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ABSTRACT
In this paper we perform an extensive theoretical and exper-
imental study on common synopsis construction algorithms,
with emphasis on wavelet based techniques, that take under
consideration query workload statistics. Our goal is to com-
pare, “expensive” quadratic time algorithms with “cheap”
near-linear time algorithms, particularly when the latter are
not optimal and/or not workload-aware for the problem at
hand. Further, we present the first known algorithm for con-
structing wavelet synopses for a special class of range-sum
query workloads. Our experimental results, clearly justify
the necessity for designing workload-aware algorithms, es-
pecially in the case of range-sum queries.

Categories and Subject Descriptors
H.2.7b [Database Managment]: Data Warehouse and Repos-
itory

General Terms
Algorithms, Experimentation

Keywords
OLAP, wavelet, synopsis, workload-aware

1. INTRODUCTION
Compact synopses have proven very popular, recently, as

an effective means of dealing with massive multi-dimensional
data-sets, such as those typically encountered in modern
data intensive scenarios, e.g. OLAP queries. Such syn-
opses serve two goals. First, synopses can assist in the query
optimization process by providing highly accurate selectiv-
ity estimates, as they efficiently summarize the joint data
distribution. Second, synopses can be used instead of the
actual data providing with approximate answers to large
costly range aggregate queries. Indeed, it can be argued
that users, such as data analysts, exhibit exploratory be-
havior: they pose complex queries over large parts of the
data, which would require considerable resources to process,
and yet, they can tolerate some imprecision in the answers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’06, November 10, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-530-4/06/0011 ...$5.00.

as they try to identify/extract interesting patterns, as long
as these approximate answers are fast and are accompanied
with some error guarantees.

In particular, summarization techniques that take user be-
havior under consideration are very common. User behavior
is expressed in terms of workload statistics collected by log-
ging the queries posed to the system. The argument here is
that these statistics accurately predict future behavior and
thus, can be used to identify “hot” areas of the data. The
synopsis construction algorithm is then designed so as to pay
closer attention to these hot areas by providing increased ac-
curacy, at the expense of less interesting areas. We refer to
such algorithms as being workload-aware.

Among the most popular data summarization techniques
proposed in literature are space partitioning approaches,
such as histograms and wavelet synopses. Briefly, for a do-
main of size N , a histogram construction algorithm searches
for a partition of the domain space in B arbitrarily sized
buckets and approximates all data inside a bucket by a sin-
gle value; the optimal partition is chosen so as to minimize
some error metric, while not exceeding the available budget
B. On the other hand, the wavelet decomposition employs a
fixed, data-independent hierarchical partitioning of the do-
main space (better known as a linear transformation) into N
intervals, each having a single value, a coefficient, associated
with; the wavelet synopsis algorithm optimizes for some er-
ror metric by choosing to maintain only B of the resulting
coefficients, in accordance to a space budget. The empha-
sis of this study is on space partitioning approaches and, in
particular, on workload-aware wavelet synopsis construction
algorithms.

Various algorithms for constructing wavelet synopses can
be found in the database research literature; some of them
can also be tuned to become workload-aware. These algo-
rithms try to minimize the aggregate error incurred when
all possible point, or equality, queries are considered, given
a space budget. Interestingly enough, their algorithmic re-
quirements range from (pseudo-)linear in domain size1 and
budget up to quadratic in domain size. A natural question
that arises is how “cheap”, linear algorithms fare against
“expensive”, quadratic algorithms in terms of the accuracy
achieved by the resulting synopsis.

Surprisingly, the problem of minimizing the aggregate er-
ror when range queries are involved has attracted little at-
tention. Clearly, workload-aware algorithms should take
into consideration such queries, in order to be more appli-
cable to real-life scenarios. In this work, we propose a novel

1or tuple count, in the case of sparse data-sets



workload-aware algorithm, RangeWave, that optimizes for a
special class of hierarchical range queries. To the best of our
knowledge, this is the first treatment for range queries given
workload statistics.

Our Contribution Our study is focused primarily on wavelet
synopsis construction algorithms and presents the following
contributions:

1. We provide a detailed theoretical presentation of the
time and space complexities associated with the most
common algorithms found in literature, with particular
interest in the algorithms that can become workload
aware. In the extensive experimental study, our goal
is to seek for the algorithm that offers the optimal
compromise in terms of achieved accuracy compared to
its running time overhead. For the sake of comparison,
we also include in our study the optimal histogram
construction algorithm.

2. We present a novel workload-aware synopsis construc-
tion algorithm, RangeWave, for a special class of range-
sum queries. We experimentally validate its increased
accuracy and further investigate the performance over-
head it introduces, against previous non workload-aware
wavelet techniques.

1.1 Outline
The remainder of this paper is organized as follows. Next,

Section 2 discusses related work. Section 3 provides the
necessary background for the wavelet decomposition and
introduces weighted Lw

p norms for measuring synopsis ac-
curacy for workloads of both point and range-sum queries.
A detailed presentation and categorization of existing algo-
rithms is presented in Section 4. Our proposed algorithm,
RangeWave, is formally introduced in Section 5. Finally, we
present an experimental evaluation in Section 6 and con-
clude in Section 7.

2. RELATED WORK
Histograms have a long tradition as an effective synopsis

technique and are, thus, used widely in commercial systems.
The bulk of early research focused on heuristically minimiz-
ing approximation errors in some estimation problem with
the validity of the heuristics shown only experimentally. The
interested reader can refer to the work of Ioannidis [9] for
detailed discussion. A special class of heuristic algorithms is
those where the histogram is constructed solely by query an-
swer feedback; these include self-tuning, or workload-aware
histograms [1, 2].

The first work to tackle the problem of constructing an
optimal histogram from an algorithmic standpoint is [10].
The authors make the observation that once the optimal
bucket boundaries have been found the value to assign to
each bucket can be independently derived. Their optimiza-
tion is for the sum-squared-error of point queries, yet ex-
tensions to other metrics such as weighted variations and
maximum absolute/relative error are possible, albeit only
for point queries. In the case of aggregating range-sum er-
rors, the pioneering work of [12] dealt with workloads of
hierarchical range queries, minimizing the (weighted) sum-
squared-error. For arbitrary range queries approximation
algorithms were provided in [16], assuming, however, uni-
form workload distribution.

The wavelet decomposition has been applied successfully
as a data reduction mechanism in a wide variety of appli-

cations. To name a few, wavelets have been used in an-
swering range-sum aggregate queries over data cubes [19,
18] and in selectivity estimation [14]. The effectiveness of
Haar wavelets as a general-purpose approximate query pro-
cessing tool was demonstrated in [3]. For the case of data
sets with multiple measures, the authors in [4] introduce the
notion of extended wavelets, while I/O efficient algorithms
for common maintenance tasks were presented in [11].

A lot of recent work focuses on developing optimal al-
gorithms for constructing wavelet synopses that minimize
more meaningful than the sum-squared-error metrics, tak-
ing into consideration workload statistics. The work in [5]
constructs wavelet synopses that probabilistically minimize
the maximum relative or absolute error incurred for recon-
structing any data value. The work in [6] showed that this is
also possible for deterministically constructed synopses and
provided a novel dynamic programming recurrence, appli-
cable [7] to incorporating workload statistics. Similar ideas
were employed in [15] to construct optimal synopses in near-
quadratic time for a particular class of workload statistics.
Further, the work in [8] provides with improvements to the
space requirements of the aforementioned dynamic program-
ming algorithms. For the same problem, that of construct-
ing an optimal workload-aware wavelet synopsis, the work
in [17] constructs a novel workload-dependant Haar-like ba-
sis by changing the decomposition process so that the con-
ventional greedy thresholding technique applies. Assuming
a uniform workload, the authors in [13] proved that the
heuristics employed in [14] were in fact optimal — however,
their approach requires the construction of the prefix-sum
array/cube.

Let us note that various approximation schemes exist for
fast construction of histograms and wavelet synopses, better
suited for low-resource settings such as data stream environ-
ments. Such schemes, however, are beyond the scope of this
study, where we primarily focus on optimal workload-aware
wavelet synopses.

3. PRELIMINARIES
Wavelets are a useful mathematical tool for hierarchically

decomposing discrete functions (vectors) in ways that are
both efficient and theoretically sound. Broadly speaking, the
wavelet decomposition of a vector consists of a coarse overall
approximation along with detail coefficients that influence
the vector at various scales.

Haar decomposition. Let us describe the Haar transfor-
mation, the simplest type of wavelet decompositions. Let
A be a data vector of size N ; N = 2j for some j ∈ N.
We create a new vector S1[0 . . . (N/2 − 1)] of size N/2 by
averaging the values together pairwise to get a new lower-
resolution representation of the data. Similarly, we create a
vector of differences, or details, D1[0 . . . (N/2− 1)], consist-
ing of the differences of the (second) of the averaged values
from the computed pairwise average. Notice that there is
no loss of information so far, since the value of every ele-
ment of the original data vector can be reconstructed from
the elements of the new vectors, S1 and D1. For exam-
ple A[0] = S[0] + D[0] = (A[0] + A[1])/2 + (A[0] − A[1])/2,
A[1] = S[0] − D[0] = (A[0] + A[1])/2 − (A[0] − A[1])/2,
etc. The process we described so far comprises the first
level of the hierarchical decomposition and is recursively
repeated for the vector of averages, until we produce vec-
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Figure 1: Example wavelet decomposition and error tree for vector a.

tors of size 1. The total number of details we compute is
1+2+. . .+N/2 = N−1. In the end, we construct a vector C
of size N , consisting of the average of all the original values
and the N − 1 details. C is called the non-normalized Haar
transformation of A. Intuitively, coefficients that are com-
puted by averaging or differencing larger areas of the data
vector are more important than those involving smaller ar-
eas. In order to get the normalized Haar transformation of A
we multiply each coefficient computed during the k-th step
of the decomposition by

p
N/2logN−k. Furthermore, the

Haar wavelet decomposition can also be extended to multi-
dimensional data arrays through natural generalizations of
the one-dimensional decomposition process described above.

Figure 1(a) illustrates a simple numeric example. Suppose
we have the data vector a = [2, 2, 0, 2, 3, 5, 4, 4] of size N = 8.
The non-normalized tranformation of a is the vector wa =
[11/4,−5/4, 1/2, 0, 0,−1,−1, 0] of size N = 8. It consists of
the average value of a and the N − 1 detail coefficients we
computed during the decomposition. In our example, the
average value of a is 11/4, the single level 0 detail is −5/4,
level 1 details are 1/2 and 0 and level 2 details are 0,−1,−1
and 0.

The error tree, seen on Figure 1(b), provides a good means
of visualizing the hierarchical nature of Haar transformation.
The root of the tree, c0, is the average of all data values.
Its inner nodes correspond to the detail coefficients and its
leaves correspond to the original data values. Notice that a
leaf-value can be reconstructed from the values of log N + 1
inner nodes, one per level of the tree, lying on the path from
the root to the leaf. For example, a[5] = c0− c1 + c3− c6 ⇔
5 = 11

4
−
�
− 5

4

�
+0−(−1). A coefficient contributes positively

to the leaves on its left and negatively to the leaves on its
right.

Wavelet Synopses. A B-term wavelet synopsis is con-
structed by choosing a subset Λ ⊂ C of wavelet coefficients;
typically B = |Λ| � N . Implicitly, the remaining N − B
coefficients are considered zero and, thus, not stored.

A wavelet synopsis is a lossy form of compression; that is,
by inverting the decomposition process we obtain only an
approximation of the original data incurring, thus, an ap-
proximation error. The overall approximation error is cal-
culated by aggregating individual errors, which are of two
kinds: (i) point errors; and (ii) range-sum errors.

A point error is the error incurred in answering a point,
or equality, query using the synopsis: i.e., what is the value
of the i-th element. Let A represent the original data of
length N and Â the data reconstructed by the synopsis;

clearly, there are N point errors: Ep[i] =
���A[i]− Â[i]

���, for

0 ≤ i < N .
On the other hand, a range-sum error is incurred when

answering a range-sum query: i.e., what is the sum of values
in a contiguous range of the data. Assuming, as before, a
vector A of length N and its approximation Â, there are
N(N+1)/2 distinct range-sum queries and respective errors:

Ers[l : r] =
���Pr

i=l(A[i]− Â[i])
���, for 0 ≤ l ≤ r < N . For ease

of presentation and without loss of generality, we assume
that the range-sum errors are sorted in a vector Ers[i], for
0 ≤ i < N(N + 1)/2.

A special class of range-sum queries is that which involves
dyadic ranges. Given a vector A of length N , a power of 2,
the dyadic ranges of A are the ranges [k2j , (k+1)2j−1],
for 0 ≤ j < log N and 0 ≤ k < N/2j . There are 2N − 1
dyadic ranges, conceptually arranged in a full binary tree,
and therefore as many dyadic range-sum queries and errors

possible: Edr[j, k] =

������
(k+1)2j−1X

i=k2j

(A[i]− Â[i])

������.
In order to measure the total approximation error we need

to aggregate the individual point or range-sum errors by
devising an appropriate metric. In this study we adopt the
usage of weighted Lw

p norms, as they can incorporate all
error metrics that appear in literature.

Formally, an Lw
p is a measure of the magnitude of a vector.

Assuming an input data vector A and a weight vector w,
both of length N , Lw

p is defined as:

Lw
p (A)=̂

 
N−1X
i=0

w[i](A[i])p

!1/p

, for 0 < p < ∞.

Additionally, for p = ∞ we can define Lw
∞ to be the max-

imum value of w[]A[]: Lw
∞ = maxi w[i]A[i]. Note that, for

the purpose of optimizing for a minimum (or a maximum)
value, one can ignore the 1/p exponent, a convention which
we follow for the remainder of this paper.

Weighted norms can be applied to both point and range-
sum error vectors. The most widely used case is that of the
L2 norm of the point error vector; this gives the ubiquitous
sum-squared-error (SSE) metric. For the case of construct-
ing an optimal wavelet synopsis in terms of minimizing the
SSE it can be shown that one only needs to keep the largest
in absolute normalized value coefficients2.
Lw

p norms are general enough to include relative error met-
rics, such as the maximum relative point error (with sanity

bound s) maxi
Ep[i]

max{A[i],s} . One simply needs to incorporate

the denominator in the weight: w[i] = 1/max{A[i], s}.
Workload-aware algorithms. The focus on this study
will be on algorithms that minimize the expected sum-squared-

2The wavelet decomposition is an orthonormal transforma-
tion and by the Parseval theorem the L2 norm is preserved.



error when (point or range-sum) queries are drawn from
the query workload. Assuming a query qi appears in the
collected workload statistics with probability pi and setting
w[i] = pi, it is straightforward to see that the Lw

2 norm
equals the expected value of the sum-squared-error [17].
Note, that relative errors are also possible, e.g., by setting
w[i] = pi/max{A[i], s}.

For the remainder of this paper, workload-aware synopsis
construction algorithms are considered those that can opti-
mize for the Lw

2 norm.

4. SYNOPSIS CONSTRUCTION
ALGORITHMS

In this section we present algorithms found in the liter-
ature for constructing wavelet synopses, as well as briefly
discuss some optimal histogram algorithms. Our aim is to
establish their space and time requirements and examine
whether they can become workload-aware. An experimental
study of these algorithms can be found in Section 6. We be-
gin our discussion with algorithms designed for point queries
in Section 4.1 and continue with those designed for the more
general category of range-sum queries in Section 4.2.

4.1 Point Query Workloads
The Classic Algorithm. For the case of constructing a
B-term wavelet synopsis minimizing the sum-squared-error
(SSE, or unweighted L2 norm) the Classic algorithm selects
the B largest in absolute normalized value coefficients, as
discussed in Section 3. To this end it makes use of a heap to
construct the synopsis in O(N) space and O(N + B log N)
time.

The GaKu Algorithm. The most influential work on wavelet
synopses is that of Garofalakis and Kumar [6]. It has served
as the basis for subsequent work [7, 15, 8], as well as our
RangeWave algorithm introduced in Section 5. The authors
in [6] proposed a dynamic programming algorithm optimiz-
ing for the maximum relative error (Lw

∞), which can be
generalized to any distributive error metric [7], such as Lw

p

norms of the point error vector.
In the following, we discuss the variation that minimizes

the Lw
2 norm of the point errors vector [7], which we denote

as GaKu. The algorithm works on the Haar error tree recur-
sively, starting from the root node c0. Let path(cj) represent
the set of all ancestors of cj in the error tree, coeff(cj) de-
note the set of coefficients in the subtree rooted at cj and
data(cj) denote the data values (leaves) in the cj subtree.
Furthermore, let sign(i, j) be 1 (−1) when the i-th data
value lies in the first (second) half of data(cj).

The basic idea of GaKu is that for every node cj with a
fixed set S of its ancestors being considered part of the syn-
opsis, the subproblem of minimizing the Lw

2 error introduced
in data(cj) can be found recursively by combining solutions
for the subproblems at children nodes c2j , c2j+1. A three
dimensional array M is required to store the solution of ev-
ery dynamic programming subproblem. M [j, b, S] denotes
the minimum value of the Lw

2 error in data(cj), assuming a
space of b coefficients has been alloted to coeff(cj) and that
a subset S ∈ path(cj) of coefficients is to be included in the
synopsis. The base case of the recursion occurs for the leaf
nodes of the error tree (i.e., the data values). In this case,
M [j, b, S], for N ≤ j < 2N , is defined only for b = 0 and
denotes the weighted square of the point error for cj = dj−N

when S is chosen for the synopsis.

M [j, 0, S] = wi · |dj−N −
X

ck∈S

sign(j −N, k) · ck|2

For inner nodes, M [j, b, S] is computed for two cases de-
pending on whether coefficient cj is kept or discarded, and
for every case of allocating available synopsis space to its
children.

Mdrop[j, b, S] = min
0≤b′≤b

(M [2j, b′, S] + M [2j + 1, b− b′, S])

Mkeep[j, b, S] = min
0≤b′≤b−1

(M [2j, b′, S∪{cj}], M [2j+1, b−b′−1, S∪{cj}])

Then, the minimum of the two cases is chosen.

M [j, b, S] = min {Mdrop[j, b, S], Mkeep[j, b, S]}

The minimum Lw
2 error of the entire data set can be found

in M [root, B, ∅]. The space and time complexities of GaKu
are O(N2) and O(N2 log B) respectively as shown in [8, 7].

The UrMa Algorithm. A fundamentally different approach
is followed for the same Lw

2 optimization problem by Matias
and Urieli in [17]. Their technique, however, cannot be gen-
eralized to other Lw

p norms. The main idea is to employ a
modified workload-dependant Haar decomposition, that em-
bodies the weights directly into the decomposition process.

Instead of computing pairwise averages and differences,
UrMa computes weighted averages and weighted differences
over the data, and repeats this process over the weighted
averages until the overall average is obtained. Let aj and
cj denote the weighted averages and detail coefficients com-
puted at the j-th node of the error tree, computed as:

aj =
yja2j + xja2j+1

xj + yj
and cj =

a2j − a2j+1

xj + yj
,

where xj , yj are computed using the sum of weights lk, rk

corresponding to the left and the right half of the interval
under cj in the error tree, respectively:

xj =

r
rj

ljrj + l2j
and yj =

s
lj

ljrj + r2
j

For the special case of the root of the error tree, which rep-
resents the total weighted average, we have:

x0 = y0 =

r
1

l0 + r0

The calculations for the sum of weights lj , rj can be done
in parallel to the decomposition process in one pass us-
ing O(N) space and time. The resulting transformation is
shown to be orthonormal with respect to the Lw

2 norm[17].
Therefore, picking the B largest in absolute value coefficients
minimizes the Lw

2 error and the Classic technique can be ap-
plied to construct the synopsis. Using a heap of size N , the
time and space complexity of UrMa is O(N + B log N) and
O(N), respectively.

The Vopt Algorithm. The work in [10] introduced an op-
timal histogram construction algorithm for minimizing the
sum-squared-error. The authors decouple the problem of se-
lecting bucket boundaries and assigning a single value per
bucket by making the observation that once the optimal
bucket boundaries have been found the value to assign to
each bucket can be independently derived. In this study, we



employ a modified workload-aware version of this algorithm,
denoted as Vopt, that minimizes the Lw

2 norm of the point
error vector in O(N2B) time using O(NB) space. This algo-
rithm serves mainly as a comparison for the wavelet synopses
techniques previously described.

4.2 Range-Sum Query Workloads
The MaUr Algorithm. The work in [14] proposed a greedy
heuristic for the problem of minimizing the sum-squared-
error over the range-sum error vector. Matias and Urieli
in [13] proved the validity of that heuristic. They showed
that the Haar decomposition deployed over the prefix sum
array/cube of the data is in fact orthogonal with respect to
the L2 norm over range-sum queries — this is not the case
for the weighted Lw

2 norm and, therefore, this algorithm
cannot be made workload-aware. They also showed that
the orthogonality does not hold in the case of computing the
transformation over the unprocessed, raw data. The MaUr
algorithm employs a heap similar to the Classic algorithm
and, thus, needs O(N + B log N) time and O(N) space.

The KMS Algorithm. The work in [12] proposes a dy-
namic programming workload-aware algorithm, denoted as
KMS, for constructing a histogram that minimizes the Lw

2

norm over a class of range-sum queries, the hierarchical
range-sum queries. For any two such queries the ranges
involved are either disjoint or contained in each other (i.e.,
their boundaries do not cross), conceptually constructing a
tree hierarchy. The dynamic programming algortihm searches
among the different ways the interval of a range-sum query
can be partially overlapped from left and right by histogram
buckets. There are O(N2) possible buckets that can overlap
such an interval from the left and as many from the right;
KMS needs to tabulate over all O(N4) possible choices. This
results in impracticably large time and space complexities,
O(N7B2) and O(N5B) respectively.

5. RangeWave: AN OPTIMAL WORKLOAD-
AWARE ALGORITHM FOR DYADIC RA-
NGE-SUM QUERIES

In this section we present the first workload-aware algo-
rithm for constructing wavelet synopses assuming workloads
of range-sum queries, termed RangeWave. Our algorithm
has the following characteristics:

1. It works entirely on the unprocessed/raw data, thus,
making maintenance tasks simpler. Note that the only
other known wavelet synopsis algorithm (MaUr [13])
requires the construction of the prefix sum array/cube.

2. It is workload-aware and optimizes for the class of
dyadic range-sum query workloads, but can use any
Lw

p norm to aggregate the dyadic range-sum errors —
in comparison, MaUr is not workload-aware and only
limited to the sum-squared-error metric.

3. It exhibits time and space requirements on par with
the generalized GaKu algorithm [7], which targets only
point query errors.

The RangeWave algorithm builds upon the basic dynamic
programming recurrence of Garofalakis and Kumar and makes
an important observation: since the dyadic range-sum queries
can be organized in a dyadic hierarchy (binary tree) which

coincides with the Haar error tree, to answer a dyadic range-
sum query qi that resides at node ci of the error tree, one
needs to examine only the ancestors of ci, that is, only those
coefficients in path(ci).

Briefly, RangeWave at any node ci of the error tree, given
a space budget b and a subset S of coefficients in path(ci),
must (i) calculate the error associated with dyadic range-
sum qi, (ii) distinguish two cases of keeping or not coefficient
ci, and (iii) decide the best allocation of remaining space
(b−1 or b) to its children. This process proceeds recursively
reaching the leaves/data values.

More formally, suppose that the wavelet coefficients and
the weights are stored in arrays C[0 . . . N−1] and W [1 . . . 2N−
1], respectively. As far as the weights array is concerned,
W [N . . . 2N−1] correspond to weights for the point queries
(dyadic ranges of length 1), while W [1 . . . N−1] corresponds
to the weights of dyadic range-sum queries with length larger
than 1. With every node ci a two-dimensional dynamic pro-
gramming array Ei[b, S] is associated, which stores the op-
timal solution (minimum Lw

2 ) when space of b coefficients
is alloted to the subtree rooted at ci and when a set S of
coefficients in path(ci) are stored.

The base case of the recursion occurs for the leaf nodes of
the error tree, when N ≤ i < 2N . Then, the Ei[0, ·] entries
(defined only for zero space alloted to the leaves) store the
weighted sum-squared error for reconstructing a data value
(i.e., a point query):

Ei[0, S] = W [i]

0
@ X

j∈path(i)

sign(i, j) · C[j]−
X
j∈S

sign(i, j) · C[j]

1
A

2

= W [i]

0
@ X

j∈path(i)rS

sign(i, j) · C[j]

1
A

2

For any error tree node ci other than the root, Range-
Wave chooses the minimum error among including or not
the coefficient ci:

Ei[b, S] = min{Ekeep
i [b, S], Edrop

i [b, S]} , where,

Ekeep
i [b, S] = W [i]

0
@ X

j∈path(i)rS

sign(i, j) · C[j]

1
A

2

+ min
0≤b′≤b−1

�
E2i[b

′, S∪{ci}] + E2i+1[b−b′−1, S∪{ci}]
	

and

Edrop
i [b, S] = W [i]

0
@ X

j∈path(i)rS

sign(i, j) · C[j]

1
A

2

+ min
0≤b′≤b

�
E2i[b

′, S] + E2i+1[b−b′, S]
	

.

At the root node c0, there is no corresponding dyadic
range-sum query and further there is a single child. There-
fore, RangeWave only needs to examine whether the overall
average c0 should be kept in the synopsis:

E0[B, ∅] = min
n

Ekeep
0 [B, ∅], Edrop

0 [B, ∅]
o

Ekeep
0 [B, ∅] = min

0≤b′≤B−1
E1[b

′, {c0}]

Edrop
0 [B, ∅] = min

0≤b′≤B
E1[b

′, ∅].
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Figure 2: Accuracy and Running Time vs. Synopsis Size (B) for Point Query Workloads

The mimimum Lw
2 error is E0[B, ∅] and the optimal syn-

opsis can be reconstructed using standard dynamic program-
ming techniques (e.g., by storing the decisions made by the
algorithm at each node).

Complexity Analysis. There are 2l nodes at the l-th level
of the error tree. Further, for each node ci at the l-th level,
the array Ei[·, ·] contains min{B, 2log N−l−1}×2l+1 entries.
This means, that for nodes at levels larger than log N−log B
the array is of size (2log N−l − 1)× 2l+1 = O(N). Summing
for all nodes at level l > log N − log B we get a space of

log NX
l=log N−log B+1

2l ·N = O(N2).

Similarly, for nodes at levels smaller or equal to log N−log B,
the array size is B × 2l+1. Summing for all nodes at levels
l ≤ log N − log B we get a space of

log N−log BX
l=0

2l ·B · 2l+1 = B ·
log N−log BX

l=0

22l+1 = O

�
N2

B

�
.

Therefore, the space complexity of RangeWave is O(N2).
Each entry in the dynamic programming array requires

examining all space allocation to the children nodes and thus
O(min{B, 2logN−l+1−1}) time. Using similar arguments as
before we obtain:

log N−log BX
l=0

2l ·B2 · 2l +

log NX
l=log N−log B

2l ·
�
2log N−l

�2

· 2l

= O(N2) + O(N2 log B) = O(N2 log B)

Therefore, the time complexity of RangeWave is O(N2 log B).

6. EXPERIMENTAL STUDY
In this section we perform an extensive experimental eval-

uation on the algorithms discussed in Section 4, as well as
our RangeWave algorithm. The comparison is made for each
of the two families of algorithms: (i) assuming point query
workloads, and (ii) assuming dyadic range-sum query work-
loads. Our objective is to evaluate the scalability and the
obtained accuracy of the algorithms at hand. One question
that usually arises in such settings and that we try to an-
swer is whether one should choose expensive quadratic time
algorithms in favor of faster near-linear time counterparts.

6.1 Testbed and Methodology
We have implemented the algorithms discussed in Sec-

tions 4 and 5 in C++ and the experiments reported here
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Figure 3: Accuracy and Running Time vs. Domain
Size (N) for Point Query Workloads

were performed on a 2GHz machine with 2GB of main mem-
ory. We used a Zipfian frequency generator to construct data
sets of average skew (z = 0.6) by randomly permuting the
generated frequencies. In the majority of experiments we
used a dataset with 215 = 32, 768 data values.

For constructing the workloads we used the Zipfian gener-
ator to assign weights to all possible queries. For the point
query workload, denoted as W pq, we chose relatively high
skew (z = 1.2) and randomly permuted the frequencies. For
the dyadic range-sum query workload, we used high skew
(z = 1.2) to construct two workloads, one biased over larger
ranges, W di

b , and one with no particular bias W di in which
small and large ranges were equally likely to appear.

In our experimental study, we measure the Lw
2 norm of the

algorithms. To stress the accuracy of certain algorithms we
explicitly state the (relative) error decrease their synopses
achieve: for synopsis A the error decrease over synopsis B is

defined as
Lw

2 (A)−Lw
2 (B)

Lw
2 (A)

; note that negative values actually

imply an error increase. Finally, we measure the running
time and show the scalability of all algorithms as N and
B increase — we aborted the execution of algorithms in
settings when they required more than an hour to finish.
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Figure 4: Accuracy and Running Time vs. Synopsis Size (B) for Unbiased Dyadic Range-Sum Query Work-
load

6.2 Point Query Workloads
We compare the two workload-aware wavelet algorithms

GaKu and UrMa against Classic, which minimizes the sum-
squared-error, and the workload-aware histogram construc-
tion algorithm Vopt. Recall that GaKu and Vopt are quadratic
time algorithms compared to the near-linear time algorithms
UrMa and Classic. In all experiments the workload used is
W pq.

Figure 2 studies performance as the synopsis size increases.
In particular, Figure 2(a) shows the Lw

2 norm for all algo-
rithms and Figure 2(b) emphasizes on the error decrease of
GaKu compared to the other three algorithms. Note that
the error in Figure 2(a) is measured in thousands with the
exact magnitude having no particular meaning, as only rel-
ative numbers are interesting. The important thing to no-
tice is that the histograms algorithm Vopt exhibits superior
performance, around 10%-15% more accurate than GaKu,
at a large cost, however; as Figure 2(c) shows, its running
time becomes immediately prohibitive. Among the wavelet
synopsis algorithms, GaKu is the winner in terms of accu-
racy, achieving around 10% and 30% more accurate synopses
than UrMa and Classic, respectively, but at a cost due to its
quadratic in N time requirement. Further, GaKu scales well
as synopsis space increases due its logarithmic in B complex-
ity. Overall, the UrMa algorithm seems the better choice as
it constructs a relative accurate wavelet synopsis in really
short time.

Figure 3 studies performance as the domain size increases
from 28 up to 216, while the synopsis size was kept at 2%
of the data size. As Figure 3(b) shows the time complex-
ity of Vopt for B = 0.02N essentially becomes cubic in N
and, thus, we could not obtain measurements for 216. Also,
the running time of GaKu increases quickly to impractical
values. As far as accuracy is concerned, Figure 3(a) shows
that among the pseudo-linear time UrMa scales badly in con-
trast to Classic; still, the quadratic time algorithms construct
more accurate synopses.

6.3 Dyadic Range-Sum Query Workloads
In this section we compare our RangeWave algorithm to

the near-linear time, non workload-aware wavelet algorithms
MaUr and Classic. Let us note that we do not include mea-
surements of the workload-aware histogram construction al-
gorithm KMS as it could only give results for a modest data-
set of 128 values.

Unbiased Workload. We start our discussion with ex-
periments on the unbiased workload W di. Figure 4 studies
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Figure 5: Accuracy and Running Time vs. Domain
Size (N) for Unbiased Dyadic Range-Sum Query
Workload

performance as the synopsis size increases. In particular,
Figure 4(a) shows the Lw

2 norm for all algorithms in loga-
rithmic scale, Figure 4(b) emphasizes on the improvement
of RangeWave against the other algorithms, and Figure 4(c)
shows the running time. Notice, in Figure 4(b) that Range-
Wave offers an almost 100% improvement compared to MaUr
as it produces orders of magnitude more accurate synopses,
as seen in Figure 4(a). Further, RangeWave offers an im-
provement of up to 60% over Classic, as the former increases
its accuracy at an larger rate as B increases. As expected,
Figure 4(c) shows that RangeWave scales well as synopsis
size increases, due to its logarithmic dependecy on B.

In Figure 5, we increase domain size from 28 up to 214,
while the synopsis size was kept at 2% of the data size.
Figure 5(a) shows that RangeWave is constantly significantly
more accurate than Classic and orders of magnitude more
accurate than MaUr. On the other hand, its quadratic time
complexity is depicted in Figure 5(b).

Biased Workload. Here, we experiment with workload



 1

 10

 100

 1000

 10000

 100000

 20  40  60  80  100  120  140  160

er
ro

r 
(in

 m
ill

io
ns

)

Synopsis Size (B)

Biased Dyadic Range-Sum Query Workload, N = 215

MaUr
Classic

RangeWave

(a) Lw
2 Error

 0

 20

 40

 60

 80

 100

 120

 20  40  60  80  100  120  140  160

R
an

ge
W

av
e 

er
ro

r 
de

cr
ea

se
 (

%
)

Synopsis Size (B)

Biased Dyadic Range-Sum Query Workload, N = 215

Classic
MaUr

(b) Lw
2 Error Decrease for RangeWave

Figure 6: Accuracy vs. Synopsis Size (B) for Biased
Dyadic Range-Sum Query Workload
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Dyadic Range-Sum Query Workload

W di
b which assigns more significance to larger range-sum

queries. Figure 6 plots the accuracy achieved by all algo-
rithms. It is important to notice that for such a biased
workload Classic, in contrast to the unbiased workload case,
performs poorly. Figure 6(a) shows that its accuracy does
not increase with synopsis size. In general, both near-linear
non workload-aware algorithms perform orders of magni-
tude worse than RangeWave; in fact, Figure 6(b) shows that
RangeWave enjoys a performance gain of almost 100%. Also,
observe that, as Figure 7 portrays, the accuracy of Range-
Wave is consistently orders of magnitude higher, as the do-
main size increases.

7. CONCLUSIONS AND DISCUSSION
In this paper, we have presented an extensive theoretical

and experimental study on wavelet synopsis algorithms that
take under consideration either point or range-sum query
workloads. In particular, for the latter case, we have de-
vised the first known algorithm RangeWave for constructing
optimal wavelet synopses, albeit restricted to a particular
class of range-sum queries. Our experimental results for the
case of point query workloads have shown that in practice,
one gets what one pays for: quadratic time synopsis algo-

rithms consistently outperform pseudo-linear counterparts,
at a high price, though. As for range-sum query workloads,
RangeWave is orders of magnitude more accurate, especially
with skewed workloads, justifying the necessity for designing
workload-aware algorithms for range-sum queries.
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