of the need to use INTERSECT is query S02.

Non period-centric alternatives In some cases, data requirements for periods can
also be satisfied by querying data in a conventional, non period-centric way. Instead
of determining all possible periods to reduce them by a criteria or intersect them with
other periods as it is done in period-centric statements, a classical approach of querying
data might be more applicable and more performant. This was e.g. the case in query
S03. It shows, that a blind utilization of temporal features is not always the best way, as
period-centric queries do not necessarily advance other approaches.

Figure 5.3: Development average execution times

72

5.2. Results and analysis

(a) Simulation A - 250 process iterations

(b) Simulation B - 1,000 process iterations

(c) Simulation C - 4,000 process iterations

Figure 5.4: Benchmark results: Average and median query execution times of query
processings on different sized databases.

73

5. Benchmark: Processing queries on workflow control data

5.3 Summary of benchmark results
The performance of a standard and a temporal DBMS in processing queries for periodic
data in context of BPM has been evaluated. Therefore, queries have been formulated
to serve BPM relevant data requirements as comprehensively as possible. However, the
selection of queries used in the benchmark is not exhaustive. More complex special
queries were dispensed with, as they would anyway only represent a specialisation of the
basic queries. Therefore, the benchmark result in terms of the number of outperforming
queries cannot be regarded as a quantitative measure to judge if one of the two DBMS
technologies works better.

The benchmark could show that the use of the temporal extension of PostgreSQL DBMS
offers support to write considerably simpler query statements. This is beneficial for the
development of BPM tools but also for ad-hoc queries on workflow control data. Simpler
statements also lead to lower planning times during query executions, for most of the
benchmarked queries.

Limited possibilities to fine tune temporal queries due to the abstraction of period
generation as well as known issues and limitations of the research prototype (documented
in [Mos16]) are reasons causing the temporal DBMS to not outperform the DBMS in
execution times. E.g. as periods in workflow control data are rarely disjoint, conditions on
input relations for set operators are of high relevance for the application of the temporal
DBMS in context of BPM.

The benchmark did not only compare the standard and temporal DBMS capabilities, but
also the query design itself. Thereby, a consistently weaker query design at the burden of
one of the DBMSs would have biased the result. Therefore, the goal was to write the
statements equally, except the use of temporal symbols for period related operations
in the temporal DBMS and advanced possibilities to fine tune period generation in the
standard DBMS. Two queries are an exception of this principle: S02 and S03 show that
it can be beneficial to also consider a non-period centric querying approach.

As all standard SQL statements could have also been processed in the temporal DBMS,
the usage of temporal PostgreSQL is advantageous in the sense that it can be decided
individually during the query design if to utilize temporal or standard SQL.

74

CHAPTER 6
Conclusion

This work evaluates potential benefits of using a temporal database in context of BPM.
Therefore, typical time-realted queries executed on process execution data during process
analysis have been identified. These queries have been executed on a temporal and
a non-temporal database to compare query execution performance of both DBMSs.
Furthermore, the complexity to develop these query statements in standard and temporal
SQL has been measured and compared.

As supportive artifacts, a simulation and a benchmark application have been implemented.
The simulation application generates workflow execution data for any user specified
business process. It reads a given BPMN 2.0 model and simulates a given number of
process iterations which are started within a given time frame and executed in an Activiti
6.0 process engine.
The benchmark application repeatedly executes user provided query statements on a
PostgreSQL database and reads the server-side execution and planning times by parsing
the result of PostgreSQL command EXPLAIN ANALZE. Furthermore, query complexity
metrics according to Halstead are calculated for all provided queries.

For the benchmark, thirteen query statements have been written in standard and temporal
SQL. The queries in temporal SQL were significantly less complex compared to the ones
in standard SQL. The proposed SQL extension built on top of the two new temporal
operators ALIGN and NORMALIZE makes shorter and simpler query statements possible.
Subsequently, the statements have been executed in a standard and temporal PostgreSQL
installation on differently sized data sets. The query planning and execution performance
did not clearly indicate that the temporal database is outperforming the standard
database. Potential reasons are known limitations in the current implementation of the
temporal DBMS as well as limited support of query optimizations for CTEs, which are
commonly used during temporal query processing.

75

6. Conclusion

In addition, data models from databases that store workflow execution data make it
difficult for the temporal database to leverage its strengths. Tables, storing process
execution data, usually have a hierarchical relationship to each other in terms of the
period times to be expected. E.g. process execution periods will always start before
related activities are started and will never end before all related activities have been
executed. In this data setup, period joins are rarely of use. Furthermore, periods within
one table are often overlapping as processes or tasks are often executed in parallel.
Therefore, periods often have to be disjoint before further processing in the temporal
query logic is possible.

Nevertheless, the much simpler query design makes the use of temporal DBMS worth
considering. Especially if a large number of queries are to be developed or if they are
developed ad-hoc by the (experienced) end user himself / herself. Also for developers
who set up and customize WfMS for many, often smaller end customers, the simpler
development of queries in a temporal database can offer a significant advantage.

6.1 Limits of work and results
This work only considers advantages or disadvantages of using a temporal database
when querying historic workflow control data during process analysis. As the current
implementation of the temporal database does not support open intervals, the query
performance was not considered when monitoring currently running processes. It must
also be considered that not only the performance in querying data but also the performant
manipulation of data can be relevant in context of BPM. This dimension has also not
been considered in this work.

The results of the benchmark does not necessarily indicate a difference in performance in
real world production use-cases, as a single query is executed several times on the same
data. The execution might profit from caching effects in this benchmark environment much
more than a production environment. The benchmark has been performed on a local work
station which might also affect the applicability of the result. WfMSs usually run on more
performant server environments. Furthermore, the performance of query executions is
dependent on results of PostgreSQL’s query planning and the chosen execution algorithms,
which takes system and database configurations into account. The overall execution
performance is therefore dependend on the chosen database configurations, which may
have influenced the results.

6.2 Future work
Goal of the first prototype of the temporal database was a tight integration into an already
existing DBMS. “The implementation focuses on achieving a cost effective (i.e., minimal
changes to the host DBMS) and tightly integrated solution that leverages the services of
an existing DBMS“ [DBGJ16]. The authors name the topic of performance improvements
of single components as a subsequent topic of research. But not only non-functional, also

76

6.2. Future work

functional improvements can be expected in the further development of the prototype.
An update of the benchmark might be of interest after further improvements have been
made, such as fixing known limitations resulting from the not yet final state of the
implementation or being related to the selected (already outdated) PostgreSQL version.

A new version of Activiti was released during this work was written. The new version offers,
among other new features, the integration of external personnel management systems or
directory services. These systems usually also keep track of changes in personnel and
responsibilities - they store historic developments over time. This data adds value to
explain workflow control related data. In previous Activiti versions, company hierarchies
were stored statically. Only the personell structure at the time of query execution could
be used, without taking any (historic) changes over time into account.

For Dignös et al, it was of “interest to apply the proposed temporal DBMS in various
application contexts”[DBGJ16]. This work did the first step to contextualize their
research work. An application of the database in other contexts is still relevant.

In order to extend the range of potential benefits of the temporal database, the research
prototype could be extended by further temporal features. The introduction of temporal
indexes might speed up query processing [LYSY11]. Combi and Pozzi discussed on
how the support for temporal data at trigger level can be beneficial for WfMS [CP04].
Furthermore, “commercial workflow systems are usually rather limited in their ability
to specify temporal conditions for each individual activity or for the global plan and do
not provide temporal reasoning” [BWJ02], which might be a promissing area of further
development. Additionally, not only temporal queries, but also temporal updates might
be supported, to e.g. enable addition or substraction of x per month, aligned to the
according interval lenghts.

77

APPENDIX A
Query Code Listings

This appendix chapter lists queries which have been used during the benchmark. See
more information about the queries in chapter 4.5.4. Each query is once written in
standard SQL and once in temporal SQL.

79

A. Query Code Listings

A.1 Query Q01 Count of open processes over time

Listing A.1 Query Q01 Count of open processes o.t. - standard db
1 SELECT periods.p_start, periods.p_end, COUNT(∗) FROM ACT_HI_PROCINST

2 LEFT OUTER JOIN

3 (SELECT period_start.border AS p_start, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

5 (SELECT start_time_ AS border FROM ACT_HI_PROCINST

6 UNION SELECT end_time_ AS border FROM ACT_HI_PROCINST) period_borders) period_start

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

9 (SELECT start_time_ AS border FROM ACT_HI_PROCINST

10 UNION SELECT end_time_ AS border FROM ACT_HI_PROCINST) period_borders) period_end

11 ON period_end.r=(period_start.r+1)) periods

12 ON ACT_HI_PROCINST.start_time_ <= periods.p_start AND ACT_HI_PROCINST.end_time_ >= periods.p_end
13 GROUP BY periods.p_start, periods.p_end
14 ORDER BY periods.p_start;

Listing A.2 Query Q01 Count of open processes o.t. - standard db (alternative)
1 SELECT period_borders.border, COUNT(∗) FROM ACT_HI_PROCINST

2 LEFT OUTER JOIN

3 (SELECT start_time_ as border FROM ACT_HI_PROCINST

4 UNION SELECT end_time_ as border FROM ACT_HI_PROCINST) period_borders

5 ON ACT_HI_PROCINST.start_time_ <= period_borders.border
6 AND ACT_HI_PROCINST.end_time_ > period_borders.border
7 GROUP BY period_borders.border
8 ORDER BY period_borders.border;

Listing A.3 Query Q01 Count of open processes o.t. - temporal db
1 SELECT start_time_, end_time_, COUNT(∗)
2 FROM ACT_HI_PROCINST

3 GROUP BY PERIOD WITH(start_time_, end_time_)
4 ORDER BY start_time_;

80

A.2. Query Q02 Count of active processes over time

A.2 Query Q02 Count of active processes over time

Listing A.4 Query Q02 Count of active processes o.t. - standard db
1 WITH periods AS

2 (SELECT period_start.border AS p_start, period_end.border AS p_end FROM

3 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

4 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

5 UNION (SELECT start_time_ AS border FROM ACT_HI_ACTINST

6 WHERE duration_ > 0 AND task_id_ IS NULL)
7 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

8 UNION (SELECT end_time_ AS border FROM ACT_HI_ACTINST

9 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_start

10 JOIN

11 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

12 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

13 UNION (SELECT start_time_ AS border FROM ACT_HI_ACTINST

14 WHERE duration_ > 0 AND task_id_ IS NULL)
15 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

16 UNION (SELECT end_time_ AS border FROM ACT_HI_ACTINST

17 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_end

18 ON period_end.r=(period_start.r+1)
19)
20 SELECT periods.p_start, periods.p_end, COUNT(∗) FROM ACT_HI_PROCINST

21 LEFT OUTER JOIN periods

22 ON ACT_HI_PROCINST.start_time_ <= periods.p_start
23 AND ACT_HI_PROCINST.end_time_ >= periods.p_end
24 RIGHT OUTER JOIN

25 (SELECT start_time_ AS p_start, end_time_ as p_end, proc_inst_id_ FROM ACT_HI_ACTINST

26 WHERE duration_ > 0 AND task_id_ IS NULL

27 UNION SELECT claim_time_ AS p_start, end_time_ AS p_end, proc_inst_id_ FROM ACT_HI_TASKINST

28) active_times

29 ON active_times.proc_inst_id_=ACT_HI_PROCINST.id_
30 AND periods.p_start >= active_times.p_start AND periods.p_end <= active_times.p_end
31 GROUP BY periods.p_start, periods.p_end
32 ORDER BY periods.p_start;

Listing A.5 Query Q02 Count of active processes o.t. - temporal db
1 SELECT act_start_time_, end_time_, COUNT(DISTINCT proc_inst_id_) FROM

2 (SELECT proc_inst_id_, start_time_ as act_start_time_, end_time_ FROM ACT_HI_ACTINST

3 WHERE task_id_ IS NULL AND duration_ > 0
4 UNION

5 SELECT PROC_INST_ID_, claim_time_ as act_start_time_, end_time_ FROM ACT_HI_TASKINST) active_times

6 GROUP BY PERIOD WITH(act_start_time_, end_time_)
7 ORDER BY act_start_time_;

81

A. Query Code Listings

Listing A.6 Query Q02 Count of active processes o.t. - standard db (alternative)
1 WITH all_periods AS

2 (SELECT period_start.border AS p_start, period_end.border AS p_end FROM

3 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

4 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

5 UNION (SELECT start_time_ AS border FROM ACT_HI_ACTINST

6 WHERE duration_ > 0 AND task_id_ IS NULL)
7 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

8 UNION (SELECT end_time_ AS border FROM ACT_HI_ACTINST

9 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_start

10 JOIN

11 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

12 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

13 UNION (SELECT start_time_ AS border FROM ACT_HI_ACTINST

14 WHERE duration_ > 0 AND task_id_ IS NULL)
15 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

16 UNION (SELECT end_time_ AS border FROM ACT_HI_ACTINST

17 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_end

18 ON period_end.r=(period_start.r+1)
19)
20 SELECT all_periods.p_start, all_periods.p_end, COUNT(∗) AS count_assignments FROM all_periods

21 JOIN

22 (SELECT start_time_ AS p_start, end_time_ as p_end, proc_inst_id_ FROM ACT_HI_ACTINST

23 WHERE duration_ > 0 AND task_id_ IS NULL

24 UNION SELECT claim_time_ AS p_start, end_time_ as p_end, proc_inst_id_ FROM ACT_HI_TASKINST

25) active_times

26 ON all_periods.p_start >= active_times.p_start
27 AND all_periods.p_end <= active_times.p_end
28 GROUP BY all_periods.p_start, all_periods.p_end
29 ORDER BY all_periods.p_start;

82

A.3. Query Q03 Non-active (idle) periods per process

A.3 Query Q03 Non-active (idle) periods per process

Listing A.7 Query Q03 Non-active (idle) periods per process - standard db
1 SELECT all_periods.p_start, all_periods.p_end, all_periods.proc_inst_id_ FROM

2 (SELECT period_start.proc_inst_id_, period_start.border AS p_start,
3 period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY proc_inst_id_, border) r, proc_inst_id_, border FROM

5 (SELECT proc_inst_id_, claim_time_ AS border FROM ACT_HI_TASKINST

6 UNION (SELECT proc_inst_id_, start_time_ AS border FROM ACT_HI_ACTINST

7 WHERE duration_ > 0 AND task_id_ IS NULL)
8 UNION SELECT proc_inst_id_, start_time_ AS border FROM ACT_HI_PROCINST

9 UNION SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_PROCINST

10 UNION SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_TASKINST

11 UNION (SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_ACTINST

12 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_start

13 JOIN

14 (SELECT ROW_NUMBER() OVER (ORDER BY proc_inst_id_, border) r, proc_inst_id_, border FROM

15 (SELECT proc_inst_id_, claim_time_ AS border FROM ACT_HI_TASKINST

16 UNION (SELECT proc_inst_id_, start_time_ AS border FROM ACT_HI_ACTINST

17 WHERE duration_ > 0 AND task_id_ IS NULL)
18 UNION SELECT proc_inst_id_, start_time_ AS border FROM ACT_HI_PROCINST

19 UNION SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_PROCINST

20 UNION SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_TASKINST

21 UNION (SELECT proc_inst_id_, end_time_ AS border FROM ACT_HI_ACTINST

22 WHERE duration_ > 0 AND task_id_ IS NULL)) period_borders) period_end

23 ON period_end.r=(period_start.r+1)
24 AND period_start.proc_inst_id_=period_end.proc_inst_id_) all_periods

25 LEFT OUTER JOIN

26 (SELECT start_time_ AS p_start, end_time_ as p_end, proc_inst_id_ FROM ACT_HI_ACTINST

27 WHERE duration_ > 0 AND task_id_ IS NULL

28 UNION SELECT claim_time_ AS p_start, end_time_ as p_end, proc_inst_id_ FROM ACT_HI_TASKINST

29) active_times

30 ON all_periods.p_start >= active_times.p_start
31 AND all_periods.p_end <= active_times.p_end
32 AND all_periods.proc_inst_id_=active_times.proc_inst_id_
33 WHERE active_times.proc_inst_id_ IS NULL

34 ORDER BY all_periods.proc_inst_id_, all_periods.p_start;

Listing A.8 Query Q03 Non-active (idle) periods per process - temporal db
1 SELECT start_time_, end_time_, ID_ FROM ACT_HI_PROCINST

2 EXCEPT PERIOD WITH (start_time_, end_time_)
3 SELECT PERIOD DISTINCT WITH (start_time_, end_time_) start_time_, end_time_, proc_inst_id_ FROM

4 (SELECT start_time_, end_time_, proc_inst_id_ FROM ACT_HI_ACTINST WHERE task_id_ IS NULL

5 UNION

6 SELECT claim_time_, end_time_, proc_inst_id_ FROM ACT_HI_TASKINST) AS distinct_active_periods

7 ORDER BY id_, start_time_;

83

A. Query Code Listings

A.4 Query Q04 Periods with no open processes

Listing A.9 Query Q04 Periods with no open processes - standard db
1 SELECT periods.p_start, periods.p_end FROM ACT_HI_PROCINST

2 RIGHT OUTER JOIN

3 (SELECT period_start.border AS p_start, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

5 (SELECT start_time_ AS border FROM ACT_HI_PROCINST

6 UNION SELECT end_time_ AS border FROM ACT_HI_PROCINST) period_borders) period_start

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

9 (SELECT start_time_ AS border FROM ACT_HI_PROCINST

10 UNION SELECT end_time_ AS border FROM ACT_HI_PROCINST) period_borders) period_end

11 ON period_end.r=(period_start.r+1)) periods

12 ON ACT_HI_PROCINST.start_time_ <= periods.p_start
13 AND ACT_HI_PROCINST.end_time_ >= periods.p_end
14 WHERE ACT_HI_PROCINST.ID_ IS NULL

15 GROUP BY periods.p_start, periods.p_end, ACT_HI_PROCINST.ID_
16 ORDER BY periods.p_start;

Listing A.10 Query Q04 Periods with no open processes - temporal db
1 SELECT min(start_time_) AS period_start_time, max(end_time_) AS period_end_time_

2 FROM ACT_HI_PROCINST

3 EXCEPT PERIOD WITH (period_start_time, period_end_time_)
4 SELECT PERIOD DISTINCT WITH (start_time_, end_time_) start_time_, end_time_ FROM ACT_HI_PROCINST

5 ORDER BY period_start_time;

84

A.5. Query Q05 Count of assigned tasks to user over time

A.5 Query Q05 Count of assigned tasks to user over time

Listing A.11 Query Q05 Count of assigned tasks to user o.t. - standard db
1 SELECT periods.p_start, periods.p_end, COUNT(∗), ACT_HI_TASKINST.assignee_ FROM ACT_HI_TASKINST

2 LEFT OUTER JOIN

3 (SELECT period_start.assignee_, period_start.border AS p_start, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

5 (SELECT assignee_, start_time_ AS border FROM ACT_HI_TASKINST

6 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_start

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

9 (SELECT assignee_, start_time_ AS border FROM ACT_HI_TASKINST

10 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_end

11 ON period_end.r=(period_start.r+1) AND period_end.assignee_=period_start.assignee_) periods

12 ON ACT_HI_TASKINST.assignee_ = periods.assignee_
13 AND start_time_ <= periods.p_start AND end_time_ >= periods.p_end
14 GROUP BY ACT_HI_TASKINST.assignee_, periods.p_start, periods.p_end
15 ORDER BY ACT_HI_TASKINST.assignee_, periods.p_start;

Listing A.12 Query Q05 Count of assigned tasks to user o.t. - temporal db
1 SELECT start_time_, end_time_, COUNT(∗), assignee_
2 FROM ACT_HI_TASKINST

3 GROUP BY PERIOD WITH(start_time_, end_time_) assignee_

4 ORDER BY assignee_, start_time_;

85

A. Query Code Listings

A.6 Query Q06 Count of claimed user tasks over time

Listing A.13 Query Q06 Count ofclaimed user tasks o.t. - standard db
1 SELECT ACT_HI_TASKINST.assignee_, periods.p_claim, periods.p_end, COUNT(∗) FROM ACT_HI_TASKINST

2 LEFT OUTER JOIN

3 (SELECT period_claim.assignee_, period_claim.border AS p_claim, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

5 (SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST

6 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_claim

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

9 (SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST

10 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_end

11 ON period_end.r=(period_claim.r+1) AND period_end.assignee_=period_claim.assignee_) periods

12 ON ACT_HI_TASKINST.assignee_=periods.assignee_
13 AND claim_time_ <= periods.p_claim AND end_time_ >= periods.p_end
14 GROUP BY ACT_HI_TASKINST.assignee_, periods.p_claim, periods.p_end
15 ORDER BY ACT_HI_TASKINST.assignee_, periods.p_claim;

Listing A.14 Query Q06 Count of claimed user tasks o.t. - temporal db
1 SELECT assignee_, claim_time_, end_time_, COUNT(∗)
2 FROM ACT_HI_TASKINST

3 GROUP BY PERIOD WITH(claim_time_, end_time_) assignee_

4 ORDER BY assignee_, claim_time_;

86

A.7. Query Q07 Count of not-yet claimed tasks per user

A.7 Query Q07 Count of not-yet claimed tasks per user

Listing A.15 Query Q07 Count of not-yet claimed tasks per user - standard db
1 SELECT ACT_HI_TASKINST.assignee_, periods.p_start, periods.p_claim, COUNT(∗) FROM ACT_HI_TASKINST

2 LEFT OUTER JOIN

3 (SELECT period_start.assignee_, period_start.border AS p_start, period_claim.border AS p_claim FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

5 (SELECT assignee_, start_time_ AS border FROM ACT_HI_TASKINST

6 UNION SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_start

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

9 (SELECT assignee_, start_time_ AS border FROM ACT_HI_TASKINST

10 UNION SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_claim

11 ON period_claim.r=(period_start.r+1) AND period_claim.assignee_=period_start.assignee_) periods

12 ON ACT_HI_TASKINST.assignee_=periods.assignee_
13 AND start_time_ <= periods.p_start AND claim_time_ >= periods.p_claim
14 GROUP BY ACT_HI_TASKINST.assignee_, periods.p_start, periods.p_claim
15 ORDER BY ACT_HI_TASKINST.assignee_, periods.p_start;

Listing A.16 Query Q07 Count of not-yet claimed tasks per user - temporal db
1 SELECT assignee_, start_time_, claim_time_, COUNT(∗)
2 FROM ACT_HI_TASKINST

3 GROUP BY PERIOD WITH(start_time_, claim_time_) assignee_

4 ORDER BY assignee_, start_time_;

87

A. Query Code Listings

A.8 Query Q08 Periods with no assigned tasks to user

Listing A.17 Query Q08 Periods with no assigned tasks to user - standard db
1 SELECT all_periods.assignee_, all_periods.p_start, all_periods.p_end FROM

2 (SELECT period_start.assignee_, period_start.border AS p_start, period_end.border AS p_end FROM

3 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

4 (SELECT claim_time_ AS border, assignee_ FROM ACT_HI_TASKINST

5 UNION SELECT MIN(start_time_) AS border, ACT_ID_USER.id_ AS assignee_ FROM ACT_HI_PROCINST

6 CROSS JOIN ACT_ID_USER GROUP BY ACT_ID_USER.id_
7 UNION SELECT MAX(end_time_) AS border, ACT_ID_USER.id_ AS assignee_ FROM ACT_HI_PROCINST

8 CROSS JOIN ACT_ID_USER GROUP BY ACT_ID_USER.id_
9 UNION SELECT end_time_ AS border, assignee_ FROM ACT_HI_TASKINST

10) period_borders) period_start

11 JOIN

12 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

13 (SELECT claim_time_ AS border, assignee_ FROM ACT_HI_TASKINST

14 UNION SELECT MIN(start_time_) AS border, ACT_ID_USER.id_ AS assignee_ FROM ACT_HI_PROCINST

15 CROSS JOIN ACT_ID_USER GROUP BY ACT_ID_USER.id_
16 UNION SELECT MAX(end_time_) AS border, ACT_ID_USER.id_ AS assignee_ FROM ACT_HI_PROCINST

17 CROSS JOIN ACT_ID_USER GROUP BY ACT_ID_USER.id_
18 UNION SELECT end_time_ AS border, assignee_ FROM ACT_HI_TASKINST

19) period_borders) period_end

20 ON period_end.r=(period_start.r+1) AND period_end.assignee_=period_start.assignee_) all_periods

21 LEFT OUTER JOIN

22 (SELECT claim_time_ AS p_start, end_time_ as p_end, assignee_ FROM ACT_HI_TASKINST) active_times

23 ON all_periods.p_start >= active_times.p_start
24 AND all_periods.p_end <= active_times.p_end
25 AND all_periods.assignee_=active_times.assignee_
26 WHERE active_times.assignee_ IS NULL

27 ORDER BY all_periods.assignee_, all_periods.p_start;

Listing A.18 Query Q08 Periods with no assigned tasks to user - temporal db
1 SELECT ACT_ID_USER.id_,
2 min(start_time_) AS period_start_time_, max(end_time_) AS period_end_time_

3 FROM ACT_ID_USER

4 CROSS JOIN ACT_HI_PROCINST

5 GROUP BY ACT_ID_USER.id_
6 EXCEPT PERIOD WITH (period_start_time_, period_end_time_)
7 SELECT PERIOD DISTINCT WITH (claim_time_, end_time_) assignee_, claim_time_, end_time_
8 FROM ACT_HI_TASKINST

9 ORDER BY id_, period_start_time_;

88

A.9. Query Q09 Count of assigned tasks to department

A.9 Query Q09 Count of assigned tasks to department

Listing A.19 Query Q09 Count of assigned tasks to department - standard db
1 SELECT ACT_ID_MEMBERSHIP.group_id_, periods.p_start, periods.p_end, COUNT(∗) FROM ACT_HI_TASKINST

2 JOIN ACT_ID_MEMBERSHIP ON ACT_ID_MEMBERSHIP.user_id_= ACT_HI_TASKINST.assignee_
3 LEFT OUTER JOIN

4 (SELECT period_start.group_id_, period_start.border AS p_start, period_end.border AS p_end FROM

5 (SELECT ROW_NUMBER() OVER (ORDER BY group_id_, border) r, group_id_, border FROM

6 (SELECT group_id_, start_time_ AS border FROM ACT_HI_TASKINST

7 JOIN ACT_ID_MEMBERSHIP ON act_id_membership.user_id_= assignee_

8 UNION SELECT group_id_, end_time_ AS border FROM ACT_HI_TASKINST

9 JOIN ACT_ID_MEMBERSHIP ON act_id_membership.user_id_= assignee_) period_borders) period_start

10 JOIN

11 (SELECT ROW_NUMBER() OVER (ORDER BY group_id_, border) r, group_id_, border FROM

12 (SELECT group_id_, start_time_ AS border FROM ACT_HI_TASKINST

13 JOIN ACT_ID_MEMBERSHIP ON act_id_membership.user_id_= assignee_

14 UNION SELECT group_id_, end_time_ AS border FROM ACT_HI_TASKINST

15 JOIN ACT_ID_MEMBERSHIP ON act_id_membership.user_id_= assignee_) period_borders) period_end

16 ON period_end.r=(period_start.r+1) AND period_start.group_id_=period_end.group_id_) periods

17 ON ACT_ID_MEMBERSHIP.group_id_=periods.group_id_
18 AND start_time_ <= periods.p_start AND end_time_ >= periods.p_end
19 GROUP BY ACT_ID_MEMBERSHIP.group_id_, periods.p_start, periods.p_end
20 ORDER BY ACT_ID_MEMBERSHIP.group_id_, periods.p_start;

Listing A.20 Query Q09 Count of assigned tasks to department - temporal db
1 SELECT group_id_, start_time_, end_time_, COUNT(∗)
2 FROM ACT_HI_TASKINST

3 JOIN ACT_ID_MEMBERSHIP ON act_id_membership.user_id_= assignee_

4 GROUP BY PERIOD WITH(start_time_, end_time_) group_id_

5 ORDER BY group_id_, start_time_;

89

A. Query Code Listings

A.10 Query Q13 Count of assigned tasks to service

Listing A.21 Query Q13 Count of assigned tasks to service - standard db
1 SELECT ACT_HI_ACTINST.act_name_, periods.p_start, periods.p_end, COUNT(∗) FROM ACT_HI_ACTINST

2 LEFT OUTER JOIN

3 (SELECT period_start.act_name_, period_start.border AS p_start, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY act_name_, border) r, act_name_, border FROM

5 (SELECT act_name_, start_time_ AS border FROM ACT_HI_ACTINST

6 WHERE act_type_=’serviceTask’

7 UNION SELECT act_name_, end_time_ AS border FROM ACT_HI_ACTINST

8 WHERE act_type_=’serviceTask’) period_borders) period_start

9 JOIN

10 (SELECT ROW_NUMBER() OVER (ORDER BY act_name_, border) r, act_name_, border FROM

11 (SELECT act_name_, start_time_ AS border FROM ACT_HI_ACTINST

12 WHERE act_type_=’serviceTask’

13 UNION SELECT act_name_, end_time_ AS border FROM ACT_HI_ACTINST

14 WHERE act_type_=’serviceTask’) period_borders) period_end

15 ON period_end.r=(period_start.r+1) AND period_end.act_name_=period_start.act_name_) periods

16 ON ACT_HI_ACTINST.act_name_ = periods.act_name_
17 AND start_time_ <= periods.p_start AND end_time_ >= periods.p_end
18 WHERE act_type_=’serviceTask’

19 GROUP BY ACT_HI_ACTINST.act_name_, periods.p_start, periods.p_end
20 ORDER BY ACT_HI_ACTINST.act_name_, periods.p_start;

Listing A.22 Query Q13 Count of assigned tasks to service - temporal db
1 SELECT act_name_, start_time_, end_time_, COUNT(∗)
2 FROM ACT_HI_ACTINST

3 WHERE act_type_=’serviceTask’

4 GROUP BY PERIOD WITH(start_time_, end_time_) act_name_

5 ORDER BY act_name_, start_time_;

90

A.11. Query S01 Distinct periods with claimed tasks per user

A.11 Query S01 Distinct periods with claimed tasks per
user

Listing A.23 Query S01 Distinct periods with claimed tasks per user - standard db
1 SELECT ACT_HI_TASKINST.assignee_, periods.p_claim, periods.p_end FROM ACT_HI_TASKINST

2 LEFT OUTER JOIN

3 (SELECT period_claim.assignee_, period_claim.border AS p_claim, period_end.border AS p_end FROM

4 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

5 (SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST

6 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_claim

7 JOIN

8 (SELECT ROW_NUMBER() OVER (ORDER BY assignee_, border) r, assignee_, border FROM

9 (SELECT assignee_, claim_time_ AS border FROM ACT_HI_TASKINST

10 UNION SELECT assignee_, end_time_ AS border FROM ACT_HI_TASKINST) period_borders) period_end

11 ON period_end.r=(period_claim.r+1) AND period_end.assignee_=period_claim.assignee_) periods

12 ON ACT_HI_TASKINST.assignee_=periods.assignee_
13 AND claim_time_ <= periods.p_claim AND end_time_ >= periods.p_end
14 GROUP BY ACT_HI_TASKINST.assignee_, periods.p_claim, periods.p_end
15 ORDER BY ACT_HI_TASKINST.assignee_, periods.p_claim;

Listing A.24 Query S01 Distinct periods with claimed tasks per user - temporal db
1 SELECT PERIOD DISTINCT WITH(claim_time_, end_time_) assignee_, claim_time_, end_time_
2 FROM ACT_HI_TASKINST

3 ORDER BY assignee_, claim_time_;

91

A. Query Code Listings

A.12 Query S02 - Special: Parallel processing of specific
user tasks

Listing A.25 Query S02 - Parallel processing of specific user tasks - standard db
1 WITH periods AS

2 (SELECT period_claim.border AS p_claim, period_end.border AS p_end FROM

3 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

4 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

5 WHERE task_def_key_ IN (’manualRiskAssessment’, ’manualCreditApprovalDecision’)
6 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

7 WHERE task_def_key_ IN (’manualRiskAssessment’, ’manualCreditApprovalDecision’)
8) period_borders) period_claim

9 JOIN

10 (SELECT ROW_NUMBER() OVER (ORDER BY border) r, border FROM

11 (SELECT claim_time_ AS border FROM ACT_HI_TASKINST

12 WHERE task_def_key_ IN (’manualRiskAssessment’, ’manualCreditApprovalDecision’)
13 UNION SELECT end_time_ AS border FROM ACT_HI_TASKINST

14 WHERE task_def_key_ IN (’manualRiskAssessment’, ’manualCreditApprovalDecision’)
15) period_borders) period_end

16 ON period_end.r=(period_claim.r+1)
17)
18 SELECT

19 periods.p_claim, periods.p_end
20 FROM ACT_HI_TASKINST task1

21 CROSS JOIN ACT_HI_TASKINST task2

22 RIGHT JOIN periods

23 ON task1.claim_time_ <= periods.p_claim AND task1.end_time_ >= periods.p_end
24 AND task2.claim_time_ <= periods.p_claim AND task2.end_time_ >= periods.p_end
25 WHERE task1.task_def_key_ =’manualRiskAssessment’

26 AND task2.task_def_key_=’manualCreditApprovalDecision’

27 GROUP BY periods.p_claim, periods.p_end
28 ORDER BY periods.p_claim;

Listing A.26 Query S02 - Parallel processing of specific user tasks - temporal db
1 SELECT PERIOD DISTINCT WITH(claim_time_, end_time_) claim_time_, end_time_
2 FROM ACT_HI_TASKINST

3 WHERE task_def_key_=’manualRiskAssessment’

4 INTERSECT PERIOD WITH (claim_time_, end_time_)
5 SELECT PERIOD DISTINCT WITH(claim_time_, end_time_) claim_time_, end_time_
6 FROM ACT_HI_TASKINST

7 WHERE task_def_key_=’manualCreditApprovalDecision’

8 ORDER BY claim_time_;

92

A.13. Query S03 - Parallel processing of activities

A.13 Query S03 - Parallel processing of activities

Listing A.27 Query S03 - Parallel processing of activities - standard db
1 SELECT ∗,
2 GREATEST(act1.start_time_, act2.start_time_) AS parallel_period_start_,
3 LEAST(act1.end_time_, act2.end_time_) AS parallel_period_end_ FROM ACT_HI_ACTINST act1

4 JOIN ACT_HI_ACTINST act2

5 ON act1.proc_inst_id_=act2.proc_inst_id_ AND act1.id_<>act2.id_ AND

6 (act1.start_time_<act2.end_time_ AND act1.end_time_>act2.start_time_)
7 ORDER BY parallel_period_start_;

Listing A.28 Query S03 - Parallel processing of activities - temporal db
1 SELECT ∗
2 FROM (ACT_HI_ACTINST a1 PERIOD

3 JOIN WITH (start_time_, end_time_, start_time_, end_time_)
4 AS (parallel_period_start_, parallel_period_end_) ACT_HI_ACTINST a2

5 ON a1.proc_inst_id_=a2.proc_inst_id_ AND a1.id_ <> a2.id_) parallel_activities

6 ORDER BY parallel_period_start_;

93

APPENDIX B
Results

This appendix chapter contains tables with detailed benchmark results. Information
about the benchmark setup, comments on results and graphics visualizing the benchmark
results can be found in chapter 5.

95

B. Results

B.1 Halstead metrics of queries

QID db length vocab. volume difficulty effort
Q01 std 165 52 652 22 14343

tmp 26 17 74 12 884
Q02 std 328 75 1416 26 36820

tmp 64 35 228 9 2048
Q03 std 383 69 1622 33 53515

tmp 74 31 254 7 1779
Q04 std 172 55 689 22 15164

tmp 47 22 145 7 1017
Q05 std 284 54 1133 33 37385

tmp 37 21 113 7 789
Q06 std 285 55 1142 33 37689

tmp 38 22 117 7 822
Q07 std 282 54 1125 33 37121

tmp 36 21 110 6 658
Q08 std 380 68 1603 39 62533

tmp 68 36 244 8 1949
Q09 std 293 65 1223 22 26908

tmp 44 29 148 8 1185
Q13 std 239 62 986 22 21700

tmp 34 23 107 7 746
S01 std 281 53 1116 30 33470

tmp 29 19 85 6 512
S02 std 289 72 1236 22 27191

tmp 59 25 190 14 2659
S03 std 72 35 256 8 2048

tmp 48 32 166 8 1331

Table B.1: Benchmark metrics: Query complexity according to Halstead

96

B.2. Execution times querying data of simulation A

B.2 Execution times querying data of simulation A

QID db execavg execmed variance P(F<=f) t stat P(T<=t)

Q01 std 33,98 33,05 111,84 0,00 1,58 0,12
tmp 32,58 31,83 44,03

Q02 std 159,82 155,99 235,94 0,00 -29,76 0,00
tmp 1198,64 1111,63 243483,28

Q03 std 53,28 51,78 131,21 0,00 -11,77 0,00
tmp 68,34 63,94 196,00

Q04 std 26,92 26,27 30,05 0,01 -5,80 0,00
tmp 29,85 29,22 20,88

Q05 std 121,09 117,76 139,12 0,00 -12,42 0,00
tmp 141,80 136,98 417,05

Q06 std 115,81 108,99 337,39 0,00 -12,11 0,00
tmp 142,49 135,47 633,08

Q07 std 106,79 104,77 36,94 0,00 -15,63 0,00
tmp 115,37 113,58 23,26

Q08 std 83,89 83,01 17,16 0,00 -79,53 0,00
tmp 120,34 118,49 24,84

Q09 std 190,22 188,41 16,40 0,00 -35,22 0,00
tmp 212,35 209,95 62,59

Q13 std 87,21 84,74 30,25 0,00 -14,05 0,00
tmp 93,79 92,31 13,60

S01 std 106,21 104,65 11,84 0,00 -12,18 0,00
tmp 111,65 109,45 28,08

S02 std 72,40 70,86 54,72 0,03 -51,65 0,00
tmp 108,26 106,41 41,74

S03 std 15,89 14,95 5,55 0,00 -148,82 0,00
tmp 55,29 54,25 8,47

Table B.2: Benchmark measures: average and median query execution times in ms on
data of simulation A; Results of F-test and unequal variance T-test (Welch-Test)

97

B. Results

B.3 Execution times querying data of simulation B

QID db execavg execmed variance P(F<=f) t stat P(T<=t)

Q01 std 348,01 339,47 621,12 0,00 0,53 0,60
tmp 345,76 332,54 1201,44

Q02 std 1883,50 1854,30 11107,32 0,00 -108,01 0,00
tmp 16013,10 15148,41 1700192,08

Q03 std 165,57 162,29 170,88 0,25 -52,58 0,00
tmp 266,17 261,37 195,24

Q04 std 302,35 296,45 261,45 0,00 -13,57 0,00
tmp 329,50 325,06 139,05

Q05 std 1393,48 1388,13 776,35 0,00 46,69 0,00
tmp 1233,34 1231,67 400,17

Q06 std 1382,00 1376,80 477,08 0,00 26,28 0,00
tmp 1259,35 1244,51 1701,11

Q07 std 1378,16 1375,55 186,30 0,00 54,94 0,00
tmp 1248,30 1243,78 372,29

Q08 std 1051,70 1048,61 135,50 0,00 -259,70 0,00
tmp 1587,59 1583,43 290,28

Q09 std 2602,34 2596,40 1034,89 0,28 65,84 0,00
tmp 2311,39 2307,14 917,96

Q13 std 1125,19 1122,19 250,40 0,06 54,68 0,00
tmp 991,80 988,72 344,67

S01 std 1374,19 1370,91 218,34 0,00 -97,22 0,00
tmp 1553,55 1552,15 122,06

S02 std 956,26 900,52 22266,47 0,00 -35,33 0,00
tmp 1486,22 1482,68 239,00

S03 std 66,83 65,66 15,77 0,00 -182,46 0,00
tmp 205,68 203,69 42,15

Table B.3: Benchmark measures: average and median query execution times in ms on
data of simulation B; Results of F-test and unequal variance T-test (Welch-Test)

98

B.4. Execution times querying data of simulation C

B.4 Execution times querying data of simulation C

QID db execavg execmed variance P(F<=f) t stat P(T<=t)

Q01 std 5014,31 5007,94 5014,31 0,00 10,87 0,00
tmp 4859,01 4830,46 4859,01

Q02 std 24314,82 24076,80 24314,82 0,00 -76,64 0,00
tmp 237478,16 231992,39 237478,16

Q03 std 598,33 589,29 598,33 0,00 -97,40 0,00
tmp 1095,51 1090,11 1095,51

Q04 std 4255,79 4247,94 4255,79 0,00 -48,26 0,00
tmp 4820,22 4818,21 4820,22

Q05 std 22104,26 22094,79 22104,26 0,13 -15,20 0,00
tmp 22318,16 22317,64 22318,16

Q06 std 22403,62 22219,55 22403,62 0,00 2,40 0,02
tmp 22291,05 22255,24 22291,05

Q07 std 22476,84 22484,47 22476,84 0,00 6,25 0,00
tmp 22228,79 22216,97 22228,79

Q08 std 16723,87 16709,73 16723,87 0,00 -446,66 0,00
tmp 22483,98 22486,82 22483,98

Q09 std 42218,21 42287,68 42218,21 0,00 -203,55 0,00
tmp 47885,06 47876,19 47885,06

Q13 std 17427,70 17416,53 17427,70 0,00 -4,96 0,00
tmp 17491,74 17489,08 17491,74

S01 std 22045,84 22034,54 22045,84 0,00 -7,18 0,00
tmp 22225,40 22208,11 22225,40

S02 std 13416,76 13343,45 13416,76 0,00 -429,88 0,00
tmp 24283,09 24280,46 24283,09

S03 std 275,72 269,57 275,72 0,00 -195,56 0,00
tmp 1422,30 1416,30 1422,30

Table B.4: Benchmark measures: average and median query execution times in ms on
data of simulation C; Results of F-test and unequal variance T-test (Welch-Test)

99

B. Results

B.5 Planning times querying data of simulation A

QID db planavg planmed variance P(F<=f) t stat P(T<=t)

Q01 std 0,49 0,49 0,49 0,00 5,73 0,00
tmp 0,40 0,39 0,40

Q02 std 0,98 0,87 0,98 0,00 17,41 0,00
tmp 0,40 0,36 0,40

Q03 std 1,16 1,04 1,16 0,00 9,01 0,00
tmp 0,83 0,74 0,83

Q04 std 0,59 0,54 0,59 0,00 -5,00 0,00
tmp 0,71 0,63 0,71

Q05 std 0,56 0,50 0,56 0,00 2,74 0,01
tmp 0,50 0,44 0,50

Q06 std 0,53 0,49 0,53 0,13 1,21 0,23
tmp 0,51 0,46 0,51

Q07 std 0,50 0,48 0,50 0,00 9,07 0,00
tmp 0,38 0,33 0,38

Q08 std 0,94 0,81 0,94 0,00 9,82 0,00
tmp 0,67 0,61 0,67

Q09 std 0,96 0,78 0,96 0,00 19,09 0,00
tmp 0,49 0,43 0,49

Q13 std 0,54 0,45 0,54 0,00 12,18 0,00
tmp 0,37 0,32 0,37

S01 std 0,48 0,44 0,48 0,00 18,85 0,00
tmp 0,27 0,24 0,27

S02 std 0,69 0,61 0,69 0,00 4,53 0,00
tmp 0,59 0,53 0,59

S03 std 0,41 0,37 0,41 0,00 -29,36 0,00
tmp 0,78 0,71 0,78

Table B.5: Benchmark measures: average and median query planning times in ms on
data of simulation A; Results of F-Test and unequal variance T-test (Welch-Test)

100

B.6. Planning times querying data of simulation B

B.6 Planning times querying data of simulation B

QID db planavg planmed variance P(F<=f) t stat P(T<=t)

Q01 std 0,43 0,39 0,43 0,29 4,79 0,00
tmp 0,35 0,29 0,35

Q02 std 1,05 0,89 1,05 0,00 17,10 0,00
tmp 0,42 0,38 0,42

Q03 std 1,03 0,92 1,03 0,00 6,31 0,00
tmp 0,74 0,73 0,74

Q04 std 0,46 0,38 0,46 0,00 -5,53 0,00
tmp 0,60 0,59 0,60

Q05 std 0,47 0,39 0,47 0,01 3,85 0,00
tmp 0,40 0,39 0,40

Q06 std 0,50 0,39 0,50 0,14 2,66 0,01
tmp 0,44 0,37 0,44

Q07 std 0,50 0,40 0,50 0,00 4,20 0,00
tmp 0,41 0,37 0,41

Q08 std 0,98 0,82 0,98 0,00 7,98 0,00
tmp 0,66 0,57 0,66

Q09 std 1,20 0,99 1,20 0,00 14,71 0,00
tmp 0,55 0,48 0,55

Q13 std 0,52 0,45 0,52 0,44 5,27 0,00
tmp 0,41 0,32 0,41

S01 std 0,50 0,39 0,50 0,00 10,51 0,00
tmp 0,28 0,24 0,28

S02 std 0,69 0,63 0,69 0,00 0,79 0,43
tmp 0,67 0,66 0,67

S03 std 0,46 0,40 0,46 0,00 -12,44 0,00
tmp 0,81 0,70 0,81

Table B.6: Benchmark measures: average and median query planning times in ms on
data of simulation B; Results of F-Test and unequal variance T-test (Welch-Test)

101

B. Results

B.7 Planning times querying data of simulation C

QID db planavg planmed variance P(F<=f) t stat P(T<=t)

Q01 std 0,41 0,39 0,41 0,33 3,09 0,00
tmp 0,35 0,32 0,35

Q02 std 1,01 0,91 1,01 0,00 2,19 0,03
tmp 0,59 0,37 0,59

Q03 std 1,00 0,94 1,00 0,01 3,43 0,00
tmp 0,80 0,71 0,80

Q04 std 0,48 0,36 0,48 0,00 -5,28 0,00
tmp 0,70 0,62 0,70

Q05 std 0,56 0,41 0,56 0,18 1,64 0,10
tmp 0,49 0,41 0,49

Q06 std 0,59 0,53 0,59 0,01 3,81 0,00
tmp 0,46 0,41 0,46

Q07 std 0,60 0,51 0,60 0,01 4,17 0,00
tmp 0,44 0,38 0,44

Q08 std 0,91 0,73 0,91 0,11 1,63 0,11
tmp 0,81 0,74 0,81

Q09 std 1,20 0,90 1,20 0,00 6,76 0,00
tmp 0,68 0,63 0,68

Q13 std 0,65 0,60 0,65 0,00 5,59 0,00
tmp 0,43 0,35 0,43

S01 std 0,59 0,52 0,59 0,00 7,41 0,00
tmp 0,36 0,39 0,36

S02 std 0,61 0,54 0,61 0,00 -3,78 0,00
tmp 0,77 0,65 0,77

S03 std 0,68 0,54 0,68 0,10 -4,98 0,00
tmp 0,97 0,77 0,97

Table B.7: Benchmark measures: average and median query planning times in ms on
data of simulation C; Results of F-Test and unequal variance T-test (Welch-Test)

102

List of Figures

2.1 BPM life cycle . 6
2.2 Overview of the Activiti tool stack . 12
2.3 Periods in Activiti database . 15

4.1 Schematic visualization of the application architecture 32
4.2 Sample business process in BPMN 2.0 notation 43

5.1 Benchmark results: Halstead metrics . 68
5.2 Benchmark results: Average and median query planning times. 70
5.3 Development average execution times . 72
5.4 Benchmark results: Average and median query execution times. 73

103

List of Tables

2.1 Examples for BPMN 2.0 notations . 11
2.2 Table prefixes in Activiti database . 14
2.3 History tables in Activiti database. 14
2.4 Relevant ID tables in Activiti database. 15
2.5 Example query complexity computation 20

3.1 Example for an EXPLAIN ANALYZE command and its output 23

4.1 Mandatory config.properties for simulation application 36
4.2 Optional config.properties for simulation application 37
4.3 Simulation application: Command line arguments 38
4.4 Simulation application: Examples for command line calls 38
4.5 Config.properties for credit approval process 46
4.6 Mandatory config.properties for benchmark application 49
4.7 Benchmark application: Command line arguments 50
4.8 Benchmark application: Examples for command line calls 50
4.9 Columns required in SQL queries file . 53
4.10 Columns exported to file results_aggregated 54
4.11 Columns exported to file results_detailed 54
4.12 Overview of queries used in the benchmark 59

5.1 Figures of databases used in benchmark 66

B.1 Query Halstead metrics . 96
B.2 Query execution benchmark measures - simulation A 97
B.3 Query execution benchmark measures - simulation B 98
B.4 Query execution benchmark measures - simulation C 99
B.5 Query planning benchmark measures - simulation A 100
B.6 Query planning benchmark measures - simulation B 101
B.7 Query planning benchmark measures - simulation C 102

105

Listings

4.1 Calculation of task time . 47
4.2 Identification of maximum set of period borders 57
4.3 Identification of periods . 57
A.1 Query Q01 Count of open processes o.t. - standard db 80
A.2 Query Q01 Count of open processes o.t. - standard db (alternative) . 80
A.3 Query Q01 Count of open processes o.t. - temporal db 80
A.4 Query Q02 Count of active processes o.t. - standard db 81
A.5 Query Q02 Count of active processes o.t. - temporal db 81
A.6 Query Q02 Count of active processes o.t. - standard db (alternative) . 82
A.7 Query Q03 Non-active (idle) periods per process - standard db 83
A.8 Query Q03 Non-active (idle) periods per process - temporal db 83
A.9 Query Q04 Periods with no open processes - standard db 84
A.10 Query Q04 Periods with no open processes - temporal db 84
A.11 Query Q05 Count of assigned tasks to user o.t. - standard db 85
A.12 Query Q05 Count of assigned tasks to user o.t. - temporal db 85
A.13 Query Q06 Count ofclaimed user tasks o.t. - standard db 86
A.14 Query Q06 Count of claimed user tasks o.t. - temporal db 86
A.15 Query Q07 Count of not-yet claimed tasks per user - standard db . . . 87
A.16 Query Q07 Count of not-yet claimed tasks per user - temporal db . . . 87
A.17 Query Q08 Periods with no assigned tasks to user - standard db . . . 88
A.18 Query Q08 Periods with no assigned tasks to user - temporal db . . . 88
A.19 Query Q09 Count of assigned tasks to department - standard db . . . 89
A.20 Query Q09 Count of assigned tasks to department - temporal db . . . 89
A.21 Query Q13 Count of assigned tasks to service - standard db 90
A.22 Query Q13 Count of assigned tasks to service - temporal db 90
A.23 Query S01 Distinct periods with claimed tasks per user - standard db . 91
A.24 Query S01 Distinct periods with claimed tasks per user - temporal db . 91
A.25 Query S02 - Parallel processing of specific user tasks - standard db . . 92
A.26 Query S02 - Parallel processing of specific user tasks - temporal db . . 92
A.27 Query S03 - Parallel processing of activities - standard db 93
A.28 Query S03 - Parallel processing of activities - temporal db 93

107

Acronyms

API Application Programming Interface. 12, 13, 25

BPM Business Process Management. xiii, 3, 5–9, 16, 19, 21, 22, 24–26, 55, 56, 67, 72,
74–76

BPMI Business Process Management Initiative. 9

BPMN Business Process Model and Notation. 3, 5, 9–13, 21, 26, 28, 31, 32, 35–37, 40,
41, 43, 47, 75

CSV comma-separated values. 27–29, 31–33, 36, 37, 41, 42, 48–54, 58

CTE Common Table Expression. 19, 60, 71, 75

DBMS Database Management System. xiii, 2, 7, 16–18, 21, 23–25, 27, 43, 49, 53, 55,
56, 58, 65–67, 71, 74–77

ERP Enterprise Resource Planning. 7

GUI graphical user interface. 13

IASB International Accounting Standards Board. 1

IDE integrated development environment. 12

IFRS International Financial Reporting Standard. 1

KPI Key Performance Indicator. 7, 8

OMG Object Management Group. 9

POJO Plain Old Java Object. 52

REST REpresentational State Transfer. 12

109

SQL Structured Query Language. xi, xiii, 5, 16, 18, 31, 33, 39, 48, 50–53, 58, 75

UML Unified Modeling Language. 9

WfMC Workflow Management Coalition. 10

WfMS Workflow Management System. 1, 2, 5, 7, 8, 10, 12, 25, 55, 60, 76, 77

WSFL Web Service Flow Langauge. 9

XML Extensible Markup Language. 12, 36

110

Bibliography

[AS17] Inc. Alfresco Software. Activiti User Guide v6.0.0, May 2017. https://www.
activiti.org/userguide.

[BB13] K. Baïna and S. Baïna. User experience-based evaluation of open source
workflow systems: The cases of bonita, activiti, jbpm, and intalio. In 2013
3rd International Symposium ISKO-Maghreb, pages 1–8, Nov 2013.

[BDGJ18a] Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S. Jensen.
Database Technology for Processing Temporal Data (Invited Paper). In
Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek, editors, 25th Inter-
national Symposium on Temporal Representation and Reasoning (TIME
2018), volume 120 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:7, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[BDGJ18b] Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S. Jensen.
Temporal data management – an overview. In Esteban Zimányi, editor,
Business Intelligence and Big Data, pages 51–83, Cham, 2018. Springer
International Publishing.

[BFLR03] Paul L Bowen, Colin B Ferguson, Timothy H Lehmann, and Fiona H Rohde.
Cognitive style factors affecting database query performance. International
Journal of Accounting Information Systems, 4(4):251–273, 2003. Third
International Research Symposium on Accounting Information Systems.

[BGJ06] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Temporal
databases. In In 0-8493-8597-0/01/0.00+1.50 c 2006 by CRC Press, LLC 1
CHAPTER 59., pages 59–1 – 59–39, 2006.

[BJ09] Michael H Böhlen and Christian S Jensen. Sequenced semantics. In Link
Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages
2619–2621. Springer, 2009.

[BW10] Raymond P.L. Buse and Westley R. Weimer. Learning a metric for code
readability. IEEE Transactions on Software Engineering, 36(4):546–558, July
2010.

111

https://www.activiti.org/userguide
https://www.activiti.org/userguide

[BWJ02] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Temporal reasoning in
workflow systems. Distributed and Parallel Databases, 11(3):269–306, May
2002.

[CP03] C Combi and G Pozzi. Towards temporal information in workflow systems.
In Olive, A and Yoshikawa, M and Yu, ESK and Genero, M and Grandi,
F and VandenHeuvel, WJ and Krogstie, J and Lyytinen, K and Mayr, HC
and Nelson, J and Piattini, M and Poels, G and Roddick, J and Siau, K,
editor, Advanced Conceptual Modeling Techniques, volume 2784 of Lecture
notes in computer science, pages 13–25. Springer-Verlag Berlin, 2003. 21st
International Conference on Conceptual Modeling, Tampere, Finland, Oct
07-11, 2002.

[CP04] Carlo Combi and Giuseppe Pozzi. Architectures for a temporal workflow
management system. In Proceedings of the 2004 ACM symposium on applied
computing, SAC ’04, pages 659–666, March 2004.

[CP09] Carlo Combi and Giuseppe Pozzi. Temporalities for workflow management
systems. In Handbook of Research on Business Process Modeling, 2009.

[DBG12] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment.
In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 433–444, New York, NY, USA,
2012. ACM.

[DBG13] A. Dignös, M. Böhlen, and J. Gamper. Query time scaling of attribute
values in interval timestamped databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages 1304–1307, April 2013.

[DBGJ16] Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen.
Extending the kernel of a relational dbms with comprehensive support for
sequenced temporal queries. ACM Trans. Database Syst., 41(4):26:1–26:46,
November 2016.

[DES89] Thomas Davenport and James E. Short. The new industrial engineering:
Information technology and business process redesign. Sloan management
Review, 31, November 1989.

[Dig18] Anton Dignös. Installation Guide for TPG. http://tpg.inf.unibz.it/, August
2018. Part of TPG source code package.

[DRMR13] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers.
Fundamentals of Business Process Management, First Edition. Springer,
2013.

[Gro19] The PostgreSQL Global Development Group. PostgreSQL 9.6.13 Documen-
tation, 2019. https://www.postgresql.org/docs/9.6/index.html.

112

http://tpg.inf.unibz.it/
https://www.postgresql.org/docs/9.6/index.html

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and Pro-
gramming Systems Series), volume 7. Elsevier Science Inc., New York, NY,
USA, 1977.

[Int14] International Accounting Standards Board. IFRS 9 Financial Instru-
ments (replacement of IAS 39). https://www.ifrs.org/issued-standards/
list-of-standards/ifrs-9-financial-instruments/, July 2014. Draft.

[ISO11] ISO. ISO/IEC 9075-1:2011 Information technology — Database languages —
SQL. December 2011.

[JG18] Christian S. Jensen Johann Gamper, Michael H. Böhlen. Temporal aggre-
gation. In Ling Liu and M. Tamer Zsu, editors, Encyclopedia of Database
Systems, pages 3899–3909. Springer Publishing Company, Incorporated, 2nd
edition, 2018.

[Jó06] Tick József. Workflow model representation concepts. In International Sym-
posium of Hungarian Researchers on Computational Intelligence, number 7,
pages 329–337, January 2006.

[KLWL09] Ryan K.L Ko, Stephen S.G Lee, and Eng Wah Lee. Business process
management (bpm) standards: a survey. Business Process Management
Journal, 15(5):744–791, September 2009.

[KM12] Krishna Kulkarni and Jan-Eike Michels. Temporal features in SQL:2011.
SIGMOD Record, 41(3):34–43, October 2012.

[KRM09] Klaus D Kubinger, Dieter Rasch, and Karl Moder. Zur Legende der Vo-
raussetzungen des t-Tests für unabhängige Stichproben. Psychologische
Rundschau, 60(1):26–27, 2009.

[LYSY11] Hai Liu, Xiaoping Ye, Ming Shi, and Boling Yang. Temporal indexes
supporting valid time. In Yong Tang, Xiaoping Ye, and Na Tang, editors,
Temporal Information Processing Technology and Its Application, pages 151–
174. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2011.

[McC76] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, Dec 1976.

[Moc19] LLC Mockaroo. Mock-up data generator. https://mockaroo.com/, August
2019.

[Mos16] Peter Moser. Temporal PostgreSQL Manual and Report. Free University of
Bolzano/Bozen, July 2016.

[Obj11] Object Management Group. Business Process Model and Notation (BPMN),
Version 2.0. http://www.omg.org/spec/BPMN/2.0, January 2011.

113

https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/
https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/
http://www.omg.org/spec/BPMN/2.0

[OW10] A. Oram and G. Wilson. Making Software: What Really Works, and Why
We Believe It. O’Reilly Media, November 2010.

[Rad12] Tijs Rademakers. Activiti in Action: Executable Business Processes in
BPMN 2. 0. Manning Publications Company, 2012.

[RKM11] Dieter Rasch, Klaus D Kubinger, and Karl Moder. The two-sample t test:
pre-testing its assumptions does not pay off. Statistical papers, 52(1):219–231,
2011.

[Sha10] Robert Shapiro. Update on BPMN release 2.0. https://www.slideshare.net/
Aamir97/folien, February 2010. visited on 18.09.2019.

[Sno95] Richard Thomas Snodgrass. The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, Norwell, MA, USA, 1995.

[Sno00] Richard T. Snodgrass. Developing Time-oriented Database Applications in
SQL. Data Management Systems Series. Morgan Kaufmann Publishers,
2000.

[TPLZ11] Yong Tang, Zewu Peng, Dongning Liu, and Wenshen Zhang. From time
data to temporal information. In Yong Tang, Xiaoping Ye, and Na Tang,
editors, Temporal Information Processing Technology and Its Application,
pages 3–19. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Vai13] A. Vaisman. An introduction to business process modeling. Lecture Notes
in Business Information Processing, 138:29–61, 2013.

[Ver19] Verifysoft. Measurement of halstead metrics. https://www.verifysoft.com/
en_halstead_metrics.html, August 2019.

[WB11] Stephen White and Conrad E Bock. New capabilities for process and
interaction modeling in bpmn 2. Technical report, National Institute of
Standards and Technology, US Department of Commerce, 2011.

[Wes12] Mathias Weske. Business Process Management: Concepts, Languages, Ar-
chitectures. Springer, Berlin, 2 edition, 2012.

[Wor99] Workflow Management Coalition. Terminology and glossary. Document
Number WFMC-TC-1011 3.0. http://www.wfmc.org/docs/TC-1011_term_
glossary_v3.pdf, February 1999.

[Zan08] Carlo Zaniolo. Time versus standards: A tale of temporal databases. In
Il-Yeol Song, Mario Piattini, Yi-Ping Phoebe Chen, Sven Hartmann, Fabio
Grandi, Juan Trujillo, Andreas L. Opdahl, Fernando Ferri, Patrizia Grifoni,
Maria Chiara Caschera, Colette Rolland, Carson Woo, Camille Salinesi, Es-
teban Zimányi, Christophe Claramunt, Flavius Frasincar, Geert-Jan Houben,

114

https://www.slideshare.net/Aamir97/folien
https://www.slideshare.net/Aamir97/folien
https://www.verifysoft.com/en_halstead_metrics.html
https://www.verifysoft.com/en_halstead_metrics.html
http://www.wfmc.org/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/docs/TC-1011_term_glossary_v3.pdf

and Philippe Thiran, editors, Advances in Conceptual Modeling – Challenges
and Opportunities, pages 67–67, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

115

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem statement
	Aim of the work
	Structure and methodological approach

	State-of-the-art
	Relevance of process execution data in BPM
	Process modelling with BPMN
	Activiti framework
	Managing temporal data in databases
	Complexity metrics for SQL queries

	Methodology
	Benchmark approach and setup
	Benchmark architecture
	Requirements on supportive artifacts

	Implementation
	Application architecture and shared resources
	Simulation application: Generating Activiti process execution data
	Simulation app input: Business process definition (BPMN model)
	Benchmark application: Querying process execution data
	Benchmark app input: BPM relevant database queries

	Benchmark: Processing queries on workflow control data
	Benchmark configuration and technical setup
	Results and analysis
	Summary of benchmark results

	Conclusion
	Limits of work and results
	Future work

	Query Code Listings
	Query Q01 Count of open processes over time
	Query Q02 Count of active processes over time
	Query Q03 Non-active (idle) periods per process
	Query Q04 Periods with no open processes
	Query Q05 Count of assigned tasks to user over time
	Query Q06 Count of claimed user tasks over time
	Query Q07 Count of not-yet claimed tasks per user
	Query Q08 Periods with no assigned tasks to user
	Query Q09 Count of assigned tasks to department
	Query Q13 Count of assigned tasks to service
	Query S01 Distinct periods with claimed tasks per user
	Query S02 - Special: Parallel processing of specific user tasks
	Query S03 - Parallel processing of activities

	Results
	Halstead metrics of queries
	Execution times querying data of simulation A
	Execution times querying data of simulation B
	Execution times querying data of simulation C
	Planning times querying data of simulation A
	Planning times querying data of simulation B
	Planning times querying data of simulation C

	List of Figures
	List of Tables
	Listings
	List of Listings
	Acronyms
	Bibliography

