
Fast Approximate Wavelet Tracking on Streams

Graham Cormode1, Minos Garofalakis2, and Dimitris Sacharidis3

1 Bell Labs, Lucent Technologies
cormode@bell-labs.com
2 Intel Research Berkeley

minos.garofalakis@intel.com
3 National Technical University of Athens

dsachar@dblab.ntua.gr

Abstract. Recent years have seen growing interest in effective algorithms for
summarizing and querying massive, high-speed data streams. Randomized sketch
synopses provide accurate approximations for general-purpose summaries of the
streaming data distribution (e.g., wavelets). The focus of existing work has typi-
cally been on minimizing space requirements of the maintained synopsis — how-
ever, to effectively support high-speed data-stream analysis, a crucial practical
requirement is to also optimize: (1) the update time for incorporating a stream-
ing data element in the sketch, and (2) the query time for producing an approx-
imate summary (e.g., the top wavelet coefficients) from the sketch. Such time
costs must be small enough to cope with rapid stream-arrival rates and the real-
time querying requirements of typical streaming applications (e.g., ISP network
monitoring). With cheap and plentiful memory, space is often only a secondary
concern after query/update time costs.

In this paper, we propose the first fast solution to the problem of tracking
wavelet representations of one-dimensional and multi-dimensional data streams,
based on a novel stream synopsis, the Group-Count Sketch (GCS). By imposing
a hierarchical structure of groups over the data and applying the GCS, our al-
gorithms can quickly recover the most important wavelet coefficients with guar-
anteed accuracy. A tradeoff between query time and update time is established,
by varying the hierarchical structure of groups, allowing the right balance to be
found for specific data stream. Experimental analysis confirms this tradeoff, and
shows that all our methods significantly outperform previously known methods
in terms of both update time and query time, while maintaining a high level of
accuracy.

1 Introduction

Driven by the enormous volumes of data communicated over today’s Internet, several
emerging data-management applications crucially depend on the ability to continu-
ously generate, process, and analyze massive amounts of data in real time. A typical
example domain here comprises the class of continuous event-monitoring systems de-
ployed in a wide variety of settings, ranging from network-event tracking in large ISPs
to transaction-log monitoring in large web-server farms and satellite-based environ-
mental monitoring. For instance, tracking the operation of a nationwide ISP network

Y. Ioannidis et al. (Eds.): EDBT 2006, LNCS 3896, pp. 4–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast Approximate Wavelet Tracking on Streams 5

requires monitoring detailed measurement data from thousands of network elements
across several different layers of the network infrastructure. The volume of such mon-
itoring data can easily become overwhelming (in the order of Terabytes per day). To
deal effectively with the massive volume and continuous, high-speed nature of data in
such environments, the data streaming paradigm has proven vital. Unlike conventional
database query-processing engines that require several (expensive) passes over a static,
archived data image, streaming data-analysis algorithms rely on building concise, ap-
proximate (but highly accurate) synopses of the input stream(s) in real-time (i.e., in one
pass over the streaming data). Such synopses typically require space that is significantly
sublinear in the size of the data and can be used to provide approximate query answers
with guarantees on the quality of the approximation. In many monitoring scenarios, it is
neither desirable nor necessary to maintain the data in full; instead, stream synopses can
be used to retain enough information for the reliable reconstruction of the key features
of the data required in analysis.

The collection of the top (i.e., largest) coefficients in the wavelet transform (or, de-
composition) of an input data vector is one example of such a key feature of the stream.
Wavelets provide a mathematical tool for the hierarchical decomposition of functions,
with a long history of successful applications in signal and image processing [16, 22].
Applying the wavelet transform to a (one- or multi-dimensional) data vector and retain-
ing a select small collection of the largest wavelet coefficient gives a very effective form
of lossy data compression. Such wavelet summaries provide concise, general-purpose
summaries of relational data, and can form the foundation for fast and accurate approx-
imate query processing algorithms (such as approximate selectivity estimates, OLAP
range aggregates and approximate join and multi-join queries. Wavelet summaries can
also give accurate (one- or multi-dimensional) histograms of the underlying data vec-
tor at multiple levels of resolution, thus providing valuable primitives for effective data
visualization.

Most earlier stream-summarization work focuses on minimizing the space require-
ments for a given level of accuracy (in the resulting approximate wavelet representation)
while the data vector is being rendered as a stream of arbitrary point updates. However,
while space is an important consideration, it is certainly not the only parameter of in-
terest. To effectively support high-speed data-stream analyses, two additional key para-
meters of a streaming algorithm are: (1) the update time for incorporating a streaming
update in the sketch, and (2) the query time for producing the approximate summary
(e.g., the top wavelet coefficients) from the sketch. Minimizing query and update times
is a crucial requirement to cope with rapid stream-arrival rates and the real-time query-
ing needs of modern streaming applications. Furthermore, there are essential tradeoffs
between the above three parameters (i.e., space, query time, and update time), and it can
be argued that space usage is often the least important of these. For instance, consider
monitoring a stream of active network connections for the users consuming the most
bandwidth (commonly referred to as the “top talkers” or “heavy hitters” [6, 18]). Typical
results for this problem give a stream-synopsis space requirement of O(1/ε), meaning
that an accuracy of ε = 0.1% requires only a few thousands of storage locations, i.e.,
a few Kilobytes, which is of little consequence at all in today’s off-the-shelf systems

6 G. Cormode, M. Garofalakis, and D. Sacharidis

featuring Gigabytes of main memory1. Now, suppose that the network is processing IP
packets on average a few hundred bytes in length at rates of hundreds of Mbps; essen-
tially, this implies that the average processing time per packet must much less than one
millisecond: an average system throughput of tens to hundreds of thousands of packets
per second. Thus, while synopsis space is probably a non-issue in this setting, the times
to update and query the synopsis can easily become an insurmountable bottleneck. To
scale to such high data speeds, streaming algorithms must guarantee provably small
time costs for updating the synopsis in real time. Small query times are also important,
requiring near real-time response. (e.g., for detecting and reacting to potential network
attacks). In summary, we need fast item processing, fast analysis, and bounded space
usage — different scenarios place different emphasis on each parameter but, in general,
more attention needs to be paid to the time costs of streaming algorithms.

Our Contributions. The streaming wavelet algorithms of Gilbert et al. [11] guaranteed
small space usage, only polylogarithmic in the size of the vector. Unfortunately, the
update- and query-time requirements of their scheme can easily become problematic for
real-time monitoring applications, since the whole data structure must be “touched” for
each update, and every wavelet coefficient queried to find the best few. Although [11]
tries to reduce this cost by introducing more complex range-summable hash functions
to make estimating individual wavelet coefficients faster, the number of queries does
not decrease, and the additional complexity of the hash functions means that the update
time increases further. Clearly, such high query times are not acceptable for any real-
time monitoring environment, and pose the key obstacle in extending the algorithms
in [11] to multi-dimensional data (where the domain size grows exponentially with data
dimensionality).

In this paper, we propose the first known streaming algorithms for space- and time-
efficient tracking of approximate wavelet summaries for both one- and multi-dimensional
data streams. Our approach relies on a novel, sketch-based stream synopsis structure,
termed the Group-Count Sketch (GCS) that allows us to provide similar space/accuracy
tradeoffs as the simple sketches of [11], while guaranteeing: (1) small, logarithmic up-
date times (essentially touching only a small fraction of the GCS for each streaming
update) with simple, fast, hash functions; and, (2) polylogarithmic query times for com-
puting the top wavelet coefficients from the GCS. In brief, our GCS algorithms rely on
two key, novel technical ideas. First, we work entirely in the wavelet domain, in the
sense that we directly sketch wavelet coefficients, rather than the original data vector,
as updates arrive. Second, our GCSs employ group structures based on hashing and hi-
erarchical decomposition over the wavelet domain to enable fast updates and efficient
binary-search-like techniques for identifying the top wavelet coefficients in sublinear
time. We also demonstrate that, by varying the degree of our search procedure, we can
effectively explore the tradeoff between update and query costs in our GCS synopses.
Our GCS algorithms and results also naturally extend to both the standard and non-
standard form of the multi-dimensional wavelet transform, essentially providing the
only known efficient solution for streaming wavelets in more than one dimension. As

1 One issue surrounding using very small space is whether the data structure fits into the faster
cache memory, which again emphasizes the importance of running time costs.

Fast Approximate Wavelet Tracking on Streams 7

our experimental results with both synthetic and real-life data demonstrate, our GCS
synopses allow very fast update and searching, capable of supporting very high speed
data sources.

2 Preliminaries

In this section, we first discuss the basic elements of our stream-processing model and
briefly introduce AMS sketches [2]; then, we present a short introduction to the Haar
wavelet decomposition in both one and multiple dimensions, focusing on some of its
key properties for our problem setting.

2.1 Stream Processing Model and Stream Sketches

Our input comprises a continuous stream of update operations, rendering a data vector
a of N values (i.e., the data-domain size). Without loss of generality, we assume that
the index of our data vector takes values in the integer domain [N] = {0, . . . , N − 1},
where N is a power of 2 (to simplify the notation). Each streaming update is a pair
of the form (i, ±v), denoting a net change of ±v in the a[i] entry; that is, the ef-
fect of the update is to set a[i] ← a[i] ± v. Intuitively, “+v” (“−v”) can be seen as
v insertions (resp., deletions) of the ith vector element, but more generally we allow
entries to take negative values. (Our model instantiates the most general and, hence,
most demanding turnstile model of streaming computations [20].) Our model gener-
alizes to multi-dimensional data: for d data dimensions, a is a d-dimensional vec-
tor (tensor) and each update ((i1, . . . , id), ±v) effects a net change of ±v on entry
a[i1, . . . , id].2

In the data-streaming context, updates are only seen once in the (fixed) order of
arrival; furthermore, the rapid data-arrival rates and large data-domain size N make
it impossible to store a explicitly. Instead, our algorithms can only maintain a concise
synopsis of the stream that requires only sublinear space, and, at the same time, can
(a) be maintained in small, sublinear processing time per update, and (b) provide query
answers in sublinear time. Sublinear here means polylogarithmic in N , the data-vector
size. (More strongly, our techniques guarantee update times that are sublinear in the size
of the synopsis.)

Randomized AMS Sketch Synopses for Streams. The randomized AMS sketch [2] is
a broadly applicable stream synopsis structure based on maintaining randomized linear
projections of the streaming input data vector a. Briefly, an atomic AMS sketch of a is
simply the inner product 〈a, ξ〉 =

∑
i a[i]ξ(i), where ξ denotes a random vector of four-

wise independent ±1-valued random variates. Such variates can be easily generated
on-line through standard pseudo-random hash functions ξ() using only O(log N) space
(for seeding) [2, 11]. To maintain this inner product over the stream of updates to a,
initialize a running counter X to 0 and set X ← X ± vξ(i) whenever the update
(i, ±v) is seen in the input stream. An AMS sketch of a comprises several independent

2 Without loss of generality we assume a domain of [N]d for the d-dimensional case — different
dimension sizes can be handled in a straightforward manner. Further, our methods do not need
to know the domain size N beforehand — standard adaptive techniques can be used.

8 G. Cormode, M. Garofalakis, and D. Sacharidis

atomic AMS sketches (i.e., randomized counters), each with a different random hash
function ξ(). The following theorem summarizes the key property of AMS sketches for
stream-query estimation, where ||v||2 denotes the L2-norm of a vector v, so ||v||2 =√

〈v, v〉 =
√∑

i v[i]2.

Theorem 1 ([1, 2]). Consider two (possibly streaming) data vectors a and b, and let
Z denote the O(log(1/δ))-wise median of O(1/ε2)-wise means of independent copies
of the atomic AMS sketch product (

∑
i a[i]ξj(i))(

∑
i b[i]ξj(i)). Then, |Z − 〈a, b〉| ≤

ε||a||2||b||2 with probability ≥ 1 − δ.

Thus, using AMS sketches comprising only O(log(1/δ)
ε2) atomic counters we can ap-

proximate the vector inner product 〈a, b〉 to within ±ε||a||2||b||2 (hence implying an
ε-relative error estimate for ||a||22).

2.2 Discrete Wavelet Transform Basics

The Discrete Wavelet Transform (DWT) is a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient and theoretically sound. Broadly
speaking, the wavelet decomposition of a function consists of a coarse overall approxi-
mation together with detail coefficients that influence the function at various scales [22].
Haar wavelets represent the simplest DWT basis: they are conceptually simple, easy to
implement, and have proven their effectiveness as a data-summarization tool in a variety
of settings [4, 24, 10].

One-Dimensional Haar Wavelets. Consider the one-dimensional data vector
a = [2, 2, 0, 2, 3, 5, 4, 4] (N = 8). The Haar DWT of a is computed as follows. We
first average the values together pairwise to get a new “lower-resolution” representation
of the data with the pairwise averages [2+2

2 , 0+2
2 , 3+5

2 , 4+4
2] = [2, 1, 4, 4]. This averag-

ing loses some of the information in a. To restore the original a values, we need detail
coefficients, that capture the missing information. In the Haar DWT, these detail coef-
ficients are the differences of the (second of the) averaged values from the computed
pairwise average. Thus, in our simple example, for the first pair of averaged values, the
detail coefficient is 0 since 2−2

2 = 0, for the second it is −1 since 0−2
2 = −1. No infor-

mation is lost in this process – one can reconstruct the eight values of the original data
array from the lower-resolution array containing the four averages and the four detail
coefficients. We recursively apply this pairwise averaging and differencing process on
the lower-resolution array of averages until we reach the overall average, to get the full
Haar decomposition. The final Haar DWT of a is given by wa = [11/4, −5/4, 1/2, 0,
0, −1, −1, 0], that is, the overall average followed by the detail coefficients in order
of increasing resolution. Each entry in wa is called a wavelet coefficient. The main ad-
vantage of using wa instead of the original data vector a is that for vectors containing
similar values most of the detail coefficients tend to have very small values. Thus, elim-
inating such small coefficients from the wavelet transform (i.e., treating them as zeros)
introduces only small errors when reconstructing the original data, resulting in a very
effective form of lossy data compression [22].

A useful conceptual tool for visualizing and understanding the (hierarchical) Haar
DWT process is the error tree structure [19] (shown in Fig. 1(a) for our example

Fast Approximate Wavelet Tracking on Streams 9

+
_

+_
+ +

+

+
_

+ _
+ +

+
_

+ _
+ +

+
_

+_
+ +

1/2c2 0c3

0
c4

0
c7

4

a[6]

4

a[7]

l = 2

l = 1

l = 3

c1 −5/4
l = 0

11/4c0

c6

3 5

c5

0

a[2] a[3]

2

−1 −1

2

a[0] a[1]

2

a[4] a[5]

l = 1

l = 0
_

_

+
+

+

_
+ _

(b)(a)

Fig. 1. Example error-tree structures for (a) a one-dimensional data array (N = 8), and (b) non-
standard two-dimensional Haar coefficients for a 4 × 4 data array (coefficient magnitudes are
multiplied by +1 (−1) in the “+” (resp., “-”) labeled ranges, and 0 in blank areas)

array a). Each internal tree node ci corresponds to a wavelet coefficient (with the root
node c0 being the overall average), and leaf nodes a[i] correspond to the original data-
array entries. This view allows us to see that the reconstruction of any a[i] depends only
on the log N + 1 coefficients in the path between the root and a[i]; symmetrically, it
means a change in a[i] only impacts its log N + 1 ancestors in an easily computable
way. We define the support for a coefficient ci as the contiguous range of data-array
that ci is used to reconstruct (i.e., the range of data/leaf nodes in the subtree rooted
at ci). Note that the supports of all coefficients at resolution level l of the Haar DWT
are exactly the 2l (disjoint) dyadic ranges of size N/2l = 2log N−l over [N], defined
as Rl,k = [k · 2log N−l, . . . , (k + 1) · 2log N−l − 1] for k = 0, . . . , 2l − 1 (for each
resolution level l = 0, . . . , log N). The Haar DWT can also be conceptualized in terms
of vector inner-product computations: let φl,k denote the vector with φl,k[i] = 2l−log N

for i ∈ Rl,k and 0 otherwise, for l = 0, . . . , log N and k = 0, . . . , 2l −1; then, each of
the coefficients in the Haar DWT of a can be expressed as the inner product of a with
one of the N distinct Haar wavelet basis vectors:

{1
2
(φl+1,2k − φl+1,2k+1) : l = 0, . . . , log N − 1; k = 0, . . . , 2l − 1} ∪ {φ0,0}

Intuitively, wavelet coefficients with larger support carry a higher weight in the re-
construction of the original data values. To equalize the importance of all Haar DWT
coefficients, a common normalization scheme is to scale the coefficient values at level
l (or, equivalently, the basis vectors φl,k) by a factor of

√
N/2l. This normalization

essentially turns the Haar DWT basis vectors into an orthonormal basis — letting c∗i
denote the normalized coefficient values, this fact has two important consequences:
(1) The energy of the a vector is preserved in the wavelet domain, that is, ||a||22 =∑

i a[i]2 =
∑

i(c
∗
i)

2 (by Parseval’s theorem); and, (2) Retaining the B largest coeffi-
cients in terms of absolute normalized value gives the (provably) best B-term approx-
imation in terms of Sum-Squared-Error (SSE) in the data reconstruction (for a given
budget of coefficients B) [22].

Multi-Dimensional Haar Wavelets. There are two distinct ways to generalize the Haar
DWT to the multi-dimensional case, the standard and nonstandard Haar decomposi-
tion [22]. Each method results from a natural generalization of the one-dimensional
decomposition process described above, and both have been used in a wide variety of
applications. Consider the case where a is a d-dimensional data array, comprising Nd

10 G. Cormode, M. Garofalakis, and D. Sacharidis

entries. As in the one-dimensional case, the Haar DWT of a results in a d-dimensional
wavelet-coefficient array wa with Nd coefficient entries. The non-standard Haar DWT
works in log N phases where, in each phase, one step of pairwise averaging and dif-
ferencing is performed across each of the d dimensions; the process is then repeated
recursively (for the next phase) on the quadrant containing the averages across all di-
mensions. The standard Haar DWT works in d phases where, in each phase, a com-
plete 1-dimensional DWT is performed for each one-dimensional row of array cells
along dimension k, for all k = 1, . . . , d. (full details and efficient decomposition al-
gorithms are in [4, 24].) The supports of non-standard d-dimensional Haar coefficients
are d-dimensional hyper-cubes (over dyadic ranges in [N]d), since they combine 1-
dimensional basis functions from the same resolution levels across all dimensions. The
cross product of a standard d-dimensional coefficient (indexed by, say, (i1, . . . , id))
is, in general a d-dimensional hyper-rectangle, given by the cross-product of the 1-
dimensional basis functions corresponding to coefficient indexes i1, . . . , id.

Error-tree structures can again be used to conceptualize the properties of both forms
of d-dimensional Haar DWTs. In the non-standard case, the error tree is essentially
a quadtree (with a fanout of 2d), where all internal non-root nodes contain 2d−1 co-
efficients that have the same support region in the original data array but with differ-
ent quadrant signs (and magnitudes) for their contribution. For standard d-dimensional
Haar DWT, the error-tree structure is essentially a “cross-product” of d one-dimensional
error trees with the support and signs of coefficient (i1, . . . , id) determined by the prod-
uct of the component one-dimensional basis vectors (for i1, . . . , d). Fig. 1(b) depicts a
simple example error-tree structure for the non-standard Haar DWT of a 2-dimensional
4 × 4 data array. It follows that updating a single data entry in the d-dimensional data
array a impacts the values of (2d − 1) log N + 1 = O(2d log N) coefficients in the
non-standard case, and (log N + 1)d = O(logd N) coefficients in the standard case.
Both multi-dimensional decompositions preserve the orthonormality, thus retaining the
largest B coefficient values gives a provably SSE-optimal B-term approximation of a.

3 Problem Formulation and Overview of Approach

Our goal is to continuously track a compact B-coefficient wavelet synopsis under our
general, high-speed update-stream model. We require our solution to satisfy all three
key requirements for streaming algorithms outlined earlier in this paper, namely: (1)
sublinear synopsis space, (2) sublinear per-item update time, and (3) sublinear query
time, where sublinear means polylogarithmic in the domain size N . As in [11], our al-
gorithms return only an approximate synopsis comprising (at most) B Haar coefficients
that is provably near-optimal (in terms of the captured energy of the underlying vector)
assuming that our vector satisfies the “small-B property” (i.e., most of its energy is con-
centrated in a small number of Haar DWT coefficients) — this assumption is typically
satisfied for most real-life data distributions [11].

The streaming algorithm presented by Gilbert et al. [11] (termed “GKMS” in the
remainder of the paper) focuses primarily on the one-dimensional case. The key idea is
to maintain an AMS sketch for the streaming data vector a (as discussed in Sec. 2.1).
To produce the approximate B-term representation, GKMS employs the constructed

Fast Approximate Wavelet Tracking on Streams 11

sketch of a to estimate the inner product of a with all wavelet basis vectors, essen-
tially performing an exhaustive search over the space of all wavelet coefficients to iden-
tify important ones. Although techniques based on range-summable random variables
constructed using Reed-Muller codes were proposed to reduce or amortize the cost of
this exhaustive search by allowing the sketches of basis vectors to be computed more
quickly, the overall query time for discovering the top coefficients remains superlinear
in N (i.e., at least Ω(1

ε2 N log N)), violating our third requirement. For large data do-
mains, say N = 232 ≈ 4 billion (such as the IP address domain considered in [11]),
a query can take a very long time: over an hour, even if a million coefficient queries
can be answered per second! This essentially renders a direct extension of the GKMS
technique to multiple dimensions infeasible since it implies an exponential explosion
in query cost (requiring at least O(Nd) time to cycle through all coefficients in d di-
mensions). In addition, the update cost of the GKMS algorithm is linear in the size of
the sketch since the whole data structure must be “touched” for each update. This is
problematic for high-speed data streams and/or even moderate sized sketch synopses.

Our Approach. Our proposed solution relies on two key novel ideas to avoid the short-
comings of the GKMS technique. First, we work entirely in the wavelet domain: in-
stead of sketching the original data entries, our algorithms sketch the wavelet-coefficient
vector wa as updates arrive. This avoids any need for complex range-summable hash
functions. Second, we employ hash-based grouping in conjunction with efficient binary-
search-like techniques to enable very fast updates as well as identification of important
coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain. Our first technical idea relies on the observation
that we can efficiently produce sketch synopses of the stream directly in the wavelet do-
main. That is, we translate the impact of each streaming update on the relevant wavelet
coefficients. By the linearity properties of the DWT and our earlier description, we
know that an update to the data entries corresponds to only polylogarithmically many
coefficients in the wavelet domain. Thus, on receiving an update to a, our algorithms
directly convert it to O(polylog(N)) updates to the wavelet coefficients, and maintain
an approximate representation of the wavelet coefficient vector wa.

– Time-Efficient Updates and Large-Coefficient Searches. Sketching in the wavelet do-
main means that, at query time, we have an approximate representation of the wavelet-
coefficient vector wa and need to be able to identify all those coefficients that are
“large”, relative to the total energy of the data ‖wa‖2

2 = ‖a‖2
2. While AMS sketches can

give us these estimates (a point query is just a special case of an inner product), querying
remains much too slow taking at least Ω(1

ε2 N) time to find which of the N coefficients
are the B largest. Note that although a lot of earlier work has given efficient stream-
ing algorithms for identifying high-frequency items [5, 6, 18], our requirements here
are quite different. Our techniques must monitor items (i.e., DWT coefficients) whose
values increase and decrease over time, and which may very well be negative (even
if all the data entries in a are positive). Existing work on “heavy-hitter” tracking fo-
cuses solely on non-negative frequency counts [6] often assumed to be non-decreasing
over time [5, 18]. More strongly, we must find items whose squared value is a large

12 G. Cormode, M. Garofalakis, and D. Sacharidis

b buckets

c subbuckets

x h(id(x))

t repetitions

f(x) +u (x)ξ

Fig. 2. Our Group-Count Sketch (GCS) data structure: x is hashed (t times) to a bucket and then
to a subbucket within the bucket, where a counter is updated

fraction of the total vector energy ||wa||22: this is a stronger condition since such “L2
2heavy

hitters” may not be heavy hitters under the conventional sum-of-counts definition. 3

At a high level, our algorithms rely on a divide-and-conquer or binary-search-like
approach for finding the large coefficients. To implement this, we need the ability to
efficiently estimate sums-of-squares for groups of coefficients, corresponding to dyadic
subranges of the domain [N]. We then disregard low-energy regions and recurse only
on high-energy groups — note that this guarantees no false negatives, as a group that
contains a high-energy coefficient will also have high energy as a whole. Furthermore,
our algorithms also employ randomized, hash-based grouping of dyadic groups and
coefficients to guarantee that each update only touches a small portion of our synopsis,
thus guaranteeing very fast update times.

4 Our Solution: The GCS Synopsis and Algorithms

We introduce a novel, hash-based probabilistic synopsis data structure, termed Group-
Count Sketch (GCS), that can estimate the energy (squared L2 norm) of fixed groups of
elements from a vector w of size N under our streaming model. (To simplify the expo-
sition we initially focus on the one-dimensional case, and present the generalization to
multiple dimensions later in this section.) Our GCS synopsis requires small, sublinear
space and takes sublinear time to process each stream update item; more importantly,
we can use a GCS to obtain a high-probability estimate of the energy of a group within
additive error ε||w||22 in sublinear time. We then demonstrate how to use GCSs as the
basis of efficient streaming procedures for tracking large wavelet coefficients.

Our approach takes inspiration from the AMS sketching solution for vector L2-norm
estimation; still, we need a much stronger result, namely the ability to estimate L2
norms for a (potentially large) number of groups of items forming a partition of the
data domain [N]. A simple solution would be to keep an AMS sketch of each group
separately; however, there can be many groups, linear in N , and we cannot afford to
devote this much space to the problem. We must also process streaming updates as
quickly as possible. Our solution is to maintain a structure that first partitions items of
w into their group, and then maps groups to buckets using a hash function. Within each
bucket, we apply a second stage of hashing of items to sub-buckets, each containing
an atomic AMS sketch counter, in order to estimate the L2 norm of the bucket. In our

3 For example, consider a set of items with counts {4, 1, 1, 1, 1, 1, 1, 1, 1}. The item with count
4 represents 2

3 of the sum of the squared counts, but only 1
3 of the sum of counts.

Fast Approximate Wavelet Tracking on Streams 13

analysis, we show that this approach allows us to provide accurate estimates of the
energy of any group in w with tight ±ε||w||22 error guarantees.

The GCS Synopsis. Assume a total of k groups of elements of w that form a partition of
[N]. For notational convenience, we use a function id that identifies the specific group
that an element belongs to, id : [N] → [k]. (In our setting, groups correspond to fixed
dyadic ranges over [N] so the id mapping is trivial.) Following common data-streaming
practice, we first define a basic randomized estimator for the energy of a group, and
prove that it returns a good estimate (i.e., within ±ε||w||22 additive error) with constant
probability > 1

2 ; then, by taking the median estimate over t independent repetitions,
we are able to reduce the probability of a bad estimate to exponentially small in t. Our
basic estimator first hashes groups into b buckets and then, within each bucket, it hashes
into c sub-buckets. (The values of t, b, and c parameters are determined in our analysis.)
Furthermore, as in AMS sketching, each item has a {±1} random variable associated
with it. Thus, our GCS synopsis requires three sets of t hash functions, hm : [k] →
[b], fm : [N] → [c], and ξm : [N] → {±1} (m = 1, . . . , t). The randomization
requirement is that hm’s and fm’s are drawn from families of pairwise independent
functions, while ξm’s are four-wise independent (as in basic AMS); such hash functions
are easy to implement, and require only O(log N) bits to store.

Our GCS synopsis s consists of t · b · c counters (i.e., atomic AMS sketches), labeled
s[1][1][1] through s[t][b][c], that are maintained and queried as follows:

UPDATE(i, u). Set s[m][hm(id(i))][fm(i)]+ = u · ξm(i), for each m = 1, . . . , t.

ESTIMATE(GROUP). Return the estimatemedianm=1,... ,t

∑c
j=1(s[m][hm(GROUP)][j])2

for the energy of the group of items GROUP ∈ {1, . . . , k} (denoted by ‖GROUP‖2
2).

Thus, the update and query times for a GCS synopsis are simply O(t) and O(t · c),
respectively. The following theorem summarizes our key result for GCS synopses.

Theorem 2. Our Group-Count Sketch algorithms estimate the energy of item groups
of the vector w within additive error ε||w||22 with probability ≥ 1 − δ using space of
O

(1
ε3 log 1

δ

)
counters, per-item update time ofO

(
log 1

δ

)
, and query time ofO

(1
ε2 log 1

δ

)
.

Proof. Fix a particular group GROUP and a row r in the GCS; we drop the row index m
in the context where it is understood. Let BUCKET be the set of elements that hash into
the same bucket as GROUP does: BUCKET = {i | i ∈ [1, n] ∧ h(id(i)) = h(GROUP)}.
Among those, let COLL be the set of elements other than those of GROUP: COLL =
{i | i ∈ [1, n] ∧ id(i) �= GROUP ∧ h(id(i)) = h(GROUP)}. In the following, we abuse
notation in that we refer to a refer to both a group and the set of items in the group with
the same name. Also, we write ‖S‖2

2 to denote the sum of squares of the elements (i.e.
L2

2) in set S: ‖S‖2
2 =

∑
i∈S w[i]2.

Let est be the estimator for the sum of squares of the items of GROUP. That is,
est =

∑c
j=1 estj where estj = (s[m][hm(GROUP)][j])2 is the square of the count in

sub-bucket SUBj . The expectation of this estimator is, by simple calculation, the sum of
squares of items in sub-bucket j, which is a fraction of the sum of squares of the bucket.
Similarly, using linearity of expectation and the four-wise independence of the ξ hash
functions, the variance of est is bounded in terms of the square of the expectation:

14 G. Cormode, M. Garofalakis, and D. Sacharidis

E[est] = E[‖BUCKET‖2
2] Var[est] ≤ 2

cE[‖BUCKET‖4
2]

To calculate E[‖BUCKET‖2
2], observe that the bucket contains items of GROUP as well

as items from other groups denoted by the set COLL which is determined by h. Because
of the pairwise independence of h, this expectation is bounded by a fraction of the total
energy. Therefore:

E[‖BUCKET‖2
2] = ‖GROUP‖2

2 + E[‖COLL‖2
2] ≤ ‖GROUP‖2

2 + 1
b ||w||22

and E[‖BUCKET‖4
2] = ‖GROUP‖4

2 + E[‖COLL‖4
2] + 2‖GROUP‖2

2E[‖COLL‖2
2]

≤ ||w||42 + 1
b ||w||42 + 2||w||22 · 1

b ||w||22 ≤ (1 + 3
b)||w||42 ≤ 2||w||22

since ‖GROUP‖2
2 ≤ ||w||22 and b ≥ 3. The estimator’s expectation and variance satisfy

E[est] ≤ ‖GROUP‖2
2 + 1

b ||w||22 Var[est] ≤ 4
c‖w‖4

2

Applying the Chebyshev inequality we obtain Pr
[
|est − E[est]| ≥ λ||w||22

]
≤ 4

cλ2

and by setting c = 32
λ2 the bound becomes 1

8 , for some parameter λ. Using the above
bounds on variance and expectation and the fact that |x − y| ≥ ||x| − |y|| we have,

|est − E[est]| ≥
∣
∣
∣
∣est − ‖GROUP‖2

2 − 1
b
||w||22

∣
∣
∣
∣ ≥

∣
∣
∣
∣
∣
∣est − ‖GROUP‖2

2

∣
∣ − 1

b
||w||22

∣
∣
∣
∣ .

Consequently (note that Pr[|x| > y] ≥ Pr[x > y]),

Pr
[
∣
∣est − ‖GROUP‖2

2

∣
∣ − 1

b
||w||22 ≥ λ||w||22

]

≤ Pr
[
|est − E[est]| ≥ λ||w||22

]
≤ 1

8
or equivalently, Pr

[∣
∣est − ‖GROUP‖2

2

∣
∣ ≥

(
λ + 1

b

)
||w||22

]
≤ 1

8 . Setting b = 1
λ we get

Pr
[∣
∣est − ‖GROUP‖2

2

∣
∣ ≥ 2λ||w||22

]
≤ 1

8 and to obtain an estimator with ε||w||22 addi-
tive error we require λ = ε

2 which translates to b = O(1
ε) and c = O(1

ε2).
By Chernoff bounds, the probability that the median of t independent instances of the

estimator deviates by more than ε||w||22 is less than e−qt, for some constant q. Setting
this to the probability of failure δ, we require t = O

(
log 1

δ

)
, which gives the claimed

bounds. �

Hierarchical Search Structure for Large Coefficients. We apply our GCS synopsis
and estimators to the problem of finding items with large energy (i.e., squared value)
in the w vector. Since our GCS works in the wavelet domain (i.e., sketches the wavelet
coefficient vector), this is exactly the problem of recovering important coefficients. To
efficiently recover large-energy items, we impose a regular tree structure on top of the
data domain [N], such that every node has the same degree r. Each level in the tree in-
duces a partition of the nodes into groups corresponding to r-adic ranges, defined by the
nodes at that level. 4 For instance, a binary tree creates groups corresponding to dyadic
ranges of size 1, 2, 4, 8, and so on. The basic idea is to perform a search over the tree
for those high-energy items above a specified energy threshold, φ||w||22. Following the
discussion in Section 3, we can prune groups with energy below the threshold and, thus,
avoid looking inside those groups: if the estimated energy is accurate, then these can-
not contain any high-energy elements. Our key result is that, using such a hierarchical
search structure of GCSs, we can provably (within appropriate probability bounds) re-
trieve all items above the threshold plus a controllable error quantity ((φ+ε)||w||22), and
retrieve no elements below the threshold minus that small error quantity ((φ− ε)||w||22).

4 Thus, the id function for level l is easily defined as idl(i) = �i/rl�.

Fast Approximate Wavelet Tracking on Streams 15

Theorem 3. Given a vector w of size N we can report, with high probability ≥ 1 − δ,
all elements with energy above (φ + ε)||w||22 (where φ ≥ ε) within additive error of
ε||w||22 (and therefore, report no item with energy below (φ − ε)||w||22) using space

of O
(

logr N
ε3 · log r logr N

φδ

)
, per item processing time of O

(
logr N · log r logr N

φδ

)
and

query time of O
(

r
φε2 · logr N · log r logr N

φδ

)
.

Proof. Construct logr N GCSs (with parameters to be determined), one for each level
of our r-ary search-tree structure. We refer to an element that has energy above φ||w||22
as a “hot element”, and similarly groups that have energy above φ||w||22 as “hot ranges”.
The key observation is that all r-adic ranges that contain a hot element are also hot.
Therefore, at each level (starting with the root level), we identify hot r-adic ranges by
examining only those r-adic ranges that are contained in hot ranges of the previous
level. Since there can be at most 1

φ hot elements, we only have to examine at most
1
φ logr N ranges and pose that many queries. Thus, we require the failure probability

to be logr N
φδ for each query so that, by the union bound, we obtain a failure probability

of at most δ for reporting all hot elements. Further, we require each level to be accurate
within ε||w||22 so that we obtain all hot elements above (φ + ε)||w||22 and none below
(φ − ε)||w||22. The theorem follows. �

Setting the value of r gives a tradeoff between query time and update time. Asymp-
totically, we see that the update time decreases as the degree of the tree structure, r,
increases. This becomes more pronounced in practice, since it usually suffices to set
t, the number of tests, to a small constant. Under this simplification, the update cost
essentially reduces to O(logr N), and the query time reduces to O(r

ε2φ logr N). (We
will see this clearly in our experimental analysis.) The extreme settings of r are 2 and
N : r = 2 imposes a binary tree over the domain, and gives the fastest query time but
O(log2 N) time per update; r = N means updates are effectively constant O(1) time,
but querying requires probing the whole domain, a total of N tests to the sketch.

Sketching in the Wavelet Domain. As discussed earlier, given an input update stream
for data entries in a, our algorithms build GCS synopses on the corresponding wavelet
coefficient vector wa, and then employ these GCSs to quickly recover a (provably good)
approximate B-term wavelet representation of a. To accomplish the first step, we need
an efficient way of “translating” updates in the original data domain to the domain of
wavelet coefficients (for both one- and multi-dimensional data streams).

– One-Dimensional Updates. An update (i, v) on a translates to the following collection
of log N + 1 updates to wavelet coefficients (that lie on the path to leaf a[i], Fig. 1(a)):
(
0, 2−

1
2 log Nv

)
,
{(

2log N−l + k, (−1)k mod 22−
l
2 v

)
: for each l=0,. . ., log N − 1

}
,

where l = 0, . . . , log N − 1 indexes the resolution level, and k = �i2−l�. Note that
each coefficient update in the above set is easily computed in constant time.

– Multi-Dimensional Updates. We can use exactly the same reasoning as above to pro-
duce a collection of (constant-time) wavelet-coefficient updates for a given data update
in d dimensions (see, Fig. 1(b)). As explained in Section 2.2, the size of this collec-
tion of updates in the wavelet domain is O(logd N) and O(2d log N) for standard and

16 G. Cormode, M. Garofalakis, and D. Sacharidis

non-standard Haar wavelets, respectively. A subtle issue here is that our search-tree
structure operates over a linear ordering of the Nd coefficients, so we require a fast
method for linearizing the multi-dimensional coefficient array — any simple lineariza-
tion technique will work (e.g., row-major ordering or other space-filling curves).

Using GCSs for Approximate Wavelets. Recall that our goal is to (approximately)
recover the B most significant Haar DWT coefficients, without exhaustively search-
ing through all coefficients. As shown in Theorem 3, creating GCSs for for dyadic
ranges over the (linearized) wavelet-coefficient domain, allows us to efficiently identify
high-energy coefficients. (For simplicity, we fix the degree of our search structure to
r = 2 in what follows.) An important technicality here is to select the right threshold
for coefficient energy in our search process, so that our final collection of recovered
coefficients provably capture most of the energy in the optimal B-term representation.
Our analysis in the following theorem shows how to set this threshold, an proves that,
for data vectors satisfying the “small-B property”, our GCS techniques can efficiently
track near-optimal approximate wavelet representations. (We present the result for the
standard form of the multi-dimensional Haar DWT — the one-dimensional case follows
as the special case d = 1.)

Theorem 4. If a d-dimensional data stream over the [N]d domain has a B-term stan-
dard wavelet representation with energy at least η||a||22, where ||a||22 is the entire energy,
then our GCS algorithms can estimate an at-most-B-term standard wavelet represen-

tation with energy at least (1 − ε)η||a||22 using space of O(B3d log N
ε3η3 · log Bd log N

εηδ), per

item processing time of O(d logd+1 N · log Bd log N
εηδ), and query time of O(B3d

ε3η3 · log N ·
log Bd log N

εηδ).

Proof. Use our GCS search algorithm and Theorem 3 to find all coefficients with energy
at least εη

B ||a||22 = εη
B ||w||22. (Note that ||a||22 can be easily estimated to within small

relative error from our GCSs.) Among those choose the highest B coefficients; note
that there could be less than B found. For those coefficients selected, observe we incur
two types of error. Suppose we choose a coefficient which is included in the best B-
term representation, then we could be inaccurate by at most εη

B ||a||22. Now, suppose we
choose coefficient c1 which is not in the best B-term representation. There has to be a
coefficient c2 which is in the best B-term representation, but was rejected in favor of
c1. For this rejection to have taken place their energy must differ by at most 2 εη

B ||a||22
by our bounds on the accuracy of estimation for groups of size 1. Finally, note that for
any coefficient not chosen (for the case when we pick fewer than B coefficients) its true
energy must be less than 2 εη

B ||a||22. It follows that the total energy we obtain is at most
2εη||a||22 less than that of the best B-term representation. Setting parameters λ, ε′, N ′

of Theorem 3 to λ = ε′ = εη
B and N ′ = Nd we obtain the stated space and query time

bounds. For the per-item update time, recall that a single update in the original data
domain requires O(logd N) coefficient updates. �

The corresponding result for the non-standard Haar DWT follows along the same lines.
The only difference with Theorem 4 comes in the per-update processing time which, in
the non-standard case, is O(d2d log N · log Bd log N

εηδ).

Fast Approximate Wavelet Tracking on Streams 17

 1

 10

 100

 1000

 10000

 100000

 14 16 18 20 22 24 26 28 30

p
e

r-
ite

m
 u

p
d

a
te

 t
im

e
 (

µs
e

cs
)

log of domain size

GKMS
GCS-1
GCS-2
GCS-4
GCS-8

GCS-logn
fast-GKMS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 14 16 18 20 22 24 26 28 30

q
u

e
ry

 t
im

e
 (

m
se

cs
)

log of domain size

GKMS
fast-GKMS
GCS-logn

GCS-8
GCS-4
GCS-2
GCS-1

(a) Per-Item Update Time against domain size (b) Query Time against domain size

 10

 100

 1000

 10000

2.9MB1.2MB360KB

p
e

r-
ite

m
 u

p
d

a
te

 t
im

e
 (

µs
e

cs
)

sketch size

GCS-1
GCS-2
GCS-4
GCS-8

GCS-logn
fast-GKMS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2.9MB1.2MB360KB

q
u

e
ry

 t
im

e
 (

m
se

cs
)

sketch size

fast-GKMS
GCS-logn

GCS-8
GCS-4
GCS-2
GCS-1

(c) Per-Item Update Time against space (d) Query Time against space

Fig. 3. Performance on one-dimensional data

5 Experiments

Data Sets and Methodology. We implemented our algorithms in a mixture of C and
C++, for the Group-Count sketch (GCS) with variable degree. For comparison we also
implemented the method of [11] (GKMS) as well as a modified version of the algorithm
with faster update performance using ideas similar to those in the Group-Count sketch,
which we denote by fast-GKMS. Experiments were performed on a 2GHz processor
machine, with 1GB of memory. We worked with a mixture of real and synthetic data:

– Synthetic Zipfian Data was used to generate data from arbitrary domain sizes and
with varying skewness. By default the skewness parameter of the distribution is
z = 1.1.

– Meteorological data set5 comprised of 105 meteorological measurements. These
were quantized and projected appropriately to generate data sets with dimensional-
ities between 1 and 4. For the experiments described here, we primarily made use
of the AirTemperature and WindSpeed attributes to obtain 1- and 2-dimensional
data streams.

In our experiments, we varied the domain size, the size of the sketch6 and the degree
of the search tree of our GCS method and measured (1) per-item update time, (2) query

5 http://www-k12.atmos.washington.edu/k12/grayskies/
6 In each experiment, all methods are given the same total space to use.

http://www-k12.atmos.washington.edu/k12/grayskies/

18 G. Cormode, M. Garofalakis, and D. Sacharidis

time and (3) accuracy. In all figures, GCS-k denotes that the degree of the search tree is
2k; i.e. GCS-1 uses a binary search tree, whereas GCS-logn uses an n-degree tree, and
so has a single level consisting of the entire wavelet domain.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 5 10 15 20 25 30 35 40

ss
e
/e

n
e
rg

y

number of wavelet coefficients

GCS-1
fast-GKMS
GCS-logn

offline

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40
ss

e
/e

n
e
rg

y
number of wavelet coefficients

GCS-1
GCS-logn

offline

(a) z=1.1 (b) z=1.4

Fig. 4. Accuracy of Wavelet Synopses

One-Dimensional Experiments. In the first experimental setup we used a synthetic
1-dimensional data stream with updates following the Zipfian distribution (z = 1.1).
Space was increased based on the log of the dimension, so for log N = 14, 280KB
was used, up to 600KB for log N = 30. Figure 3 (a) shows the per-item update time
for various domain sizes, and Figure 3 (b) shows the time required to perform a query,
asking for the top-5 coefficients. The GKMS method takes orders of magnitude longer
for both updates and queries, and this behavior is seen in all other experiments, so we
do not consider it further. Apart from this, the ordering (fastest to slowest) is reversed
between update time and query time. Varying the degree of the search tree allows up-
date time and query time to be traded off. While the fast-GKMS approach is the fastest
for updates, it is dramatically more expensive for queries, by several orders of mag-
nitude. For domains of size 222, it takes several hours to recover the coefficients, and
extrapolating to a 32 bit domain means recovery would take over a week. Clearly this
is not practical for realistic monitoring scenarios. Although GCS-logn also performs
exhaustive search over the domain size, its query times are significantly lower as it does
not require a sketch construction and inner-product query per wavelet coefficient.

Figures 3 (c) and (d) show the performance as the sketch size is increased. The
domain size was fixed to 218 so that the fast-GKMS method would complete a query in
reasonable time. Update times do not vary significantly with increasing space, in line
with our analysis (some increase in cost may be seen due to cache effects). We also
tested the accuracy of the approximate wavelet synopsis for each method. We measured
the SSE-to-energy ratio of the estimated B-term synopses for varying B and varying
zipf parameter and compared it against the optimal B-term synopsis computed offline.
The results are shown in Figures 4 (a) and (b), where each sketch was given space
360KB. In accordance to analysis (GCS requires O(1

ε) times more space to provide the
same guarantees with GKMS) the GCS method is slightly less accurate when estimating
more than the top-15 coefficients. However, experiments showed that increasing the size
to 1.2MB resulted in equal accuracy. Finally we tested the performance of our methods

Fast Approximate Wavelet Tracking on Streams 19

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4

tim
e

(m
se

cs
)

dimensions

S-update
NS-update

S-query
NS-query

(a) Real data in 1-d (b) Synthetic data in multi-d.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

GCS-
 logn

GCS-8GCS-6GCS-4GCS-2GCS-1fast-
 GKMS

tim
e

(m
se

cs
)

method

update
query

(c) Real data in 2-d (standard DWT) (d) Real data in 2-d (Non-standard DWT).

Fig. 5. Performance on 1-d Real Data and multi-d Real and Synthetic Data

on single dimensional meteorological data of domain size 220. Per-item and query times
in Figure 5 (a) are similar to those on synthetic data.

Multi-Dimensional Experiments. We compared the methods for both wavelet decom-
position types in multiple dimensions. First we tested our GCS method for a synthetic
dataset (z = 1.1, 105 tuples) of varying dimensionality. In Figure 5 (b) we kept the
total domain size constant at 224 while varying the dimensions between 1 and 4. The
per-item update time is higher for the standard decomposition, as there are more up-
dates on the wavelet domain per update on the original domain. The increase in query
time can be attributed to the increasing sparseness of the domain as the dimensionality
increases which makes searching for big coefficients harder. This is a well known effect
of multidimensional standard and non-standard decompositions. For the real dataset,
we focus on the two dimensional case; higher dimensions are similar. Figure 5(c) and
(d) show results for the standard and non-standard respectively. The difference between
GCS methods and fast-GKMS is more pronounced, because of the additional work in
producing multidimensional wavelet coefficients, but the query times remain signifi-
cantly less (query times were in the order of hours for fast-GKMS), and the difference
becomes many times greater as the size of the data domain increases.

Experimental Summary. The Group-Count sketch approach is the only method that
achieves reasonable query times to return an approximate wavelet representation of

20 G. Cormode, M. Garofalakis, and D. Sacharidis

data drawn from a moderately large domain (220 or larger). Our first implementation is
capable of processing tens to hundreds of thousands of updates per second, and giving
the answer to queries in the order of a few seconds. Varying the degree of the search tree
allows a tradeoff between query time and update time to be established. The observed
accuracy is almost indistinguishable from the exact solution, and the methods extend
smoothly to multiple dimensions with little degradation of performance.

6 Related Work

Wavelets have a long history of successes in the signal and image processing arena
[16, 22] and, recently, they have also found their way into data-management applica-
tions. Matias et al. [19] first proposed the use of Haar-wavelet coefficients as synopses
for accurately estimating the selectivities of range queries. Vitter and Wang [24] de-
scribe I/O-efficient algorithms for building multi-dimensional Haar wavelets from large
relational data sets and show that a small set of wavelet coefficients can efficiently pro-
vide accurate approximate answers to range aggregates over OLAP cubes. Chakrabarti
et al. [4] demonstrate the effectiveness of Haar wavelets as a general-purpose approx-
imate query processing tool by designing efficient algorithms that can process com-
plex relational queries (with joins, selections, etc.) entirely in the wavelet-coefficient
domain. Schmidt and Shahabi [21] present techniques using the Daubechies family
of wavelets to answer general polynomial range-aggregate queries. Deligiannakis and
Roussopoulos [8] introduce algorithms for building wavelet synopses over data with
multiple measures. Finally, I/O efficiency issues are studied by Jahangiri et al. [15] for
both forms of the multi-dimensional DWT.

Interest in data streams has also increased rapidly over the last years, as more algo-
rithms are presented that provide solutions in a streaming one-pass, low memory envi-
ronment. Overviews of data-streaming issues and algorithms can be found, for instance,
in [3, 20]. Sketches first appeared for estimating the second frequency moment of a set
of elements [2] and have since proven to be a useful summary structure in such a dy-
namic setting. Their application includes uses for estimating join sizes of queries over
streams [1, 9], maintaining wavelet synopses [11], constructing histograms [12, 23], es-
timating frequent items [5, 6] and quantiles [13]. The work of Gilbert et al. [11] for
estimating the most significant wavelet coefficients is closely related to ours. As we
discuss, the limitation is the high query time required for returning the approximate
representation. In follow-up work, the authors proposed a more theoretical approach
with somewhat improved worst case query times [12]. This work considers an approach
based on a complex construction of range-summable random variables to build sketches
from which wavelet coefficients can be obtained. The update times remain large. Our
bounds improve those that follow from [12], and our algorithm is much simpler to im-
plement. In similar spirit, Thaper et al. [23] use AMS sketches to construct an optimal
B-bucket histogram of large multi-dimensional data. No efficient search techniques are
used apart from an exhaustive greedy heuristic which always chooses the next best
bucket to include in the histogram; still, this requires an exhaustive search over a huge
space. The idea of using group-testing techniques to more efficiently find heavy items
appears in several prior works [6, 7, 12]; here, we show that it is possible to apply similar

Fast Approximate Wavelet Tracking on Streams 21

ideas to groups under L2 norm, which has not been explored previously. Recently, dif-
ferent techniques have been proposed for constructing wavelet synopses that minimize
non-Euclidean error metrics, under the time-series model of streams [14, 17].

7 Conclusions

We have proposed the first known streaming algorithms for space- and time-efficient
tracking of approximate wavelet summaries for both one- and multi-dimensional data
streams. Our approach relies on a novel, Group-Count Sketch (GCS) synopsis that, un-
like earlier work, satisfies all three key requirements of effective streaming algorithms,
namely: (1) polylogarithmic space usage, (2) small, logarithmic update times (essen-
tially touching only a small fraction of the GCS for each streaming update); and, (3)
polylogarithmic query times for computing the top wavelet coefficients from the GCS.
Our experimental results with both synthetic and real-life data have verified the effec-
tiveness of our approach, demonstrating the ability of GCSs to support very high speed
data sources. As part of our future work, we plan to extend our approach to the problem
of extended wavelets [8] and histograms [23].

References
1. N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. “Tracking join and self-join sizes in

limited storage”. In ACM PODS, 1999.
2. N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating the frequency

moments”. In ACM STOC, 1996.
3. B. Babcock, S. Babu, M. Datar, R. Motwani, and Jennifer Widom. “Models and issues in

data stream systems”. In ACM PODS, 2002.
4. K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. “Approximate query processing

using wavelets”. In VLDB, 2000.
5. M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data streams”. In

ICALP, 2002.
6. G. Cormode and S. Muthukrishnan. “What’s hot and what’s not: Tracking most frequent

items dynamically”. In ACM PODS, 2003.
7. G. Cormode and S. Muthukrishnan. “What’s new: Finding significant differences in network

data streams”. In IEEE Infocom, 2004.
8. A. Deligiannakis and N. Roussopoulos. “Extended wavelets for multiple measures”. In ACM

SIGMOD, 2003.
9. A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. “Processing complex aggregate

queries over data streams”. In ACM SIGMOD, 2002.
10. M. Garofalakis and A. Kumar. “Deterministic Wavelet Thresholding for Maximum-Error

Metrics”. In ACM PODS, 2004.
11. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. “One-pass wavelet decomposition

of data streams”. IEEE TKDE, 15(3), 2003.
12. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. “Fast, small-

space algorithms for approximate histogram maintenance”. In ACM STOC, 2002.
13. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. “How to summarize the universe:

Dynamic maintenance of quantiles”. In VLDB, 2002.
14. S. Guha and B. Harb. “Wavelet Synopsis for Data Streams: Minimizing non-Euclidean Error”

In KDD, 2005.

22 G. Cormode, M. Garofalakis, and D. Sacharidis

15. M. Jahangiri, D. Sacharidis, and C. Shahabi. “Shift-Split: I/O efficient maintenance of
wavelet-transformed multidimensional data”. In ACM SIGMOD, 2005.

16. B. Jawerth and W. Sweldens. “An Overview of Wavelet Based Multiresolution Analyses”.
SIAM Review, 36(3), 1994.

17. P. Karras and N. Mamoulis. “One-pass wavelet synopses for maximum-error metrics”. In
VLDB, 2005.

18. G.S. Manku and R. Motwani. “Approximate frequency counts over data streams”. In VLDB,
2002.

19. Y. Matias, J.S. Vitter, and M. Wang. “Wavelet-based histograms for selectivity estimation”.
In ACM SIGMOD, 1998.

20. S. Muthukrishnan. Data streams: algorithms and applications. In SODA, 2003.
21. R.R. Schmidt and C. Shahabi. “Propolyne: A fast wavelet-based technique for progressive

evaluation of polynomial range-sum queries”. In EDBT, 2002.
22. E. J. Stollnitz, T. D. Derose, and D. H. Salesin. “Wavelets for computer graphics: theory and

applications”. Morgan Kaufmann Publishers, 1996.
23. N. Thaper, S. Guha, P. Indyk, and N. Koudas. “Dynamic multidimensional histograms”. In

ACM SIGMOD, 2002.
24. J.S. Vitter and M. Wang. “Approximate computation of multidimensional aggregates of

sparse data using wavelets”. In ACM SIGMOD, 1999.

	Introduction
	Preliminaries
	Stream Processing Model and Stream Sketches
	Discrete Wavelet Transform Basics

	Problem Formulation and Overview of Approach
	Our Solution: The GCS Synopsis and Algorithms
	Experiments
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

