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ABSTRACT
As we move from a Web of data to a Web of services, enhancing
the capabilities of the current Web search engines with effective
and efficient techniques for Web services retrieval and selection
becomes an important issue. Traditionally, the relevance of a Web
service advertisement to a service request is determined by com-
puting an overall score that aggregates individual matching scores
among the various parameters in their descriptions. Two drawbacks
characterize such approaches. First, there is no single matching
criterion that is optimal for determining the similarity between pa-
rameters. Instead, there are numerous approaches ranging from us-
ing Information Retrieval similarity metrics up to semantic logic-
based inference rules. Second, the reduction of individual scores
to an overall similarity leads to significant information loss. Since
there is no consensus on how to weight these scores, existing meth-
ods are typically pessimistic, adopting a worst-case scenario. As
a consequence, several services, e.g., those having a single unre-
lated parameter, can be excluded from the result set, even though
they are potentially good alternatives. In this work, we present a
methodology that overcomes both deficiencies. Given a request,
we introduce an objective measure that assigns a dominance score
to each advertised Web service. This score takes into considera-
tion all the available criteria for each parameter in the request. We
investigate three distinct definitions of dominance score, and we
devise efficient algorithms that retrieve the top-k most dominant
Web services in each case. Extensive experimental evaluation on
real requests and relevance sets, as well as on synthetically gener-
ated scenarios, demonstrates both the effectiveness of the proposed
technique and the efficiency of the algorithms.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

1. INTRODUCTION
Web services are software entities that are accessible over the

Web and are designed to perform a specific task, which essentially
comprises either returning some information to the user (e.g., a
weather forecast service or a news service) or altering the world
state (e.g., an on-line shopping service or an on-line booking ser-
vice). Web services, in the traditional sense, are described by a
well-defined interface, which provides the number, the names, and
the types of the service input and output parameters, and is ex-
pressed in a standardized language (WSDL). They constitute a key
technology for realizing Service Oriented Architectures, enabling
loose coupling and interoperability among heterogeneous systems
and platforms. By standardizing the interfaces and the exchanged
messages between communicating systems, they can significantly
reduce the development and, even more importantly, the mainte-
nance cost for large-scale, distributed, heterogeneous applications.

Typical application scenarios for Web services cover a broad area
of software engineering [2]. In a broader sense, any dynamic Web
site can be thought of as a (collection of) Web service(s), and thus,
Web services provide a means for querying the hidden Web. In
addition, Web services are often used as wrappers for databases al-
lowing data access through firewalls, hiding details regarding the
underlying data and enforcing data access policies. Another use of
Web services is met in mashups applications; e.g., DAMIA [38]
and Yahoo Pipes1. These constitute a recently emerging trend,
where users select and combine building blocks (essentially, ser-
vices) to create applications that integrate information from sev-
eral Web sources. Consequently, it becomes apparent that the Web
services paradigm rapidly gains popularity constituting an integral
part of many “hot” real-world applications. For these reasons, sev-
eral techniques for retrieving and ranking Web services have been
recently proposed.

Consider the following typical Web service discovery scenario.
The user provides a complete definition of the desired service and
poses a query on a system maintaining a repository of advertised
service descriptions. Alternatively, the user could specify a de-
sirable service, e.g., among previous results, and request similar
services. Then, the search engine employs a matchmaking algo-
rithm identifying advertisements relevant to the user’s request. A
lot of recent work has focused on defining objectively good similar-
1http://pipes.yahoo.com/pipes/



ity measures capturing the degree of match between a requested and
an advertised service. Typically, this process involves two steps: (i)
selecting a criterion for assessing the similarity of service parame-
ters, and (ii) aggregating individual parameter scores to obtain the
overall degree of match between a request and an advertisement.

The first step involves the estimation of the degree of match be-
tween parameters of the request and the advertisement. There are
two paradigms for assessing the match among parameters. The
first, treats parameter descriptions as documents and employs basic
Information Retrieval techniques to extract keywords; e.g., [16].
Subsequently, a string similarity measure is used to compute the
degree of match. The second paradigm follows the Semantic Web
vision. Services are enriched by annotating their parameters with
semantic concepts taken from domain ontologies; e.g., [32, 28].
Then, estimating the degree of parameter match reduces to a prob-
lem of logic inference: a reasoner is employed to check for equiv-
alence or subsumption relationships between concepts.

Both paradigms share their weaknesses and strengths. Regarding
the former techniques, keyword-based matchmaking fails to prop-
erly identify and extract semantics since service descriptions are es-
sentially very short documents with few terms. On the other hand,
the latter techniques face common Semantic Web obstacles, e.g.,
the lack of available ontologies, the difficulty in achieving consen-
sus among a large number of involved parties, and the considerable
overhead in developing, maintaining an ontology and semantically
annotating the available data and services. More recently, hybrid
techniques for estimating the degree of parameter match have ap-
peared, e.g., [23], taking into account both paradigms. Still, the
common issue with all approaches is that there is no single match-
ing criterion that optimally determines the similarity between pa-
rameters. In fact, different similarity measures may be more suit-
able, depending on the particular domain or the particular pair of
request and offer. Therefore, we advocate an approach that simul-
taneously employs multiple matching criteria.

The second step in matchmaking deals with the computation of
the overall degree of match for a pair of requested and advertised
services taking into consideration the individual scores of corre-
sponding parameters. Various approaches for aggregating param-
eter match scores exist. One direction is to assign weights, deter-
mined through user feedback, to individual scores [16]. Appropri-
ate weights are chosen either by assuming a-priori knowledge about
the user’s preferences or by applying expensive machine learning
techniques. Both alternatives face serious drawbacks and raise a
series of other issues to be solved. More often, methods are pes-
simistic adopting a worst-case scenario. The overall service simi-
larity is derived from the worst degree of match among parameters.
However, this leads to information loss that significantly affects the
retrieved results accuracy (see Section 5). For example, services
having only one bad matching parameter may be excluded from
the result set, even though they are potentially good alternatives.

A significant, yet often neglected, aspect of the matchmaking
process is the ranking of the advertised services based on their de-
gree of match. It is important that useful results appear high on the
list. A recent survey [20] shows that users view the top-1 search
result in about 80% of the queries, whereas results ranked below 3
were viewed in less than 50% of the queries. In addition, Web ser-
vice discovery plays an important role in fully automated scenarios,
where a software agent, e.g., for travel planning, acting on behalf
of a human user, automatically selects and composes services to
achieve a specific task. Typically, the agent will only try a few top
ranked results ignoring the rest.

The following example portrays a typical discovery scenario,
showing the challenges in identifying the top matching services.

Example. Consider a user searching for a Web service provid-
ing weather information for a specific location. For simplicity, we
assume only one input Pin and one output Pout parameter. There
are four available services, A,B,C,D. Furthermore, three dif-
ferent matching filters (e.g., different string similarity measures),
fm1 , fm2 , fm3 , have been applied resulting in the degrees of match
shown in Table 1. Observe that under any criterion, service A con-
stitutes a better match with respect to both parameters, than any
other service. However, there is no clear winner among the other
three services. For instance, consider services B and D. If the first
matching criterion is the one that more closely reflects the actual
relevance of B to the given request, then B is definitely a better
match than D. On the other hand, if the second measure is cho-
sen, then B has a lower match degree for the input parameter but
a higher degree for the output. Even for such a simple scenario,
specifying an appropriate ranking for the candidate matches is not
straightforward.

Table 1: Example services and matching criteria scores
Service Parameter fm1 fm2 fm3

A
Pin 0.96 1.00 0.92
Pout 0.92 0.96 1.00

B
Pin 0.80 0.60 0.64
Pout 0.80 0.88 0.72

C
Pin 0.84 0.88 0.72
Pout 0.84 0.64 0.60

D
Pin 0.76 0.68 0.56
Pout 0.76 0.64 0.68

Contributions. Summarizing, we can identify the following
main challenges for Web services search: (R1) how to combine
the degrees of match for the different parameters in the matched
descriptions; (R2) how to combine the match results from the indi-
vidual similarity measures; and (R3) how to rank the results. Our
approach is based on the notion of dominance to address the prob-
lem of ranking available Web service descriptions with respect to a
given service request, in the presence of multiple parameters and
matching criteria. Given two objects U and V , each described
by a set of d parameters, U is said to dominate V iff U is better
than or equal to V in all the parameters, and strictly better in at
least one parameter. This concept allows us to define three ranking
criteria, presented in Section 3, which address the aforementioned
challenges. Our contributions are summarized as follows:

1. We introduce the notion of top-k dominant Web services, spec-
ifying three ranking criteria for matching Web service descrip-
tions with service requests using multiple similarity measures.

2. Based on this specification, we present efficient algorithms for
selecting the top-k matches for a service request.

3. We experimentally evaluate our approach both in terms of re-
trieval effectiveness, using real requests and relevance sets, as
well as in terms of efficiency, using synthetically generated sce-
narios.

Outline. The rest of the paper is structured as follows. Section 2
reviews related work. Section 3 formally introduces the problem of
ranking Web service descriptions. Section 4 describes efficient al-
gorithms for retrieving the top-k matches for a Web service request.
Section 5 presents our experimental study. Finally, Section 6 con-
cludes the paper.



2. RELATED WORK
In this section we discuss related work in the areas of Web ser-

vice discovery, skylines, and data fusion.
Web Service Discovery. Current industry standards for the de-

scription and the discovery of Web services (WSDL, UDDI) pro-
vide limited search capabilities, focusing on describing the struc-
ture of the service interfaces and of the exchanged messages, and
addressing the discovery process as keyword-based search. In [15],
the need for employing many types of matching is identified, and
the integration of multiple external matching services to a UDDI
registry is proposed. Selecting the external matching service is
based on specified policies (e.g., the first available, or the most
successful). If more than one matching services are invoked, the
policy specifies whether the union or the intersection of the re-
sults should be returned. The work in [16] focuses on similarity
search for Web service operations, combining multiple sources of
evidence. A clustering algorithm groups names of parameters into
semantically meaningful concepts, used to determine the similar-
ity between I/O parameters. Different types of similarity are com-
bined using a linear function, with weights being assigned manu-
ally, based on analysis of the results from different trials. Learning
the weights from user feedback is mentioned as for future work.

Following the Semantic Web vision, several approaches have
been proposed exploiting ontologies to semantically enhance the
service descriptions (WSDL-S [1], OWL-S [10], WSMO [19]).
Web services matchmaking is then treated as a logic inference task
[32, 28]. The matching algorithms in [11] and [39] assess the simi-
larity between requested and offered inputs and outputs by compar-
ing classes in an associated domain ontology. In [8] the matching
of requested and offered parameters is treated as matching bipar-
tite graphs. The work presented in [6] employs ontologies and user
profiles and uses techniques like query expansion or relaxation to
try to satisfy user requests. Finally, OWLS-MX [23] and WSMO-
MX [21] are hybrid matchmakers for OWL-S and WSMO services,
respectively.

These works focus on matching pairs of parameters from the
requested and offered services, while the overall match is typi-
cally calculated as a weighted average, assuming the existence of
an appropriate weighting scheme. Furthermore, none of these ap-
proaches considers more than one matching criteria simultaneously.
However, from the diversity of these approaches, it is evident that
there is no single matching criterion that constitutes the silver bullet
for the problem. On the other hand, the approach proposed in this
paper addresses this issue and provides a generic and efficient way
to accommodate and leverage multiple matching criteria and ser-
vice parameters, without loss of information from aggregating the
individual results and without requiring a-priori knowledge con-
cerning the user’s preferences.

Skylines. Our case resembles concepts of multi-objective opti-
mization, which has been studied in the literature, initially as maxi-
mum vector problem [25, 36], and more recently, as skyline queries
[9]. Given a set of points in a d-dimensional space, the skyline is
defined as the subset containing those points that are not dominated
by any other point. Thus, the best answers for such a query exist in
the skyline.

Skyline queries have received a lot of attention over the recent
years, and several algorithms have been proposed. BNL [9] is a
straightforward, generic skyline algorithm. It iterates over the data
set, comparing each point with every other point, and reports the
points that are not dominated by any other point. SFS [14] im-
proves the efficiency of BNL, by pre-sorting the input according to
a monotone scoring function F , reducing the number of dominance
checks required. SaLSa [7] proposes an additional modification, so

that the computation may terminate before scanning the whole data
set.

Even though our work exploits the basic techniques underlying
these methods (see Section 4), these algorithms are not directly ap-
plicable to our problem, as they do not deal with ranking issues (the
objects comprising the skyline are incomparable to each other) or
with the requirement for multiple matching criteria. Also, the size
of the skyline is not known a-priori, and, depending on the data di-
mensionality and distribution may often be either too large or too
small. In addition, our work borrows some ideas from the proba-
bilistic skyline model for uncertain data introduced in [34], which
however also does not provide any ranking of the data.

Other works exploit appropriate indexes, such as B+-tree or R-
tree, to speed-up the skyline computation process [40, 24, 33, 27].
Note that these techniques apply only on static data, where the over-
head of building the index is amortized across multiple queries. In
our setting, the underlying data depend on the matching scores and
thus an index would have to be rebuilt for each query.

The importance of combining top-k queries with skyline queries
has been pointed out in [42]. However, there are some important
differences to our work. First, this approach also relies on the use
of an index, in particular an aggregate R-tree. Second, it considers
only one of the ranking criteria proposed in this paper (see Sec-
tion 3). Third, it does not address the requirement for handling
multiple matching criteria. The works in [13, 5] deal with the prob-
lem that the skyline in high dimensional spaces is too large. For
this purpose, [13] relaxes the notion of dominance to k-dominance,
so that more points are dominated. It also considers top-δ dom-
inant skyline queries, which, in contrast to our case, return a set
of at least (i.e., not exactly) δ points. Also, the selection criterion
is different to ours; in fact, it resembles subspace skyline analysis
[35]. On the other hand, [5] relies on users to specify additional
preferences among points so as to decrease the result size. Finally,
the k most representative skyline operator is proposed in [30]. This
selects a set of k skyline points, so that the number of points domi-
nated by at least one of them is maximized. Again, this differs from
our ranking criteria, and it does not consider any extensions to meet
the requirement for multiple similarity scores in our case.

Data Fusion. Given a set of ranked lists of documents returned
from multiple methods – e.g., from different search engines, differ-
ent databases, and so on – in response to a given query, data fusion
(a.k.a. results merging, metasearch or rank aggregation) is the con-
struction of a single ranked list combining the individual rankings.
The data fusion techniques can be classified [3] based on whether
they require knowledge of the relevance scores and whether train-
ing data is used. The simplest method based solely on the docu-
ments’ ranks is the Borda-fuse model introduced in [3]. In its non-
training flavor, it assigns as score to each document the summation
of its rank (position) in each list. The documents in the fused list
are ranked by increasing order of their score, solving ties arbitrar-
ily. Training data can be used to assess the performance of each
source and, hence, learn its importance. In this case, the sources
are assigned weights relative to their importance and a document’s
score is the weighted summation of its ranks.

The Condorcet-fuse method [31] is another rank-based fusion
approach. It is based on a majoritarian voting algorithm, which
specifies that a document should be ranked higher in the fused
list than another document if the former is ranked higher than the
latter more times than the latter is ranked higher than the former.
Condorcet-fuse proceeds iteratively: it identifies the winner(s), i.e.,
the highest ranked document(s), removes it/them from the lists and
then repeats the process until there are no more documents to rank.

For the case where the relevance scores are given/known, several



fusion techniques, including CombSUM, CombANZ and CombMNZ,
were discussed in [18]. In CombSUM, the final (fused) relevance
score of a document is given by the summation of the relevance
scores assigned by each source; if a document does not appear in
a list, its relevance score is considered 0 for that list. In Com-
bANZ (CombMNZ), the final score of a document is calculated as
the score of CombSUM divided (multiplied) by the number of lists
in which the document appears. In [26], the author concludes that
CombMNZ provides the best retrieval efficiency.

When training data is available, it is shown in [41] that a lin-
ear (weighted) combination of scores works well when the various
rank engines return similar sets of relevant documents and dissimi-
lar sets of non-relevant documents. For example, a weighted variant
of CombSUM is successfully used in [37] for the fusion of multilin-
gual ranked lists. The optimal size of the training data that balances
effectiveness and efficiency is investigated in [12].

Probabilistic fusion techniques, which rank documents based on
their probability of relevance to the given query, have also appeared.
The relevance probability is calculated in the training phase, and
depends on which rank engine returned the document amongst its
results and the document’s position in the result set. In [29], such a
technique was shown to outperform CombMNZ.

An outranking approach was recently presented in [17]. Accord-
ing to this, a document is ranked better than another if the majority
of input rankings is in concordance with this fact and at the same
time only a few input rankings refute it.

Seen in the context of data fusion, our work addresses the novel
problem where in each ranking a vector of scores, instead of a sin-
gle score, is used to measure the relevance for each data item.

3. PROBLEM DEFINITION
In this section, we formally describe the problem of multi-criteria

Web services matching, we introduce our terminology and nota-
tion, and we formalize our notion for top-k dominant Web services.
Also, to motivate and justify our formulation, we discuss some re-
lated notions, namely p-skyline [34] and K-skyband [33], showing
that these concepts are inadequate in capturing the requirements of
the problem at hand.

To abstract away from a particular Web service representation,
we model a Web service operation as a function that receives a
number of inputs and returns a number of outputs. Other types of
parameters, such as pre-conditions and effects or QoS parameters,
can be handled similarly. Hence, in the following, the description
of a Web service operation corresponds to a vector S containing
its I/O parameters. A request R is viewed as the description of a
desired service operation, and is therefore represented in the same
way.

Given a Web service request, the search engine matches regis-
tered services against the desired description. For this purpose, it
uses a similarity measure fm to assess the similarity between the
parameters in these descriptions. If more than one offered param-
eters match a requested parameter, the closest match is considered.
Thus, the result of matching a pair 〈R,S〉 is specified by a vector
UR,S , such that

∀i ∈ [0, |R|] UR,S [i] =
|S|

max
j=0

fm(R[i], S[j]). (1)

As discussed in Section 1, achieving better retrieval accuracy
requires employing more than one matching criteria. Then, for
each different similarity measure fmi , a match vector Umi

R,S is pro-
duced. Hereafter, we refer to each such individual vector as match
instance, denoted by lowercase letters (e.g., u, v), whereas to the

set of such vectors for a specific pair 〈R,S〉 as match object, de-
noted by uppercase letters (e.g., U , V ).

To address the challenges R1, R2, and R3 discussed in Sec-
tion 1, we propose an approach based on the notion of dominance,
also used in skyline queries [9]; i.e., queries returning those objects
in a data set that are not dominated by any other object. Assume
a set of match instances I in a d-dimensional space. Given two
instances u, v ∈ I, we say that u dominates v, denoted by u � v,
iff u is better than or equal to v in all dimensions, and strictly better
in at least one dimension, i.e.

u � v ⇔ ∀i ∈ [0, d)u[i] ≥ v[i] ∧ ∃j ∈ [0, d)u[j] > v[j] (2)

If u is neither dominated by nor dominates v, then u and v are in-
comparable. The notion of dominance addresses requirement (R1),
since comparing matched services takes into consideration the de-
grees of match in all parameters, instead of calculating and using a
single, overall score.

Example (Cont’d). Consider the example of Table 1. Let Smi
R,S =

(si.Pin, si.Pout) denote the match vector under criterion fmi for
the input and output parameters of service S. Figure 1 draws the
degrees of match si as an instance in the Pin × Pout space for
all services and criteria. For example, a1 corresponds to the de-
grees of match of service A under fm1 and, hence, has coordinates
(0.96, 0.92). Clearly, instances that are in the top right corner con-
stitute better matches. Notice that instance d1 dominates instances
b3 and c3. Similarly, it is dominated by instances b1 and c1, as well
as by all instances of A, but it neither dominates nor is dominated
by b2 and c2.
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Figure 1: Services of Table 1 in the Pin × Pout space

To address the requirement of multiple matching criteria (R2),
i.e., having a set of match instances per service, we use a model
similar to the probabilistic skylines proposed in [34]. The dom-
inance relationship between two instances u and v is defined as
previously. Then, the dominance relationship between two objects
U and V is determined by comparing each instance u∈U to each
instance v∈V . This may result in a partial dominance of U by
V , in other words a probability under which U is dominated by
V . Note that, without loss of generality, all instances of an object
are considered of equal probability, i.e., all the different matching
criteria employed are considered of equal importance; it is straight-
forward to extend the approach to the case that different weights
are assigned to each matching criterion. Based on this notion, the
work in [34] defines the concept of p-skyline, which comprises all
the objects belonging to the skyline with probability at least p.

AlthoughR2 is satisfied by the assumption of multiple instances
per object, R3 is not fulfilled by the concept of p-skyline. The no-
tion of skyline, and consequently that of p-skyline, is too restrictive:



only objects not dominated by any other object are returned. How-
ever, for Web services retrieval, given that the similarity measures
provide only an indication of the actual relevance of the considered
service to the given request, interesting services may be missed.

A possible work-around would be to consider a K-skyband query,
which is a relaxed variation of a skyline query, returning those ob-
jects that are dominated by at most K other objects [33]. In partic-
ular, we could extend the p-skyline to the p-K-skyband, comprising
those objects that are dominated by at most K other objects with
probability at least p. Relaxing (restricting) the value of K, in-
creases (reduces) the number of results to be returned. Still, such
an approach faces two serious drawbacks. The first is how to de-
termine the right values for the parameters p and K. A typical
user may specify the number of results that he/she would like to
be returned (e.g., top 10), but he/she cannot be expected to under-
stand the semantics or tune such parameters neither it is possible
to determine automatically the values of p and K from the number
of desired results. Second, the required computational cost is pro-
hibitive. Indeed, in contrast to the p-skyline where only one case
for each object needs to be tested (i.e., the case that this object is
not dominated by any other object), the p-K-skyband requires to
consider, for each object, the cases that it is dominated by exactly
0, 1, 2, . . . ,K other objects, i.e., a number of

∑K
j=0

N !
j!(N−j)!

cases,
where N is the total number of matches.

In the following, we formulate three ranking criteria that meet
requirements R1, R2, and R3 without facing the aforementioned
limitations. The first two are based, respectively, on the following
intuitions: (a) a match is good if it is dominated by as few other
matches as possible, and (b) a match is good if it dominates as
many other matches as possible; the third combines both.

Dominated Score. Given an instance u, we define the dominated
score of u, denoted by dds, as:

u.dds =
∑

V 6= U

|{v ∈ V | v � u}|
|V | (3)

Hence, u.dds considers the instances that dominate u. The dom-
inated score of an object U is defined as the (possibly weighted)
average of the dominated scores of its instances:

U.dds =
∑
u∈U

u.dds

|U | (4)

The dominated score of an object indicates the average number
of objects that dominate it. Hence, a lower dominated score indi-
cates a better match.

Dominating Score. Given an instance u, we define the dominating
score of u, denoted by dgs, as:

u.dgs =
∑

V 6= U

|{v ∈ V | u � v}|
|V | (5)

Thus, u.dgs considers the instances that u dominates. The dom-
inating score of an object U is defined as the (possibly weighted)
average of the dominating scores of its instances:

U.dgs =
∑
u∈U

u.dgs

|U | (6)

The dominating score of an object indicates the average num-
ber of objects that it dominates. Hence, a higher dominating score
indicates a better match.

Dominance Score. Given an instance u, we define the dominance

score of u, denoted by ds, as:

u.ds = u.dgs− λ · u.dds (7)

The dominance score of u promotes u for each instance it dom-
inates, while penalizing it for each instance that dominates it. The
parameter λ is a scaling factor explained in the following. Consider
an instance u corresponding to a good match. Then, it is expected
that u will dominate a large number of other instances, while there
will be only few instances dominating u. In other words, the dgs
and dds scores of u will differ, typically, by orders of magnitude.
Hence, the factor λ scales dds so that it becomes sufficient to af-
fect the ranking obtained by dgs. Consequently, the value of λ
depends on the size of the data set and the distribution of the data.
A heuristic for selecting the λ value that works well in practice (see
Section 5.1) is ∆dgs/∆dds, where ∆dgs and ∆dds are the differ-
ences in the scores of the first and second result obtained by each
respective criterion.

The dominance score of an object U is defined as the (possibly
weighted) average of the dominance scores of its instances:

U.ds =
∑
u∈U

u.ds

|U | (8)

Example (Cont’d). Consider object C with instances c1, c2 and
c3 shown in Figure 1. Instance c1 is dominated by a1, a2 and a3,
whereas it dominates b1, b3, d1, d2 and d3. Thus, its scores are:
dds = 1, dgs = 5/3 and ds = 2/3 (for λ = 1).

We now provide the formal definition for the top-k dominant
Web services selection problem.

Formal Statement of the Problem. Given a Web service re-
quest R, a set of available Web services S, and a set of similarity
measuresFm, return the top-kmatches, according to the aforemen-
tioned ranking criteria.

4. RANKING WEB SERVICES
We first introduce some important observations pertaining to the

problem at hand. The algorithms for selecting the top-k services
according to dds, dgs and ds are presented in Sections 4.1, 4.2 and
4.3, respectively.

A straightforward algorithm for calculating the dominated (resp.,
dominating) score is the following. For each instance u of object U
iterate over the instances of all other objects and increase a counter
associated with U , if u dominates (resp., is dominated by) the in-
stance examined. Then, to produce the top-k list of services, simply
sort them according to the score in the counter. However, the ap-
plicability of this approach is limited by its large computation cost
independent of k. Observe that no matter the value of k, it exhaus-
tively performs all possible dominance checks among instances.

On the other hand, our algorithms address this issue by establish-
ing lower and upper bounds for the dominated/dominating scores.
This essentially allows us to (dis-)qualify objects to or from the
results set, without computing their exact score. Let U be the cur-
rent k-th object. For another object V to qualify for the result set,
the score of V , as determined by its bounds, should be at least as
good (i.e., lower, for dds, or higher, for dgs) as that of U . In the
following, we delve into some useful properties of the dominance
relationship (see Equation 2), in order to prune the search space.

Observe that the dominance relationship is transitive, i.e., given
three instances u, v and w, if u � v and v � w, then u � w. An
important consequence for obtaining upper and lower bounds is the
following.
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Figure 2: Search space for T KDD, T KDG, and T KM

Property 1. If u � v, then v is dominated by at least as many
instances as u, i.e., v.dds ≥ u.dds, and it dominates at most as
many instances as u, i.e., v.dgs ≤ u.dgs.

Presorting the instances according to a monotone function, e.g.,
F (u) =

∑
i

u[i], can help reduce unnecessary checks.

Property 2. Let F (u) be a function that is monotone in all dimen-
sions. If u � v, then F (u) > F (v).

To exploit this property, we place the instances in a list sorted
in descending order of the sum of their values. Then, given an
instance u, searching for instances by which u is dominated (resp.,
it dominates) can be limited to the part of the list before (resp.,
after) u. Furthermore, if F (u) is also symmetric in its dimensions
[7], e.g., F (u) =

∑
i

u[i], the following property holds, providing

a termination condition.

Property 3. Let F (u) be a function that is monotone and sym-
metric in all dimensions. If min

i
u[i] ≥ F (v) for two instances u

and v, then u dominates v as well as all instances with F () value
smaller than v’s.

Given an object U , let umin be a virtual instance of U whose
value in each dimension is the minimum of the values of the actual

instances of U in that dimension, i.e., umin[i] =
|U|

min
j=0

uj [i], ∀i ∈

[0, d). Similarly, let umax[i] =
|U|

max
j=0

uj [i], ∀i ∈ [0, d). Viewed

in a 2-d space, these virtual instances, umin and umax, form, re-
spectively, the lower-left and the upper-right corners of a virtual
minimum bounding box containing the actual instances of U (see
Figure 1). The following property holds.

Property 4. For each instance u ∈ U , it holds that umax � u,
and u � umin.

Combined with the transitivity of the dominance relationship,
this allows us to avoid an exhaustive pairwise comparison of all in-
stances of two objects, by first comparing their corresponding mini-
mum and maximum virtual instances. More specifically, given two
objects U and V , (a) if umin dominates vmax, then all instances
of U dominate all instances of V , i.e., umin � vmax ⇒ u �
v ∀u ∈ U, v ∈ V ; (b) if umin dominates an instance of V , then
all instances of U dominate this instance of V , i.e., umin � v ⇒
u � v ∀u ∈ U ; (c) if an instance of U dominates vmax, then this
instance of U dominates all instances of V , i.e., u � vmax ⇒ u �
v ∀v ∈ V .

4.1 Ranking by dominated score
The first algorithm, hereafter referred to as T KDD, computes

top-kWeb services according to the dominated score criterion, dds.
The goal is to quickly find, for each object, other objects dominat-
ing it, avoiding an exhaustive comparison of each instance to all
other instances.

Algorithm T KDD
Input: A set of objects U , each comprising M instances;

The number k of results to return.
Output: The top-k objects w.r.t. dds in a sorted setR.
begin1

InitializeR = �; ddsMax =∞; minV alue = -1 ;2
for U ∈ U do3
(umin, umax)← calculate min and max bounding instances ;4
Imin← insert umin ordered by F (umin) desc. ;5
Imax← insert umax ordered by F (umax) desc. ;6
for u∈U do I ← insert u ordered by F (u) desc. ;7

for umax∈Imax do8
if |R| = k then9

if F (umax) ≤ minV alue then returnR;10
U.dds = 0 ;11
for vmin ∈ IF (umax)

min do12
if vmin � umax then13
U.dds = U.dds + 1 ;14
if (U.dds + V.dds) ≥ ddsMax then15

for u∈U do u.dds = U.dds ;16
skip U ;17

U.dds = 0 ;18
for v ∈ IF (umax) do19

if v � umax then20
U.dds = v.dds + 1/M ;21
if (U.dds + v.dds) ≥ ddsMax then22

for u∈U do u.dds = U.dds ;23
skip U ;24

U.dds = 0 ;25
for u∈U do26

for vmin ∈ IF
min(u) do27

if vmin � u then28
u.dds = u.dds + 1/M ;29
if (U.dds + u.dds + V.dds) ≥ ddsMax then30
U.dds = U.dds + u.dds + V.dds ;31
skip U ;32

U.dds = U.dds + u.dds + V.dds ;33

U.dds = 0 ;34
for u∈U do u.dds = 0 ;35
for u∈U do36

for v ∈ IF (u) do37
if v � u then38
u.dds = u.dds + 1/M2 ;39
if (U.dds + u.dds + v.dds) ≥ ddsMax then40
U.dds = U.dds + u.dds + v.dds ;41
skip U ;42

U.dds = U.dds + u.dds + v.dds ;43

if |R| = k then remove the last result fromR ;44
R← insert U ordered by dds asc.45
if |R| = k then46
Uk ← the k-th object inR ;47
ddsMax = Uk.dds;48

minV alue =
M

min
i=1

(Ukmin
[i]);49

returnR;50
end51

Figure 3: Algorithm T KDD

The algorithm maintains three list, Imin, Imax, and I, contain-
ing, respectively, the minimum bounding instances, the maximum
bounding instances, and the actual instances of the objects. The in-
stances inside these lists are sorted by F (u) =

∑
i

u[i] and are ex-

amined in descending order. The results are maintained in a list R
sorted in ascending order of dds. The algorithm uses two variables,



ddsMax andminV alue, which correspond to an upper bound for
dds, and to the minimum value of the current k-th object, respec-
tively.

Given that, for an objectU , we are interested in objects that dom-
inate it, we search only for instances that are prior to those of U in
I (see Figure 2). Since, the top matches are expected to appear in
the beginning of I, this significantly reduces the search space. The
basic idea is to use the bounding boxes of the objects to avoid as
many dominance checks between individual instances as possible.
After k results have been acquired, we use the score of the k-th
object as a maximum threshold. Objects whose score exceeds the
threshold are pruned. In addition, if at some point, it is guaranteed
that the score of all the remaining objects exceeds the threshold, the
search terminates.

More specifically, the algorithm, shown in Figure 3, proceeds in
the following six steps.

Step 1. Initializations (lines 2–7). The result set R and the vari-
ables ddsMax and minV alue are initialized. The lists Imin,
Imax, and I are initialized, and sorted by F (u). Then the algo-
rithm iterates over the objects, according to their maximum bound-
ing instance.

Step 2. Termination condition (line 10). If the F () value of the
current umax does not exceed the minimum value of the current k-
th object, the result set R is returned and the algorithm terminates
(see Property 3).

Step 3. Dominance check object-to-object (lines 12–17). For the
current object U , the algorithm first searches for objects that fully
dominate it. For example, in the case of the data set of Figure 1,
with a single dominance check between bmax and amin, we can
conclude that all instances b1, b2 and b3 are dominated by a1, a2

and a3. According to property 2, only objects with F (vmin) >
F (umax) need to be checked. If a vmin is found to dominate
umax, then the score of U is increased by 1, and the sum of the
new score and the score of V (see Property 1) is compared to the
current threshold, ddsMax. If it exceeds the threshold, the object
is pruned and the iteration continues with the next object. In this
case, the score of the object is propagated to its instances for later
use. Otherwise, the score of the object is reset, to avoid duplicates,
and the search continues in the next step.

Step 4. Dominance check object-to-instance (lines 19–24). This
step searches for individual instances v that dominate U . For ex-
ample, in Figure 1, a dominance check between dmax (which co-
incides with d1) and c1 shows that all instances d1, d2, and d3 are
dominated by c1. As before, only instances with F (v) > F (umax)
are considered. If an instance v is found to dominate umax, then
the score of U is increased by 1/M , where M is the number of
instances per object, and the sum of the new score and that of v is
compared to the current threshold, ddsMax.

Step 5. Dominance check instance-to-object (lines 26–33). If the
object U has not been pruned in the previous two steps, its indi-
vidual instances are considered. Each instance u is compared to
instances vmin, with F (vmin) > F (u). If it is dominated, the
score of u is again increased by 1/M , and the threshold is checked.
In Figure 1, this is the case with d3 and bmin.

Algorithm T KDG
Input: A list I containing all instances u, in descending order of F (u);

The number k of results to return.
Output: The top-k objects w.r.t. dgs in a sorted setR.
begin1

InitializeR = ∅, L = ∅;2
U ← the set of objects in descending order of F (umax) ;3
for every object U ∈ U do4

if (
|I| − pos(umax)

M
< Rk−1.dgs

− ) then returnR;5
if ( |R| = 0 ) then add U inR;6
if (∃V ∈ L ∪Rk−1 s.t. V fully dominates U then skip U ;7

set U.dgs− = 0, U.dgs+ =
∑
u∈U

|I| − pos(u)

M2
,

8
Ui = pos(umax);
for j = |R| − 1 to 0 do9

while ( not ( U.dgs+ < Rj .dgs− or U.dgs− > Rj .dgs+ ) ) do10
refineBounds (U , Rj );11

if ( U.dgs+ < Rj .dgs− ) then12
if ( j = k − 1 ) then add U in L, and continue with the next object;13
else move Rk−1 to L, add U inR after Rj , and continue with the14
next object;

move Rk−1 to L, and add U at the beginning ofR;15

returnR;16
end17

Figure 4: Algorithm T KDG

Step 6. Dominance check instance-to-instance (lines 35–42). If
all previous steps failed to prune the object, a comparison between
individual instances takes place where each successful dominance
check contributes to the object’s score by 1/M2.

Step 7. Result set update (lines 44–49). If U has not been pruned
in any of the previous steps, it is inserted in the result set R. If k
results exist, the last is removed. After inserting the new object, if
the size of R is k, the thresholds ddsMax and minV alue are set
accordingly.

4.2 Ranking by dominating score
The T KDG algorithm, shown in Figure 4, computes the top-k

dominant Web services with respect to the dominating score, i.e.,
it retrieves the k match objects that dominate the larger number of
other objects. This is a more challenging task compared to that of
T KDD, for the following reason. Let pos(u) denote the position
of the currently considered instance u in the sorted, decreasing by
F , list I of instances. To calculate u.dds, T KDD performs in the
worst case pos(u) dominance checks, i.e., with those before u in
the list. On the other hand to calculate u.dgs, T KDG must per-
form in the worst case |I| − pos(u) checks, i.e., those after u (see
Figure 2). Since the most dominating and less dominated objects
are located close to the beginning of I, execution will terminate
when pos(u) is small relative to |I|. As a result, the search space
for T KDG is significantly larger than T KDD’s. Furthermore,
T KDD allows for efficient pruning as it searches among objects
and/or instances that have already been examined in a previous it-
eration, and therefore (the bounds of) their scores are known.

The T KDG algorithm maintains three structures: (1) the I list;
(2) a list R of at most k objects (current results), ordered by dom-
inating score descending; (3) a list L containing objects that have
been disqualified from R, used to prune other objects. The listsR
and L are initially empty.

Similar to T KDD, the algorithm iterates over the objects, in
descending order of their maximum bounding instance (lines 3–4).



Let U be the currently examined object. U can dominate at most
|I| − pos(umax) instances. If this amount, divided by the number
of instances per object, is lower than T , where T is the lower bound
for the score of the k-th object inR, the whole process terminates,
and the result set R is returned (line 5). On the other hand, if the
result set is empty, then U is added as the first result (line 6).

Next, if U is dominated by the k-th object inR or by any object
in L, it is pruned (line 7). Otherwise, we need to check whether
U qualifies for R. For an examined object U it is straightforward
to calculate its dominating score, by examining all instances in I,
starting from the position of its best instance. However, we avoid
unnecessary computations by following a lazy approach, which ex-
amines instances in I until a position that is sufficient to qualify
(disqualify) U for (from) the current result set R. For this pur-
pose, we maintain for each examined objectU a lower and an upper
bound for its dominating score, U.dgs− and U.dgs+ respectively,
as well as the last examined position in I, denoted by Ui. We ini-
tialize the lower and upper bounds for U.dgs to

U.dgs− = 0 and U.dgs+ =
∑
u∈U

|I| − pos(u)

M2
,

respectively. Also, the last examined position for U is initialized to
Ui = pos(umax) (line 8).

Let V be the k-th result in R. We start by comparing U with
V . Three cases may occur: (1) if U.dgs+ < V.dgs−, then U does
not qualify forR, and it is inserted in L; (2) if U.dgs− > V.dgs+,
U is inserted in R before V , and it is recursively compared to the
preceding elements of V in R; if V was the k-th object in R, it is
removed from R and it is inserted in L; (3) otherwise, the lower
and upper bounds of U and V need to be refined, until one of the
conditions (1) or (2) is satisfied. This refinement is performed by
searching in I for instances dominated by an instance ofU , starting
from the position Ui. At each step of this search, the instance at
this position, v, is compared to the instances of U preceding it.
For each instance u of U that dominates (does not dominate) v,
the lower (upper) bound of the dominating score of U is increased
(decreased) by 1/M2. Also, the last examined position for U is
incremented by 1. Notice that, as in T KDD, if F (v) does not
exceed the minimum value of u, then u dominates v and all its
susequent instances, hence, the lower bound of the score of u is
updated accordingly, without performing dominance checks with
those instances (lines 9–15).

4.3 Ranking by dominance score
The previously presented algorithms take into consideration ei-

ther one of the dds or dgs scores. In the following, we present an
algorithm, referred to as T KM, that computes the top-k matches
with respect to the third criterion introduced in Section 3, which
combines both measures. In particular, this algorithm is derived by
the algorithm T KDG, with an appropriate modification to account
also for the dominated score. More specifically, this modification
concerns the computation of the lower and upper bounds of the
scores. First, the lower bound for the score of an object is now
initialized as:

U.dgs− = −λ ·
∑
u∈U

pos(u)

M2
(9)

instead of 0. Second, the bounds refinement process now needs to
consider two searches, one for instances dominated by the current
object, and one for instances that dominate the current object (see
Figure 2). These searches proceed interchangeably, and the bounds
are updated accordingly. Consequently, two separate cursors need

to be maintained for each object, to keep track of the progress of
each search in the list containing the instances.

5. EXPERIMENTAL EVALUATION
In this section we present an extensive experimental study of

our approach. In particular, we conduct two sets of experiments.
First, we investigate the benefits resulting from the use of the pro-
posed ranking criteria with respect to the recall and precision of the
computed results. For this purpose, we rely on a publicly avail-
able, well-known benchmark for Web service discovery, compris-
ing real-world service descriptions, sample requests, and relevance
sets. In particular, the use of the latter, which are manually identi-
fied, allows to compare the results of our methods against human
judgement. In the second set of experiments, we consider the com-
putational cost of the proposed algorithms under different combi-
nations of values for the parameters involved, using synthetic data
sets.

Our approach has been implemented in Java and all the experi-
ments were conducted on a Pentium D 2.4GHz with 2GB of RAM,
running Linux.

5.1 Retrieval Effectiveness
To evaluate the quality of the results returned by the three pro-

posed criteria, we have used the publicly available service retrieval
test collection OWLS-TC v2 2. This collection contains real-world
Web service descriptions, retrieved mainly from public IBM UDDI
registries. More specifically, it comprises: (a) 576 service descrip-
tions, (b) 28 sample requests, and (c) a manually identified rele-
vance set for each request.

Our prototype comprises two basic components: (a) a match-
maker, based on the OWLS-MX service matchmaker [23], and (b) a
component implementing the algorithms presented in Section 4 for
processing the degrees of match computed by the various matching
criteria and determining the final ranking of the retrieved services.

OWLS-MX matches I/O parameters extracted from the service
descriptions, exploiting either purely logic-based reasoning (M0)
or combined with some content-based, IR similarity measure. In
particular, the following measures are considered: loss-of-information
measure (M1), extended Jaccard similarity coefficient (M2), cosine
similarity (M3), and Jensen-Shannon information divergence based
similarity (M4). Given a request R and a similarity measure (M0–
M4), the degrees of match among its parameters and those of a ser-
vice S are calculated and then aggregated to produce the relevance
score of S. Therefore, given a request, a ranked list of services is
computed for each similarity criterion. Note that in OWLS-MX no
attempt to combine rankings from different measures is made.

We have adapted the matching engine of OWLS-MX as follows.
For a pair 〈R,S〉, instead of a single aggregated relevance score,
we retrieve a score vector containing the degrees of match for each
parameter. Furthermore, for any such pair, all similarity criteria
(M0–M4) are applied, resulting in five score vectors. Hence, for
a request having in total d I/O parameters, each matched service
corresponds essentially to an object, and the score vectors corre-
spond to the object’s d-dimensional instances. Then, the algorithms
T KDD, T KDG, and T KM, described in Section 4, are applied
to determine the ranked list of services for each criterion.

To evaluate the quality of the results, we apply the following
standard IR evaluation measures [4]:

• Interpolated Recall-Precision Averages: measures precision,
i.e., percent of retrieved items that are relevant, at various

2http://www-ags.dfki.uni-sb.de/~klusch/
owls-mx/
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Figure 5: Recall-Precision graphs: T KDD, T KDG and T KM

recall levels, i.e., after a certain percentage of all the relevant
items have been retrieved.

• Mean Average Precision (MAP): average of precision values
calculated after each relevant item is retrieved.

• R-Precision (R-prec): measures precision after all relevant
items have been retrieved.

• bpref : measures the number of times judged non-relevant
items are retrieved before relevant ones.

• Reciprocal Rank (R-rank): measures (the inverse of) the rank
of the top relevant item.

• Precision atN (P@N): measures the precision afterN items
have been retrieved.

The conducted evaluation comprises three stages.
First, we compare the three different ranking criteria considered

in our approach. The resulting recall-precision graphs are depicted
in Figure 5. Regarding T KM, we study the effect of the parame-
ter λ (see Section 3), considering 4 variations, denoted as T KM-
λ, for λ=1, 5, 20, 50. As shown in Figure 5, for a recall level
up to 30%, the performance of all methods is practically the same.
Differences start to become more noticeable after a recall level of
around 60%, where the precision of T KDG starts to degrade at a
considerably higher rate compared to that of T KDD. This means
that several services, even though dominating a large number of
other matches, were not identified as relevant in the provided rele-
vance sets. On the other hand, as expected, the behavior of T KM
is dependent on the value of λ. Without considering any scaling
factor, i.e., for λ=1, the effect of the dds criterion is low, and,
hence, although T KM performs better than T KDG, it still fol-
lows its trend. However, significant gains are achieved by values of
λ that strike a good balance between the two criteria, dds and dgs.
The heuristic presented in Section 3, provides us with a starting
value λH , which is equal to 5 for the data set into consideration.
All our experiments with the real data show that T KM-λH , i.e.,
T KM having λ=λH , produces better results than the other two
methods. This is illustrated by the graph T KM-5 in Figure 5. In
addition, the experiments show that for values of λ lower than λH ,
T KM does not produce better results; i.e., the effect of dds is still
not sufficient. On the other hand, we can get further improved re-
sults (by a factor of around 1% in our experimental data set), by
tuning λ into a range of values belonging to the same order of mag-
nitude as λH . (Obviously, the tuning of λ is required only once
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sures M0-M4

per data set.) In our experiments, we got the best performance of
T KM for values of λ around 20, which, as demonstrated by the
graph in Figure 5, produces slightly better precision than T KM-5.
Further increasing the factor λ, i.e., the effect of the dds criterion,
fails to provide better results, and, as expected, it eventually con-
verges back to T KDD, as illustrated by the T KM-50 graph in
Figure 5.

Next, we examine the resulting benefit of the dominance-based
ranking compared to applying either of the individual similarity
measures M0-M4. The recall-precision measures are illustrated
in Figure 6. To avoid overloading the figure, only the T KM-5
and T KM-20 have been plotted. As shown, the dominance-based
ranking clearly outperforms all the individual similarity measures.
This can be attributed to the fact that the combination of all the
matching criteria constitutes the matchmaker more tolerant to the
false positive or false negative results returned by the individual
measures [22].

As this is not very surprising, to better gauge the effectiveness
of our methodology, we finally compare it to better informed ap-
proaches, as well. When multiple rankings exist, a common prac-
tice for boosting accuracy is to combine, or fuse, the individual
results. Several methods, reviewed in Section 2, exist for this task.
We compare our method to four popular fusion techniques: the
score-based approaches CombSum and CombMNZ [18], the sim-
ple rank-based method of Borda-fuse [3], and the Outranking ap-
proach [17]. The first three techniques are parameter-free. On
the other hand, the latter requires a family of outranking relations,
where each relation is defined by four threshold values (sp, su, cmin,
dmax). We chose to employ a single outranking relation, setting the
parameters to (0, 0,M,M − 1), satisfying, thus, Pareto-optimality
(M denotes the number of ranking lists, or criteria, which is 5 in our
case). The obtained recall-precision graphs are shown in Figure 7.
Again, our approach clearly outperforms the other methods. This
gain becomes even more apparent, when noticing through Figures 6
and 7 that these fusion techniques, in contrast to our approach, fail
to demonstrate a significant improvement over the individual simi-
larity measures.

In addition to the recall-precision graphs discussed above, Ta-
ble 2 details the results of all the compared methods for all the
aforementioned IR metrics. For each metric, the highest value is
shown in bold (we treat the values of both versions of T KM uni-
formly), whereas the second highest in italic. In summary, T KDD
and T KDG produce an average gain of 8.33% and 6.44%, respec-
tively, with respect to the other approaches. Additionally, T KM-5
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Table 2: IR metrics for all methods
Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20
TKDD 0.7050 0.6266 0.6711 0.8333 0.8071 0.6893 0.6143 0.5446
TKDG 0.6750 0.6233 0.6334 0.8333 0.8143 0.7143 0.6238 0.5089
TKM-5 0.7249 0.6618 0.7098 0.8393 0.8000 0.7036 0.6738 0.5714
TKM-20 0.7375 0.6808 0.7243 0.8393 0.8000 0.7250 0.6857 0.5750

M0 0.5097 0.5128 0.5138 0.7217 0.6357 0.6071 0.5357 0.4464
M1 0.6609 0.5966 0.6313 0.8155 0.7571 0.6679 0.5738 0.5268
M2 0.6537 0.5903 0.6260 0.7708 0.7357 0.6536 0.5762 0.5232
M3 0.6595 0.5924 0.6254 0.8482 0.7357 0.6571 0.5762 0.5161
M4 0.6585 0.5822 0.6234 0.8127 0.7429 0.6571 0.5690 0.5250

Borda 0.6509 0.5778 0.6210 0.7577 0.7357 0.6464 0.5667 0.5179
MNZ 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

Outrank 0.6477 0.5811 0.6164 0.7575 0.7214 0.6500 0.5643 0.5179
Sum 0.6588 0.5903 0.6274 0.8214 0.7357 0.6536 0.5738 0.5286

and T KM-20 improve the quality of the results by a percentage
(average values) of 11.44% and 12.56%, respectively.

5.2 Computational Cost
In this section, we consider the computational cost of T KDD,
T KDG, and T KM, for different values of the involved parame-
ters. These parameters and their examined values are summarized
in Table 3. ParametersN and k refer to the number of available ser-
vices and the number of results to return, respectively. Parameter
d corresponds to the number of parameters in the service request,
i.e., the dimensionality of the match objects. Parameter M denotes
the number of distinct matching criteria employed by the service
matchmaker.

We first provide a theoretical analysis, and then report our exper-
imental findings on synthetically generated data sets.

Theoretical Analysis. To determine the dominated and dominat-
ing scores, our methods need to compare the instances of all ser-
vices with each other, in the worst case. In total, there are N ·M
instances (i.e., M match instances per service), hence we perform
O(N2M2) dominance checks. For any pair of instances, a domi-
nance check needs to examine the degrees of match for all d param-
eters. As a result, the complexity of our methods is O(dN2M2).
Clearly, this is a worst-case bound, as our algorithms need only find
the top-k dominant services and employ various optimizations for
reducing the number of dominance checks.

For the sake of comparison, we also discuss briefly the com-
putational cost of the fusion techniques considered in Section 5.1.
These take as inputM lists, one for each criterion, containing theN
advertised services ranked in decreasing order of their overall de-
gree of match with the request. Therefore, an aggregation of the in-
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Figure 8: Effect of parameters under low (left graph of each
pair) and high (right graph of each pair) variance var

dividual parameter-wise scores is required. CombSum, CombMNZ
and Borda-fuse scan the lists, compute a fused score for each ser-
vice and output the results sorted by this score. This procedure
costs O(NM +N logN), where the first (second) summand cor-
responds to scanning (sorting). The Outranking method computes
the fused score in a different manner: for each pair of services it
counts agreements and disagreements as to which is better in the
ranked lists. Therefore, its complexity is O(N2M). Note that all
fusion techniques are independent of d due to the reduction of the
individual parameter scores to a single overall score. In practice,
the performance of T KDG and T KM resembles that of the Out-
ranking method, while T KDD performs as well as the other fusion
approaches. Therefore, for clarity of the presentation, in the rest of
our analysis, we focus only on the three proposed methods.

Experimental Analysis. We used a publicly available synthetic
generator 3 to obtain different types of data sets, with varying dis-
tributions represented by the parameters corr and var, shown in
Table 3. Given a similarity metric, parameter corr denotes the cor-
relation among the degrees of match for the parameters of a service.
We consider three distributions: in independent (ind), degrees of
match are assigned independently to each parameter; in correlated
(cor), the values in the match instance are positively correlated, i.e.,
a good match in some service parameters increases the possibility
of a good match in the others; in anti-correlated (ant) the values
are negatively correlated, i.e., good matches (or bad matches) in
all parameters are less likely to occur. Parameter var controls the
variance of results among similarity metrics. When var is low,
matching scores from different criteria are similar. Hence, the in-
stances of the same match object are close to each other in the
d-dimensional space. On the other hand, when var is high, the
matching scores from different criteria are dissimilar and, conse-
quently, instances are far apart. We report our measures for vari-
ance around 10% (low) and 20% (high).

3http://randdataset.projects.postgresql.org/



Table 3: Parameters and examined values
Parameter Symbol Values
Number of services N [1, 10]K, 5K
Number of results k 10, 20, 30, 40, 50
Number of dimensions d 2, 4, 6, 8, 10
Number of instances M 2, 4, 6, 8, 10
Parameter correlation corr ind, cor, ant
Instance variance var low, high
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Figure 9: Effect of parameters under low (left graph of each
pair) and high (right graph of each pair) variance var

In all experimental setups, we investigate the effect of one pa-
rameter, while we set the remaining ones to their default values,
shown bold in Table 3. As a default scenario, we consider a request
with 4 parameters, asking for the top-30 matches of a set of 5K
partially matching service descriptions, using 4 different similarity
measures. For the factor λ in T KM, we used the value λH appro-
priately estimated for each corresponding data set. The results are
presented in Figure 9.

In general, all experiments indicate that T KDD is the most ef-
ficient method. As already discussed, T KDD is interested in ob-
jects that dominate the top match objects; hence, it searches a rel-
atively small portion of the data set. On the contrary, the search
space for T KDG is significantly larger, so its delay is expected.
Similarly, T KM performance suffers mainly due to the impact
of dgs score; therefore, it is reasonable that it follows the same
trend as T KDG, with a slight additional overhead for accounting
for dds score, as well. These observations are more apparent in
Figure 8(a), where it can be seen that T KDD is very slightly af-
fected, as opposed to T KDG and T KM, by the size of the data
set. Another interesting observation refers to the effect of the di-
mensionality (Figure 9(b)), which at higher values becomes notice-
able even for T KDD. This, in fact, is a known problem faced by
the skyline computation approaches as well. As the dimensionality
increases, it becomes increasingly more difficult to find instances
dominating other instances; hence, many unnecessary dominance
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Figure 10: Effect of corr under low (left) and high (right) vari-
ance var

checks are performed. A possible work-around is to group together
related service parameters so as to decrease the dimensionality of
the match objects. For the same reasons, a similar effect is observed
in Figure 10. For correlated data sets, where many successful dom-
inance checks occur, the computational cost for all methods drops
close to zero. On the contrary, for anti-correlated data sets, where
very few dominance checks are successful, the computational cost
is significantly larger.

Summarizing, the final choice of the appropriate ranking method
depends on the application. All three proposed measures produce
significantly more effective results than the previously known ap-
proaches. If an application favors more accurate results, then T KM
seems as an excellent solution. If the time factor acts as the driving
decision point, then T KDD should be favored, since it provides
high quality results (see Table 2) almost instantly (see Figures 9
and 10).

6. CONCLUSIONS
In this paper, we have addressed the issue of top-k retrieval of

Web services, with multiple parameters and under different match-
ing criteria. We have presented three suitable criteria for ranking
the match results, based on the notion of dominance. We have pro-
vided three different algorithms, T KDD, T KDG, and T KM, for
matching Web service descriptions with service requests according
to these criteria. Our extensive experimental evaluation shows that
our approach compared to the state of the art significantly improves
the effectiveness of the search by an average factor of 12%. Since
our methods combine more than one similarity measures, their ex-
ecution time is affected. However, T KDD runs in almost instant
time, while still producing results that outperform the traditional
approaches by an average extent of 8.33%.
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