
Noname manuscript No.
(will be inserted by the editor)

Index-based Query Processing on Distributed
Multidimensional Data

George Tsatsanifos · Dimitris Sacharidis ·
Timos Sellis

the date of receipt and acceptance should be inserted later

Abstract This work introduces decentralized query processing techniques based on
MIDAS, a novel distributed multidimensional index. In particular, MIDAS imple-
ments a distributed k-d tree, where leaves correspond to peers, and internal nodes
dictate message routing. MIDAS requires that peers maintain little network informa-
tion, and features mechanisms that support fault tolerance and load balancing. The
proposed algorithms process point and range queries over the multidimensional in-
dexed space in only O(logn) hops in expectance, where n is the network size. For
nearest neighbor queries, two processing alternatives are discussed. The first, termed
eager processing, has low latency (expected value of O(logn) hops) but may involve
a large number of peers. The second, termed iterative processing, has higher latency
(expected value of O(log2 n) hops) but involves far fewer peers. A detailed experi-
mental evaluation demonstrates that our query processing techniques outperform ex-
isting methods for settings involving real spatial data as well as in the case of high
dimensional synthetic data.

1 Introduction

There is a continuous interest to improve information retrieval in decentralized net-
works of machines, or peers. The most efficient techniques follow the structured net-
work paradigm, and find application in lookup services, resource discovery mecha-

George Tsatsanifos
National Technical University of Athens, Greece
E-mail: gtsat@dblab.ece.ntua.gr

Dimitris Sacharidis
Institute for the Management of Information Systems, R.C. “Athena”, Greece
E-mail: dsachar@imis.athena-innovation.gr

Timos Sellis
National Technical University of Athens, Greece, and
Institute for the Management of Information Systems, R.C. “Athena”, Greece
E-mail: timos@imis.athena-innovation.gr

2 G. Tsatsanifos, D. Sacharidis, and T. Sellis

nisms, and content delivery systems, among others. In structured networks, a global
protocol mandates data distribution over peers, which essentially translates searching
for a piece of information into locating the peer responsible for it.

Even though a multitude of structured networks have been proposed, only a few
of them are capable of storing and querying multidimensional data. We briefly dis-
cuss existing work by distinguishing three categories. The first includes solutions that
directly extend some single-dimensional structured network. The most naive method
is to select a single attribute and ignore all others for indexing, which clearly has its
disadvantages. A more attractive alternative is to index each dimension separately,
e.g., [4], [6]. However, these approaches still have to resort to only one of the dimen-
sions for processing queries. The most popular approach, [10], [20], [5], within this
category is to map the original space into a single dimension using a space filling
curve, such as Hilbert or z-curve, and then employ any standard structured system.
These techniques suffer, especially in high dimensionality, as locality cannot be pre-
served. For instance, a rectangular range in the original space corresponds to multiple
non-contiguous ranges in the mapped space.

The second category contains structured systems that were explicitly designed to
store multidimensional information, e.g., [17], [10]. The basic idea is that each peer is
responsible for a rectangular region of the space, and has knowledge of its neighbors
in adjacent regions. Being multidimensional in nature, their processing cost for most
queries is sublinear to the network size. Their main weakness, however, is that they
cannot take advantage of a hierarchical indexing structure. As a result, lookups for
remote (in the multidimensional space) peers are unavoidably routed through many
intermediate nodes, i.e., jumps cannot be made.

The last category includes methods, e.g., [11], [12], that decentralize a conven-
tional hierarchical multidimensional index, such as the R-tree. The basic idea is that
each peer corresponds to a node (internal or leaf) of the index, and establishes link
to its parent, children and selected nodes at the same depth of the tree but in differ-
ent subtrees. Queries are processed similar to the centralized approach, i.e., the index
is traversed starting from the root. As a result, these methods inherit nice properties
like logarithmic search cost, but face a serious limitation. Peers that correspond to
nodes high in the tree can quickly become overloaded as query processing must pass
through them. While this was a desirable property in centralized indices in order to
minimize the number of I/O operations by maintaining these nodes in main mem-
ory, it is a limiting factor in distributed settings leading to bottlenecks. Moreover, this
causes an imbalance in fault tolerance: a peer high in the tree that fails requires a
significant amount of effort from the system to recover. Last but not least, R-trees are
known to suffer in high dimensionality settings, which carries over to their decentral-
ized counterparts; e.g., the experiments in [12] showed that for dimensionality close
to 20, this method was outperformed by the non-indexed approach of [17].

Motivated by these observations, this work proposes query processing techniques
based on a novel structured network, called Multi-attribute Indexing for Distributed
Architecture Systems (MIDAS) [22]. MIDAS takes a different approach than existing
methods. First, it employs a hierarchical multidimensional index structure, the k-d
tree. This has a series of benefits. Being a binary tree, it allows for simple and efficient
routing, in a manner reminiscent of Plaxton’s algorithm [16] for single dimensional

Index-based Query Processing on Distributed Multidimensional Data 3

tree-like structures. Unlike other multidimensional index techniques, e.g., [12], peers
in MIDAS only correspond to leaf nodes of the k-d tree. This, alleviates bottlenecks
and increases scalability as no single peer is burdened with routing multiple requests.
Moreover, MIDAS is compatible with conventional techniques for load balancing and
replication-based fault tolerance.

Using the MIDAS infrastructure, the most important classes of multi-attribute
queries can be efficiently processed in arbitrary dimensionality. In particular, we
show that, for a network of n peers, point queries and range queries are processed in
O(logn) hops, in expectance. These bounds are smaller than non-indexed d-dimensio-
nal structured systems, e.g., O(d d

√
n) of [17]. Furthermore, we propose two process-

ing alternatives for nearest neighbor search. The first, termed eager processing, has
low latency (expected value of O(logn) hops) but may involve a large number of
peers. The second, termed iterative processing, has higher latency (expected value
of O(log2 n) hops) but is more conservative and involves far fewer peers than eager
processing. A thorough experimental study on real spatial data as well as on synthetic
data of varying dimensionality validates these claims.

The remainder of this paper is organized as follows. Section 2 describes MIDAS
and its basic operations including load balancing and fault tolerance mechanisms.
Section 3 discusses multidimensional query processing. Section 4 presents an exten-
sive experimental evaluation of our processing techniques. Section 5 reviews related
work, and Section 6 concludes this work.

2 MIDAS Architecture

This section presents the information stored in each peer and details the basic oper-
ations in the MIDAS overlay network. In particular, Section 2.1 introduces the dis-
tributed index structure, Section 2.2 discusses the information stored within each peer
in MIDAS. Section 2.4, 2.3 and 2.5 elaborates on the actions taken when a peer de-
parts, joins, and fails, respectively. Section 2.6 discusses load balancing and fault
tolerance.

2.1 Index Structure

The distributed index of MIDAS is an instance of an adaptive k-d tree [3]. Consider
a D-dimensional space I = [lI ,hI], defined by a low lI and a high hI D-dimensional
point. The k-d tree T is a binary tree, in which each node T [i] corresponds to an
axis parallel (hyper-) rectangle Ii; the root T [1] corresponds to the entire space, i.e.,
I1 = I. Each internal node T [i] has always two children, T [2i] and T [2i+1], whose
rectangles are derived by splitting Ii at some value si along some dimension di; the
splitting criterion (i.e., the values of si and di) are discussed in Section 2.3. Note that
di represents the splitting dimension of node T [i] and not the i-th dimension of the
space.

Consider node T [i]’s two children, T [2i], T [2i + 1], and their rectangles I2i =
[l2i,h2i], I2i+1 = [l2i+1,h2i+1]. Assuming that the left child (T [2i]) is assigned the

4 G. Tsatsanifos, D. Sacharidis, and T. Sellis

lower part of Ii, it holds that (1) l2i[d j] = l2i+1[d j] and h2i[d j] = h2i+1[d j] on every
dimension d j 6= di, and (2) h2i[di] = l2i+1[di] = si on dimension di. We write I2i]di

I2i+1 to denote that the above properties hold for the two rectangles.
Each node of the k-d tree is associated with a binary identifier corresponding to its

path from the root, which is defined recursively. The root has the empty id ∅; the left
(resp. right) child of an internal node has the id of its parent augmented with 0 (resp.
1). Figure 1a depicts a k-d tree of eleven nodes obtained from five splits; next to each
node its id is shown. Due to the hierarchical splits, the rectangles of the leaf nodes in
a k-d tree constitute a non-overlapping partition of the entire space I. Figure 1b draws
the rectangles corresponding to the leaves of Figure 1a; the splits are numbered and
shown next to the corresponding axis parallel cuts.

#1

#2 #3

#4 w

u y

#5

v z

x

0 1

0100

001000 101100

1110

A E

C

F

D

B

(a) A k-d tree

#2

#1

#3

#4 #5

u y

w

zv

x

(b) Leaf rectangles

Fig. 1: An example of a two-dimensional k-d tree.

In this work, a tuple is a key-value pair, where the key is D-dimensional. Thus, a
key is represented as a point in the D-dimensional space I indexed by a k-d tree. A
leaf of a k-d tree stores all tuples whose keys fall in its rectangle. The hierarchical
structure of the k-d tree allows for efficient methods to process queries, such as range
and nearest neighbor queries.

2.2 MIDAS Peers

It is important to distinguish the concepts of a physical and a virtual peer. A virtual
peer, or simply a peer, is the basic entity in MIDAS. On the other hand, a physical
peer is an actual machine that takes part in the distributed overlay. A physical peer
can be responsible for several peers due to node departures or failures (Section 2.4,
2.5), or for load balancing and fault tolerance purposes (Section 2.6).

A peer in MIDAS corresponds to a leaf of the k-d tree, and stores/indexes all
key-value tuples, whose keys reside in the leaf’s rectangle, which is called its zone.
A peer is denoted with small letters, e.g., u, v, w, whereas a physical peer with capital
letters, e.g., A, B, C. For example, in Figure 1a, physical peer C acts as the single peer
w corresponding to leaf 01. We emphasize that internal k-d tree nodes, e.g., the non-
shaded nodes in Figure 1a, do not correspond to peers and of course not to physical
peers. An important property of peers in MIDAS is the following invariant.

Index-based Query Processing on Distributed Multidimensional Data 5

Lemma 1 For any point in space I, there exists exactly one peer in MIDAS respon-
sible for it.

Proof Each peer corresponds to a k-d tree leaf. The lemma holds because the leaves
constitute an non-overlapping partition of the entire space I. ut

A peer u in MIDAS contains only partial information about the k-d tree, which
however is sufficient to perform complex query processing discussed in Section 3. In
particular, peer u contains the following state. (1) u.id is a bitmap representing the
leaf’s binary id; u.id[j] is the j-th most significant bit. (2) u.depth is the depth of the
leaf in the k-d tree, or equivalently the number of bits in u.id. (3) u.sdim is an array
of length u.depth so that u.sdim[j] is the splitting dimension of the parent of the j-th
node on the path from the root to u. (4) u.split is an array of length u.depth so that
u.split[j] is the splitting value of the parent of the j-th node on the path from the root
to u. (5) u.link is an array of length u.depth that corresponds to u’s routing table, i.e.,
it contains the peers u has a link to. (6) u.backlink is a list that contains all peers that
have u in their link array. (7) u.address is the network address of the physical peer
responsible for u.

In the following, we explain the contents of u.link, which define the routing table
of peer u. First, we define an important concept. Consider the prefixes of u’s identifier;
there are u.depth of them. Each prefix corresponds to a subtree of the k-d tree that
contains the leaf u (more accurately the leaf that has id u.id) and identifies a node on
the path from the root to u. In the example of Figure 1a, u.id = 000 has three prefixes:
0, 00 and 000, corresponding to the subtrees rooted at the internal k-d tree nodes with
these ids. If we invert the least significant bit of a prefix, we obtain a maximal sibling
subtree, i.e., a subtree for which there exists no larger subtree that contains it and also
not contain the leaf u. Figure 2a shows the maximal sibling subtrees of u.id = 000,
which are rooted at nodes 1, 01 and 001, as shaded triangles.

#1

#2

#4

u y

w

z

(a) Maximal sibling subtrees of u

#2

#1

#4

u y

w

z

(b) Local knowledge at u

Fig. 2: Links of peer u.

For each maximal sibling subtree, u establishes a link to a peer that resides in
it. Note that a subtree may contain multiple leafs and thus multiple peers; MIDAS
requires that peer u knows just any one of them. For example, Figure 2a shows the
peers in each maximal sibling subtree that u is connected to. Observe that each peer
has only partial knowledge about the k-d tree structure. Figure 2b depicts this local

6 G. Tsatsanifos, D. Sacharidis, and T. Sellis

knowledge for u, which is only aware about the splits (#1, #2 and #4) along its path
to the root. The shaded rectangles corresponds to the subtrees of the same shade
in Figure 2a. Peer u knows exactly one other peer within each rectangle. Observe,
however, that these rectangles cover the entire space I; this is necessary to ensure
that u can locate any other peer, as explained in Section 3.1, and process queries, as
discussed in Section 3.

Array u.link defines the routing table. Entry u.link[j] contains the address of a
peer that resides in the maximal sibling subtree obtained from the j-length prefix
of u.id. Continuing the example, u connects to three peers, i.e., u.link = {z,w,y}.
Table 1 depicts the link array for each peer. The notation u(000) indicates that peer
u corresponds to k-d tree leaf with id 000. The notation 01: w(01) signifies that peer
w with leaf id 01 is located at the subtree rooted at node 01. The first row of Table 1
indicates that u has three links z, w and y in its maximal sibling subtrees rooted at k-d
tree nodes with ids 1, 01 and 001, respectively.

Table 1: Routing tables example

Peer link entries
u(000) 1: z(101) 01: w(01) 001: y(001)
y(001) 1: z(101) 01: w(01) 000: u(000)
w(01) 1: v(100) 00: u(000)
v(100) 0: w(01) 11: x(11) 101: z(101)
z(101) 0: y(001) 11: x(11) 100: v(100)
x(11) 0: u(000) 10: v(100)

2.3 Peer Joins

When a new physical peer joins MIDAS, it becomes responsible for a single peer.
Initially, the newly arrived physical peer chooses a random point p in the space I and
locates the peer v responsible for it (Section 3.1 explains the lookup process). There
are two scenarios depending on the status of the physical peer responsible for v.

In the first scenario, the physical peer responsible for v has no other peers. Then,
the k-d tree leaf node with id v.id is split and two new leaves are created. The splitting
dimension sdim of the node is chosen randomly among all possible dimensions, while
the splitting value split is the value of the random point p on the sdim dimension. Peer
v now corresponds to the left child. Finally, a new peer w is created for the right child
and is assigned to the newly arrived physical peer.

To ensure proper functionality, MIDAS takes the following actions. (1) v sends to
w the tuples that fall in w’s zone. (2) Peer v: (2a) appends 0 to v.id; (2b) increments
v.depth by one; (2c) appends w as the last entry in v.link; (2d) appends to v.sdim and
v.split the new splitting dimension and value. (3) Peer w: (3a) copies v’s state; (3b)
changes the least significant bit of w.id to 1; (3c) changes the last entry in w.link to v.
(4) v keeps one half of its v.backlink. (5) w keeps the other half of its w.backlink. (6)
w notifies its backlinks about its address w.address.

Index-based Query Processing on Distributed Multidimensional Data 7

The second scenario applies when the physical peer responsible for v has multiple
peers, that is v is just one of them. In this case, v simply migrates to the newly arrived
physical peer, which has the responsibility to notify the backlinks of v about its new
address.

We present an example of how the network of Figure 1 was constructed. Assume
initially that there is a single physical peer A responsible for peer u, whose zone is
the entire space, as shown in Figure 3a. Then, physical peer B joins and causes a
split of the k-d tree root along the first dimension (Split #1 in Figure 1). Peer u is now
responsible for the leaf with id 0. A new peer v is created with the id 1 and is assigned
to the newly arrived physical peer B. Figure 3b depicts the resulting k-d tree; the split
node is drawn with a bold line.

A
u

(a) Initially

#1

u v 10
A B

(b) B joins

#1

#2 v

u w

10

0100
A C

B

(c) C joins

#2

u w

0

01
00
A C

#3

v x

1

11
10

B D

#1

(d) D joins

#1

#2 #3

#4 w

u y

0 1

0100

001000
A E

C

v x 1110
B D

(e) E joins

#1

#2 #3

#4 w

u y

#5

v z

x

0 1

0100

001000 101100

1110

A E

C

F

D

B

(f) F joins

Fig. 3: Network creation.

Assume next that physical peer C joins and chooses a random point that falls in
peer u’s zone. Therefore, leaf 0 splits, along the second dimension (Split #2). Peer u
becomes responsible for the left child and has the id 00, while a new peer w with id
01 is created and assigned to physical peer C. Figure 3c depicts the resulting k-d tree.
Then, physical peer D joins selecting a random point inside v’s zone. As a result, leaf
1 splits along v.sdim[2] (Split #3), v is assigned leaf 10, and a new peer x with id 11
is assigned to D; see Figure 3d.

Physical peer E arrives and splits leaf 00 along u.sdim[3] (Split #4). Peer u be-
comes responsible for the left child and obtains the id 000, while a new peer y with id
001 is created and assigned to E. The resulting k-d tree is shown in Figure 3e. Finally,
F joins causing a split of leaf 10 along v.sdim[3] (Split #5). A new peer z is assigned
to F with id 101, while peer v gets the id 100. Figure 3f shows the k-d tree after the
last join.

8 G. Tsatsanifos, D. Sacharidis, and T. Sellis

The following lemma shows that peer joins in MIDAS are safe, that is, Lemma 1
continues to hold.

Lemma 2 After a physical peer joins, the MIDAS invariant holds.

Proof Assume that the MIDAS invariant initially holds. In the first scenario, a phys-
ical peer join causes a k-d tree leaf to split. Let u be the peer responsible for the leaf
that splits, and let u′ denote the same peer after the split. Further, let w denote the
new peer created. It holds that k-d tree node u.id is the parent of leaves u′.id and
w.id. Also, note that MIDAS ensures that Iu = Iu′]du Iw. Therefore, any point in the
space I that was assigned to u is now assigned to either u′ or w, but not to both. All
other points remain assigned to the same peer despite the join.

In the second scenario, observe that when a physical peer joins, no changes in the
k-d tree and thus in the peers’ zones are made. Hence, in both scenarios, the MIDAS
invariant is preserved after a physical peer joins. ut

The probabilistic nature of the join mechanism in MIDAS achieves a very im-
portant goal. It ensures that the (expected value of the) depth of the k-d tree, i.e.,
the maximum length of a root to leaf path, is logarithmic to the number of total k-d
tree nodes (and thus of leaves and thus of peers). The following theorem proves this
claim.

Theorem 1 The expected depth of the distributed k-d tree of MIDAS when n peers
join on an initially empty overlay is O(logn) with constant variance.

Proof Consider a MIDAS k-d tree of n peers. Since, each internal node has exactly
two children (it corresponds to a split), there are n− 1 internal nodes. The k-d tree
obtained by removing the leaves is an instance of a random relaxed k-d tree, as de-
fined in [8], which is an extension of a random k-d tree defined in [2]. This holds
because the splitting value and dimension are independently drawn from uniform
distributions.

It is shown [8], [2] that the probability of constructing a k-d tree by n random
insertions is the same as the probability of attaining the same tree structure by n ran-
dom insertions into a binary search tree. It is generally known that, in random binary
search trees, the expected value of a root-to-leaf path length is logarithmic to the
number of nodes. However, a stronger result from [18] shows that the maximum path
length, i.e., the depth, has expected value O(logn) and variance O(1). This results
carries over to the MIDAS k-d tree with n peers. ut

The previous theorem is essential for establishing asymptotic bounds on the per-
formance of MIDAS. First, it implies that the amount of information stored in each
peer is logarithmic to the overlay size. Moreover, as discussed in Sections 3.1 and 3,
the theorem provides bounds for the cost of query processing.

2.4 Peer Departures

When a physical peer departs, MIDAS executes the following procedure for each of
the peers that it is responsible for. Two possible scenarios exist, depending on the
location of the departing peer in the k-d tree.

Index-based Query Processing on Distributed Multidimensional Data 9

Let y denote a peer of the departing physical peer E in the first scenario, which
applies when the sibling of y in the k-d tree is also a leaf and thus corresponds to
a peer, say u. Observe that y has a link to u, as the last entry in y.link must point
to u. In this scenario, when peer y departs, MIDAS adapts the k-d tree by removing
leaves y.id and u.id, so that their parent becomes a leaf. Peer u is properly updated so
that it becomes associated with this parent. In the example of Figure 1a, assume that
physical peer E, responsible for y, departs. Peer y’s sibling is 000, which is a leaf and
corresponds to peer u. Figure 4a shows the resulting k-d tree after E departs. Note
that peer u is now responsible for a zone which is the union of y’s and u’s old zones.

#1

#2 #3

#5

v z

x

0 1

101100

1110

F

D

B

u w 0100
A C

(a) E departs

#1

#2 #3

#4 w

u y

#5

v z

x

0 1

0100

001000 101100

1110

A E

B

F

D

B

(b) C departs

Fig. 4: The two scenarios for peer departures.

To ensure that all necessary changes in this scenario are propagated to the net-
work, MIDAS takes the following actions. (1) y sends to u all its tuples. (2) Peer u:
(2a) drops its least significant bit from its id; (2b) decreases its depth by one; and (2c)
removes the last entry from arrays u.sdim, u.split, u.link. (3) y notifies all its back-
links, i.e., the peers that link to y, to update their link to u instead of y. (4) u merges
list y.backlink with its own.

Let w be a peer of the departing physical peer C in the second scenario, which
applies when the sibling of w in the k-d tree is not a leaf. In this case, k-d tree leaf
w.id cannot be removed along with its sibling. Therefore, peer w must migrate to
another physical peer. Peer w chooses one of its links and asks the corresponding
physical peer to assume responsibility for peer w. Ideally, the physical peer that has
the lightest load is selected1 (see also Section 2.6). Note that the backlinks of w must
be notified about the address of the new peer responsible for w. In the example of
Figure 1a, assume that physical peer C departs. C is responsible for w, whose sibling
00 in the k-d tree is not a leaf. Therefore, w contacts its link v so that its physical peer
B assumes responsibility for w. Figure 4b shows the resulting k-d tree after C departs.

The following lemma shows that departures in MIDAS are safe, i.e., Lemma 1
continues to hold.

Lemma 3 After a physical peer departs, the MIDAS invariant holds.

1 Peers periodically inform their backlinks about their load.

10 G. Tsatsanifos, D. Sacharidis, and T. Sellis

Proof Assume that the MIDAS invariant initially holds. Note that a physical peer
departure is treated as multiple departures of all peers that it controls.

In the first scenario, a peer departure causes the removal of two k-d tree leaves.
Let w be the departing peer and u be the peer responsible for the sibling of w.id in
the tree. Further, let u′ denote peer u after the departure. Observe that the zone of u′

must correspond to some old peer that split along dimension du′ , which implies that
Iu′ = Iu]du′ Iw. Therefore, any point in the space I that was assigned to either u or w
is now assigned to u. All other points remain assigned to the same peer despite the
departure.

In the second scenario, observe that when a peer departs, no changes in the k-d
tree and thus in the peers’ zones are made. Hence, in both scenarios, the MIDAS
invariant is preserved after a physical peer departs. ut

2.5 Peer Failures

In a dynamic environment, it is common for peers to fail. MIDAS employs mech-
anisms that ensure that the distributed index continues to function. Consider that a
physical peer fails; the following procedure applies for each peer under the respon-
sibility of the failing peer. MIDAS addresses two orthogonal issues when a peer w
fails: (1) another physical peer must take over w, and (2) the tuples stored in w must
be retrieved.

Regarding the first, note that all peers connected to w will learn that it failed; this
happens because a peer periodically pings its neighbors. Each of the peers responsible
for one of w’s backlinks knows w’s zone (i.e., the boundaries of the region for which
w is responsible), but only one must take over w. This raises a distributed agreement
problem common in other works; for example, in CAN, the backlinks of w would
follow a protocol so that the one with the smallest zone takes over w’s zone. However,
communication among the peers is not necessary in MIDAS. If w’s sibling in the tree
is a peer (i.e., a leaf), say u, then the physical peer responsible for u will take over
w. If that is not the case, the peer with the smallest id, among w’s backlinks will take
over w.

Regarding the second issue, note that w (or any peer for that matter) is not the
owner of the data it stores. Therefore, it is the responsibility of the owner to ensure
that its data exist in the distributed index. This is addressed in all distributed indices
in a similar manner. Each tuple is associated with a time-to-live (TTL) parameter.
The owner periodically (before the TTL expires) re-inserts the tuples in the index.
Therefore, the lost tuples of w will eventually be restored. To increase fault tolerance,
distributed indices typically employ replication mechanisms. MIDAS is compatible
with them as explained in Section 2.6.

2.6 Load Balancing and Fault Tolerance

Balancing the load, i.e, the amount of work, among peers is an important issue in
distributed indices. MIDAS can use standard techniques. For example, one could

Index-based Query Processing on Distributed Multidimensional Data 11

apply the task-load balancing mechanism of Chord [21]. That is, given M physical
peers, we introduce N�M peers. Then each physical peer is assigned a set of peers
so that the combined task-load per physical peer is uniform.

To enhance fault tolerance, MIDAS can utilize standard replication schemes. For
example, consider the multiple reality paradigm, where each reality corresponds to
an instance of the domain space indexed by a separate distributed k-d tree. Each data
tuple has a replica in every reality. A physical peer contains (at least) one peer in each
reality. When initiating a query, a physical peer picks randomly a reality to pose the
query to; note that this also results in better load distribution. Then, in case of peer
failures and before the tuples are refreshed (see Section 2.5), the physical peer can
pose the query to another reality.

3 Query Processing on MIDAS

This section details multi-attribute query processing on MIDAS. In particular, Sec-
tion 3.1 discusses point queries, Section 3.2 range queries, and Section 3.3 nearest
neighbor queries.

3.1 Point Queries

The distributed k-d tree of MIDAS allows for efficient hierarchical routing. We show
that a peer can process a point query, i.e., reach the peer responsible for a given
point in the space I, in number of hops that is, in expectation, logarithmic to the total
number of peers in MIDAS.

Algorithm 1 details how point queries are answered in MIDAS. Assume that peer
u receives a point query message for point q. If its zone contains q, it returns the tuples
with key q (if they exist) to the issuer, say w, of the query (lines 1–3). Otherwise, u
needs to find the most relevant peer to forward the request to. The most relevant peer
is the one that resides in the same maximal sibling subtree with q. Therefore, peer
u examines its local knowledge of the k-d tree (i.e., the sdim and split arrays) and
determines the maximal sibling subtree that q falls in (lines 5–11). The query is then
forwarded to the link corresponding to that subtree (line 7).

To illustrate the previous procedure, consider a query for point q issued by peer
u. Figure 5a draws q and the local knowledge about the space I at peer u. Observe
that q falls outside u’s zone. Peer u thus forwards the query to its link z within the
shaded area since it contains q (1st hop). Next, peer z processes the query. Point q
is inside the shaded area of Figure 5a, which depicts z’s local k-d tree knowledge.
Subsequently, z forwards the query to its link x within that area (2nd hop). Finally,
peer x responds to the issuing peer u, as point q falls inside its zone.

Lemma 4 The expected number of hops in a point query is O(logn).

Proof We first show that the number of hops required is at the worst case equal to the
depth of the k-d tree.

12 G. Tsatsanifos, D. Sacharidis, and T. Sellis

Algorithm 1 u.Point (q,w)
Peer u processes a point query for q issued by w.
1: if u.IsLocal(q) then
2: u.Send to (w, u.Get val (q))
3: return
4: end if
5: for j← 0 to u.depth do
6: d← u.sdim[j]
7: if (u.id[j] = 0 and q[d]≥ u.split[j]) or (u.id[j] = 1 and q[d]< u.split[j]) then
8: u.link[j].Point (q, w)
9: return

10: end if
11: end for

#2

#1

#4

u y

w

z

�q

(a) Processing at u

#1

#3

#5

y zv

x
�q

(b) Processing at z

Fig. 5: Point query example for q.

Consider that peer v receives from u a query for the requested point q; assume
that v is the link at depth k in the link array of u. Due to how the algorithm (line 7)
forwards the query, q is contained within the subtree that contains v rooted at depth k.
Therefore, q cannot be contained in any maximal sibling subtree of v at depth lower
than k. As a result, if v forwards a range query, it will be to links at depths strictly
higher than k.

Therefore, the number of hops is at the worst case equal to the depth of the k-d
tree. From Theorem 1, we have that the expected depth of the k-d tree is O(logn),
which concludes the proof. ut

3.2 Range Queries

A range query specifies a rectangular area Q in the space, defined by a lower l and
a higher point h, and requests all tuples that fall in Q. Instead of locating the peer
responsible for a corner of the area, e.g., l, and then visit all relevant neighboring
peers, MIDAS utilizes the distributed k-d tree to identify in parallel multiple peers
whose zone overlaps with Q. The range partitioning idea is similar to the shower
algorithm [7], which however applies only for single-dimensional data.

Algorithm 2 details the actions taken by a peer u upon receipt of a range query for
area Q = [l,h] issued by w. First, u identifies all its tuples inside Q, if any, and sends
them to the issuer w (lines 1–3). Then, u examines all its maximal sibling subtrees by

Index-based Query Processing on Distributed Multidimensional Data 13

scanning arrays sdim and split (lines 4–15). If the area of a subtree overlaps Q (lines
6 and 10), peer u constructs the intersection of this area and Q (lines 7–8 and 11–12).
Then, u forwards a request for this intersection to its link (lines 9 and 13). Lines 6–9
(resp. 10–14) apply when u is in the left (resp. right) subtree rooted at depth j.

Algorithm 2 u.Range (l,h,w)
Peer u processes a range query for rectangle Q = [l,h] issued by w.
1: if u.Overlaps (l, h) then
2: u.Send to (w, u.Get vals (l,h))
3: end if
4: for j← 0 to u.depth do
5: d← u.sdim[j]
6: if u.id[j] = 0 and u.split[j]< h[d] then
7: l′← l
8: l′[d]← u.split[j]
9: u.link[j].Range (l′,h,w)

10: else if u.id[j] = 1 and u.split[j]> l[d] then
11: h′← h
12: h′[d]← u.split[j]
13: u.link[j].Range (l,h′,w)
14: end if
15: end for

Figure 6 illustrates an example of a range query issued by peer u. Initially, u
executes Algorithm 2 for the range depicted as a bold line rectangle in Figure 6a. Peer
u retrieves the tuples inside its zone that are within the range; these tuples reside in the
non-shaded region of the range in Figure 6a. Then, u constructs the shaded regions,
shown in Figure 6a, as the intersections of the range with the area corresponding to
its maximal sibling subtrees. For each of these shaded regions, u forms a new query
and sends it to the appropriate link (1st hop); the messages are depicted as arrows in
Figure 6. For instance, peer z, which is u’ link in the maximal sibling subtree rooted
at depth one, receives a query about the light shaded area.

Peers w, y and z receive a query from u. The range for w and y falls completely
within their zone. Therefore, they process them locally and do not send any other
message. Figure 6b illustrates query processing at peer z, where the requested range is
drawn as a bold line rectangle. Observe that this range does not overlap with z’s zone;
therefore, z has no tuple that satisfies the query. Then, z constructs the intersections
of the range with the areas in its maximal sibling subtrees. Observe that the range
does not overlap with the maximal sibling subtree rooted at depth one; hence, no peer
receives a duplicate request. Peer z sends a query message to its links v and x with
the shaded regions of Figure 6b (2nd hop). Finally, peers v and x process the queries
locally as the requested ranges have no overlap with their zones.

As explained in the example of Figure 6, the query is answered in two hops. In
the first, u reaches y, w, and z, and in the second, z reaches v and x. The following
lemma shows that the expected number of hops is logarithmic to the number of peers.

Lemma 5 The expected number of hops for processing a range query is O(logn).

14 G. Tsatsanifos, D. Sacharidis, and T. Sellis

#2

#1

#4

u y

w

z

(a) Processing at u

#1

#3

#5

y zv

x

(b) Processing at z

Fig. 6: Range query example.

Proof We show that the number of hops required is at the worst case equal to the
depth of the k-d tree.

Consider that peer v receives from u a query for range Q = [l,h]; assume that
v is the link at depth k in the link array of u. Due to its construction (the result of
an intersection operation), range Q is completely contained within the subtree that
contains v rooted at depth k. Therefore, Q cannot intersect with any maximal sibling
subtree of v at depth lower than k. As a result, if v forwards a range query, it will be
to links at depths strictly higher than k.

In the worst case, range query processing requires as many rounds, or hops, as the
depth of the k-d tree. The fact that the expected depth is O(logn) (from Theorem 1)
completes the proof. ut

3.3 Nearest Neighbor Queries

Given a center c and a parameter K, a nearest neighbor (NN) query requests the K
tuples nearest to the center c, according to some distance metric. MIDAS can process
NN queries for any distance metric defined on the D-dimensional Euclidean space I;
in the following we assume Euclidean distance.

Nearest neighbor queries are more challenging than range queries, mainly be-
cause the distance of the K-th nearest neighbor from the center cannot be known in
advance. This means that the extent of search cannot be restricted, as is the case with
range queries. Therefore, a brute force method to process a NN query would be to
pose a range query for the entire space and let the query issuer compile the answer
set. While this approach would only require O(logn) hops using the algorithm of
Section 3.2, it would transfer the entire dataset to the issuer. In the following, we
present two approaches that are significantly more efficient. The first, termed eager
processing, requires O(logn) hops and in practice retrieves much fewer tuples than
the brute force method. The second, termed iterative processing, tries to further re-
duce the number of retrieved tuples and takes O(log2 n) hops. Note that while both
algorithms try to minimize the number of retrieved tuples, they may be forced to re-
trieve the entire dataset in extreme situations, e.g., when K is very large (in the order
of the dataset size).

Index-based Query Processing on Distributed Multidimensional Data 15

3.3.1 Eager Processing

The goal of this approach is to compute, in a distributed manner, an upper bound of
the distance of the K-th closest to the center tuple. Similar to range query processing,
MIDAS poses a request to multiple peers in parallel. Each request is accompanied by
a guarantee (M,R), which means that M tuples within distance R from c are already
retrieved. Eager processing concludes, i.e., MIDAS stops forwarding requests, when
M becomes greater than K and all tuples within distance R from c are retrieved. When
this occurs, R is not smaller than the distance of the K-th closest c tuple, and the issuer
has retrieved a superset of the K-NN result set.

Let w denote the peer that issued the K-NN query. Initially, w locates the peer,
say z, responsible for c with a lookup query. We refer to peer z as the manager. All
peers that receive a request during eager processing, including the manager, execute
Algorithm 3.

A request specifies seven parameters: the center c and the value of K, the guaran-
tee (M,R), the depth threshold D, and the addresses of the issuer w and the manager
z. The role of the threshold D is to restrict propagation of the request within the sub-
tree rooted at depth D, ensuring that no peer receives multiple requests. Note that the
manager is the first peer to receive a request with M = 0, R = 0, and D = 0, initially.
Intuitively, the role of a request is to notify a peer about the current guarantee (M,R),
and ask for additional tuples. Based on its local knowledge, the peer: (1) retrieves
and transmits some tuples to the issuer; (2) updates the guarantee to (M′,R′), where
M′ ≥min{M,K}, while R′ can be smaller, equal or greater than R; and (3) sends new
requests with the updated guarantee.

Algorithm 3 u.NN (c,K,M,R,D,w,z)
Peer u processes a K-NN query at center c issued by w and managed by z.
M tuples within distance R are already known.
The request should only be forwarded to links within the subtree at depth D.
1: insert in S up to K closest to c tuples within distance R
2: if |S|= K then . case I
3: R← r(S)
4: M← K
5: else if M+ |S| ≥ K then . case II
6: M←M+ |S|
7: else if M+ |S|< K then . case III
8: insert in S up to K−M−|S| closest to c tuples
9: R←max{R,r(S)}

10: M←M+ |S|
11: end if
12: u.Send to (w, S)
13: u.Send to (z, |S|, r(S)) . only for iterative processing
14: for j← D+1 to u.depth do
15: if M < K or u.link[j].Overlaps (c,R) then
16: u.link[j].NN (c,K,M,R, j,w,z)
17: end if
18: end for

16 G. Tsatsanifos, D. Sacharidis, and T. Sellis

Consider a peer u that receives a request and executes Algorithm 3. First, u re-
trieves the local tuples within distance R to the query center, and inserts them into
set S (line 1). Note that the peer will eventually transmit S to the issuer (line 12).
Therefore, it is necessary to include all those tuples within distance R, as some of
them could be part of the K-NN result set. Of course, if there are more than K such
tuples, only the K nearest to the center should be inserted in S. There is no need to
insert any farther tuple as it definitely cannot be in the result.

Next, the peer constructs a new guarantee, based on the set S and the received
guarantee (M,R); if necessary, the peer will retrieve additional tuples. Depending on
the number of tuples inserted in S, three cases exist. In the first, S contains exactly
K tuples (lines 2–4); recall that it cannot contain more. Let r(S) denote the distance
from c of the farthest tuple in S. Peer u can make the guarantee (K,r(S)), i.e., K
tuples within distance r(S) exist. Observe that this is a stronger guarantee than the
one received (M,R), since K tuples are known to exist within a smaller distance
r(S)≤ R. As a result M and R are updated with the values of r(S) and K, respectively
(lines 3, 4).

In the second case (lines 5–6), there are less than K but not less than K−M tuples
in S, i.e., M+ |S| ≥K. All of them are within distance R to the center. Therefore, peer
u can guarantee that within distance R, there exist additionally |S| tuples for a total of
M+ |S| tuples. Therefore, it updates the value of M to M+ |S| (line 6).

In the third case (lines 7–11), the number of tuples in S is less than K−M, i.e.,
M + |S| < K. In this situation, the peer can only make a guarantee for less than K
tuples. However, it is possible that local tuples at distance greater than R exist. There-
fore, the peer retrieves at most K−M−|S| additional tuples closest to the center (line
8), and the values of R and M are updated to reflect the new guarantee (lines 9, 10).

At this point (M,R) represents the new guarantee that peer u can provide. Note
that the new value of M is either K (first case) or not smaller than the original (second
and third cases). On the other hand, the new value of R can be smaller (first case),
equal (second case), or greater (third case) than the original.

Subsequently, all tuples in S are sent to the issuer w (line 12). Please note that line
13 applies only to iterative processing (see Section 3.3.2) and is thus skipped. The
final step (lines 14–18) is sending a request to other links. Observe that a request is
only sent to links that are in a sibling subtree rooted at depth greater than D (line 14);
the reason for this restriction is explained shortly. A request is sent to one of u’s links
(line 16), if more tuples are required, i.e., M < K, or if the link may contain tuples
within distance R from c (line 15). The request will have the same parameters as the
one received by u, with the exception that M, R represent the new guarantee, and the
depth threshold is set to the link’s depth j.

In the previous process, when peer u sends a request to its j-th link, say v, it sets
the depth threshold equal to j. This way, u ensures that the request sent to v can only
be further propagated within u’s maximal sibling tree rooted at depth j. Note that such
a restriction is not necessary for range query processing, as the range is partitioned
into non-overlapping parts in each request.

Figure 7 illustrates eager processing for a 2-NN query on our running example.
The white circles represent the tuples in the network, while the cross represents the
query center c. Assume that the query is issued on peer u, whose zone covers c.

Index-based Query Processing on Distributed Multidimensional Data 17

Initially, u executes Algorithm 3 for M = R = 0. Set S remains empty after executing
line 1. Then, the third case applies. As only one tuple exists in u’s zone (drawn as
a filled circle in Figure 7a), M = 1 and R becomes equal to the radius of the shaded
disc shown in Figure 7a. Subsequently, since M < K, peer u sends a request message
to all its links, y, w, and z, indicated by the arrows in Figure 7a, with D set to 3, 2,
and 1, respectively.

u y

w

z

�c

(a) At u (hop 0)

u y

w

z

�c

(b) At y (hop 1)

u

w

v

�c

(c) At w (hop 1)

y zv

x
�c

(d) At z (hop 1)

u v

x
�c

(e) At x (hop 2)

v

x
�c

w

z

(f) At v (hop 2)

Fig. 7: 2-NN eager processing.

Next, consider processing at peer y, which is 1 hop away from the issuer u. Ob-
serve that y has no tuples within range R, depicted as the shaded disc of Figure 7a.
Therefore, the third case applies: y retrieves its only tuple (the filled circle in Fig-
ure 7b), increases M by 1, and sets R to the radius of the larger shaded disc shown
in Figure 7b. Peer y does not send a new request, as parameter D = 3 is equal to its
depth.

In parallel, processing at peer w takes place. There exist two tuples of w (the
filled circles in Figure 7c) within the shaded disc of Figure 7a, and hence the first
case applies (|S| = 2 = K). M becomes two, while R is shrunk to the distance of the
farthest from c tuple in S. This distance defines the shaded disc depicted in Figure 7c.
Peer w does not send a new request, as threshold D = 2 is equal to its depth.

Figure 7d shows processing at peer z, which is 1 hop away from the issuer. The
third case applies, as the zone of z does not intersect the disc of Figure 7a. Therefore,
z retrieves its only tuple (the filled circle in Figure 7d), sets M = 2 and increases R to
the radius of the shaded disc shown in Figure 7d. Since D = 1 and z.depth = 3, peer
z sends a request with the updated (M,R) to its links at depth 2 and 3, i.e., peers x and
v, respectively.

Processing at x and v occurs in parallel at the second hop, and is illustrated in
Figures 7e and 7f. In both peers, the second case of Algorithm 3 applies, as M = 2.
Since there is a tuple within the disc of Figure 7d, M increases by 1, while R is not

18 G. Tsatsanifos, D. Sacharidis, and T. Sellis

changed (the disk remains the same in Figures 7e and 7f). Peers x and v do not send
any requests as their threshold D is equal to their depths.

Upon conclusion of the distributed eager processing, the issuer u has received
the seven tuples drawn as filled circles in Figure 7. Among them, u chooses the two
closest to c, which happen to be those of peer w.

The next two lemmas show the complexity of eager processing and prove its
correctness.

Lemma 6 The expected number of hops for eagerly processing a nearest neighbor
query is O(logn).

Proof Initially, the issuer locates the manager by issuing a point query that requires
O(logn) hops. Then, the manager and all other peers execute Algorithm 3. Upon
receipt of a request with D parameter value, a peer will only send new requests to
peers within the subtree rooted at depth D. Moreover, all these new requests have
increased D values (see lines 14–18 in Algorithm 3). Therefore, in each hop, requests
are propagated to smaller subtrees. In the worst case, the number of hops necessary is
equal to the depth of the k-d tree. The fact that the expected depth is O(logn) (from
Theorem 1) completes the proof. ut

Lemma 7 Eager processing correctly identifies the K nearest neighbors to center c.

Proof We prove by contradiction that the issuer receives a superset of the K nearest
neighbors. Assume that there exists a tuple, say τ , which is among the K nearest
neighbors but is not sent to the issuer. This may happen in one of two scenarios,
depending on whether the peer, say u, responsible for τ is reached.

In the first scenario, u is reached, i.e., executes Algorithm 3 but does not include
τ in S. Certainly, τ is not within distance R. Case I (lines 2–4) suggests that u has K
tuples which are closer to c than τ — a contradiction. Case II (lines 5–6) suggests
that there exist more than K tuples (M + |S| ≥ K) within distance R. Similarly, case
III (lines 7–11) suggests that there exist K tuples closer than τ (since not all tuples of
u, e.g., τ , are included in S, we have M + |S| = K). In cases II and III, this can only
be true if the received guarantee (M,R) is not valid, i.e., there do not exist at least M
tuples within distance R.

Therefore, it suffices to show that, given a valid guarantee, Algorithm 3 constructs
a new valid guarantee. This clearly holds in case I. In cases II and III, it also holds
because M is incremented by local tuples and R is correctly updated to the distance
of the farthest local tuple included or retains its value. In any case the new guarantee
is valid, which implies that the first scenario is impossible.

In the second scenario, u is not reached. This may happen in two cases. Either
the condition in line 15 does not hold for the subtree that contains u, or that subtree
is never considered. The condition does not hold if M ≥ K and the subtree of u is
not within distance R, which implies that τ cannot be a K nearest neighbor (we have
shown that all guarantees are valid). The other case, i.e., that no subtree containing
u is considered, never occurs. This is because the issuer initially sets D to 0, and all
peers consider all sibling subtrees at depth up to D. ut

Index-based Query Processing on Distributed Multidimensional Data 19

3.3.2 Iterative processing

Similar to eager processing, iterative processing computes an upper bound of the dis-
tance of the K-th closest tuple to the center. However, this method involves a series
of rounds orchestrated by the manager. The basic idea is to direct the search towards
peers that are close to the center and progressively expand to more remote ones, if
necessary. Specifically, in each round, the manager restricts requests to propagate
only within a subtree containing the center. Starting with the smallest possible sub-
tree, the manager iteratively enlarges it until either the K-NN query is answered or
the entire k-d tree is reached.

Initially, the query issuer w locates the manager z (i.e., the peer responsible for
the query center c), which executes Algorithm 4. On the other hand, upon receiving
a request, all other peers execute Algorithm 3 discussed in the previous section. Note
that in addition to sending the local tuples retrieved (set S) to the issuer, the peer
also sends a local guarantee (|S|,r(S)) to the manager (line 13 of Algorithm 3). This
essentially summarizes the contribution of the peer towards the K-NN answer. Based
on all local guarantees collected in a round, the manager decides whether another
round is necessary.

We next elaborate on the role of the manager and discuss Algorithm 4. First, the
manager z retrieves up to K closest to the center tuples stored locally (line 1), and
sends them to the issuer (line 2). Furthermore, it composes a local guarantee for these
tuples and inserts it into set G (line 3), which stores all local guarantees received.
Subsequently, execution proceeds in rounds (lines 4–19). Starting from z’s depth, the
value of the depth threshold D is decreased by one in each round.

Algorithm 4 z.NN manage (c,K,w)
Peer z manages a K-NN query at center c issued by w.
1: insert in S up to K closest to c tuples
2: z.Send to (w, S)
3: insert in G local guarantee (|S|,r(S))
4: for D← z.depth down to 1 do
5: sort entries in G according to distance
6: M← 0
7: for each (Mi,Ri) ∈ G do
8: M←M+Mi
9: R← Ri

10: if M ≥ K then break
11: end for
12: if M < K or z.link[D].Overlaps (c,R) then
13: z.link[D].NN (c,K,M,R,D,w,z)
14: repeat
15: z.Receive (Mi, Ri)
16: insert in G local guarantee (Mi,Ri)
17: until messages from D hops away are received
18: end if
19: end for

20 G. Tsatsanifos, D. Sacharidis, and T. Sellis

At the beginning of each round, a global guarantee (M,R) that summarizes all
locals is constructed (lines 5–11). In particular, the local guarantees in G are sorted
according to the distance R (line 5) and global M is initialized to zero (line 6). Then,
the manager examines them in sequence (lines 7–11). The local guarantee (Mi,Ri)
updates the global (M,R) (lines 8, 9). If M becomes greater than K, then R is def-
initely greater or at least equal to the distance of the K-th nearest neighbor. In this
case, (M,R) is the strongest global guarantee that can be derived from G. Hence,
there is no need to examine other local guarantees (line 10).

After this process, (M,R) summarizes the knowledge obtained from the local
guarantees. The manager sends a request to its link at depth D only if more tuples are
required, or the link may contain tuples with distance R from the center (lines 12, 13).
Note that the depth threshold of the request is set to D. As a result, the link propagates
the request within its subtree at depth D. Then, the manager receives local guarantees
from all peers reached in this round, i.e., it waits until a message from up to D hops
away is received (lines 14–17) 2. The local guarantees received are inserted in the
set G and are thus used in the computation of the global guarantee in the following
round.

Figure 8 illustrates the role of the manager in iterative processing for the same
2-NN query discussed in the previous section. Initially, the manager, peer u in this
example, retrieves the single tuple within its zone; let Ru denote its distance to the
center c. Hence, in the first round (D = u.depth = 3) the global guarantee is (1,Ru)
and is depicted as a disc in Figure 8a. Since 1 < K, the manager sends a request to its
link y at depth 3. Then, peer y executes Algorithm 3 and retrieves the only tuple in its
zone at distance Ry (see Figure 7b). Also it sends to the manager the corresponding
local guarantee (1,Ry).

u y

w

z

�c

(a) Round 1 (depth 3)

u y

w

z

�c

(b) Round 2 (depth 2)

u y

w

z

�c

(c) Round 3 (depth 1)

Fig. 8: 2-NN iterative processing at manager u.

At the beginning of the second round (D = 2), the manager has two local guar-
antees: its own, (1,Ru), and that of y, (1,Ry). After executing lines 5–11, it obtains
the global guarantee (2,Ry), shown as a disc in Figure 8b. The manager then sends
a request to its link w at depth 2, since the region of the subtree rooted at that depth
overlaps the disc. Peer w retrieves two tuples and sends a local guarantee (2,Rw),
where Rw is the distance to c of the farthest tuple (see Figure 7c).

2 In our implementation, a timeout process is initiated. Note that missed messages do not affect the
algorithm’s correctness, since the global guarantee is correctly computed (see proof of Lemma 9) on the
set G of retrieved local guarantees.

Index-based Query Processing on Distributed Multidimensional Data 21

In the third round (D = 1), the manager computes the global guarantee (2,Rw)
depicted in Figure 8c, by taking into account only w’s local guarantee, since Rw <
Ru < Ry. Note that the disc does not overlap with the region of the subtree rooted at
depth 1, and thus no further request is necessary.

Upon conclusion of the iterative processing, the issuer has received the four tuples
drawn as filled circles in Figure 8. Compare this to the seven tuples sent in eager
processing.

The next two lemmas show the complexity of iterative processing and prove its
correctness.

Lemma 8 The expected number of hops for iteratively processing a nearest neighbor
query is O(log2 n).

Proof Initially, the issuer locates the manager by issuing a point query that requires
O(logn) hops. Then, the manager executes Algorithm 4. The maximum number of
required rounds is equal to the depth of the managing peer. In each round, processing
is confined in a subtree of the k-d tree, and every contacted peer executes Algorithm 3.
Following the proof of Lemma 6, a round concludes in number of hops equal to the
subtree depth, in the worst case. From Theorem 1, the depth of the k-d tree, and
therefore of any peer and subtree, is O(logn) in expectance. As a result the expected
number of hops in iterative processing is O(log2 n). ut

Lemma 9 Iterative processing correctly identifies the K nearest neighbors to center
c.

Proof The proof is similar to that of Lemma 7 with two differences. First, we need
to show that the global guarantees constructed by the manager are valid. Note that all
received local guarantees are valid (see proof of Lemma 7). Then it is straightforward
to see that Lines 5–11 correctly compute a global guarantee from the set of local
guarantees.

Second, let u denote a peer that contains a nearest neighbor, but assume u is
not reached. This may happen in two cases. Either the subtree of the manager that
contains u is not considered, or the condition in line 11 of Algorithm 4 does not hold
for this subtree. The former cannot occur as the manager examines all subtrees (D is
iteratively decreased down to 1). The latter can only occur if the global guarantee is
invalid — a contradiction. ut

4 Experimental Study

In order to assess our methods and validate our analytical results, we simulate a dy-
namic environment and evaluate network characteristics and query performance.

4.1 Setting

Methods. We compare our approach MIDAS against three popular techniques from
literature. MAAN [6] belongs to the category of single-dimensional structured net-
work that are extended for multi-attribute data. On the other hand, CAN [17] is an

22 G. Tsatsanifos, D. Sacharidis, and T. Sellis

inherently multi-dimensional structured network. Finally, the VBI-tree [12] is the
current state-of-the-art method among decentralized hierarchical multi-dimensional
indices.
Network. We simulate a dynamic topology that captures arbitrary physical peer joins
and departures, in two distinct stages. In the increasing stage, physical peers contin-
uously join the network while no physical peer departs. It starts from a network of
1,000 physical peers and ends at 100,000 physical peers. On the other hand, in the
decreasing stage, physical peers continuously leave the network while no new phys-
ical peer joins. This stage starts from a network of 100,000 physical peers and ends
when only 1,000 physical peers are left. When we vary the network size, the figures
show the results during the increasing stage; the results during the decreasing stage
are analogous and omitted.
Data and Queries. We use real and synthetic datasets. The real dataset, obtained from
the R-Tree Portal3, denoted as NE, consists of spatial locations representing approx-
imately 125K postal addresses in three metropolitan areas, New York, Philadelphia
and Boston. The synthetic dataset, denoted as Synthetic, contains 1M random tuples,
where each attribute value is an independent identically distributed random variable
X , with the probability density function fX=x = 2x for 0 ≤ x ≤ 1, and fX=x = 0 oth-
erwise.

For a point query, we choose uniformly and independently a random tuple from
the dataset. For a range query, we also choose a random tuple as the start of the
rectangular range, while the size of the range is set so that the query returns a specific
number of tuples, termed the selectivity. Similarly, the center of a nearest neighbor
query is a random tuple.
Parameters. Our experimental evaluation examines three parameters. The network
size is varied from 1,000 up to 100,000 physical peers. The dimensionality of the
Synthetic dataset is varied from 2 up to 13. Finally, the selectivity, i.e., the number of
qualifying tuples in a range query or the number of neighbors in a NN query, is varied
from 25 up to 150 tuples. The tested ranges and default values for these parameters
are summarized in Table 2. When we vary one parameter, the other two are set at
their default values. Every reported value is the average of executing 50,000 queries
over 15 distinct networks.

Table 2: System parameters

Parameter Default Values
Network size 10K 1K, 4K, 7K, 10K, 40K, 70K, 100K
Dimensionality 2 2, 3, 5, 7, 11, 13
Selectivity 50 25, 50, 75, 100, 125, 150

Metrics. For all indexing methods, we measure their overhead on physical peers,
as well as their query performance. Regarding network overhead, we measure the
amount of information (e.g., links, zone, etc.), termed state, a physical peer must

3 http://www.rtreeportal.org

Index-based Query Processing on Distributed Multidimensional Data 23

maintain. As the number of physical peers increases, this is an important measure
of scalability. Moreover, we study the allocation of data among physical peers. De-
pending on the dataset distribution and network topology, large imbalances can occur.
Data load measures the percentage of the total data that resides in the Q% heaviest
physical peers. Its optimal value is Q/100, and corresponds to the condition where
data is evenly allocated among all physical peers. We also use Jain’s fairness index
[13] as another metric for data allocation among physical peers. The fairness index is
normalized in [0,1], and its optimal value is 1.

Regarding query processing performance, we employ three metrics. Latency mea-
sures the number of hops required during processing; lower values suggest faster
response. Distributed query processing imposes a load on multiple physical peers,
including ones that may not contribute to the answer. Two metrics quantify this load.
Precision is defined as the ratio of the number of physical peers that contribute to
the answer over the total number of physical peers reached during processing of a
query; the optimal precision value is 1. Congestion is defined as the average num-
ber of queries processed at any physical peer, when n uniformly random queries are
issued (n is the network size); lower values suggest lower load.

4.2 Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

0 20K 40K 60K 80K 100K

s
ta

te

network size

vbi

maan

midas

can

(a) State

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20K 40K 60K 80K 100K

fa
ir
n
e
s
s
 i
n
d
e
x

network size

vbi

midas

maan

can

(b) Fairness index

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 20K 40K 60K 80K 100K

d
a
ta

-l
o
a
d
 f
o
r

1
0
%

 h
e
a
v
ie

s
t

network size

maan

midas

can

vbi

(c) Data load on heaviest 10%

Fig. 9: Network metrics for NE.

Network Overhead. Figures 9a and 10a depict the average state a physical peer
maintains, as we vary the network size for the real, and the dimensionality for the
synthetic dataset, respectively. State is an important metric as it is directly related to
the amount of traffic that occurs due to maintenance operations like detecting failures,
preserving updated routing tables each time a physical peer joins or leaves. The state
in MIDAS, MAAN, and the VBI-tree increases logarithmically with the network size
as seen in Figures 9a. While, MIDAS and MAAN have comparable state, the VBI-
tree requires around twice as much state. The reason is that a physical peer in the
VBI-tree keeps information not only about the physical peers on its path to the root,
but also about physical peers at the same depth of the tree. Furthermore, note that the

24 G. Tsatsanifos, D. Sacharidis, and T. Sellis

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14

s
ta

te

dimensionality

can
vbi

maan
midas

(a) State

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

fa
ir
n
e
s
s
 i
n
d
e
x

dimensionality

midas
vbi

maan
can

(b) Fairness index

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

d
a
ta

-l
o
a
d
 f
o
r

1
0
%

 h
e
a
v
ie

s
t

dimensionality

can
maan

vbi
midas

(c) Data load on heaviest 10%

Fig. 10: Network metrics for Synthetic.

state of MIDAS, MAAN, and the VBI-tree is independent of the dimensionality, as
depicted in Figure 10a. On the other hand, the state of CAN is independent of the
network size, but grows linearly with dimensionality. For low dimensional datasets,
such such as the spatial dataset NE in Figure 9a, each CAN physical peer has few
neighbors. However, while the dimensionality increases, so does the state of a CAN
physical peer. For example, in 8-dimensional datasets CAN requires more state than
MIDAS and MAAN.

Figures 9b and 9c show the data allocation metrics, fairness index and data load,
on the 10% heaviest physical peers, for the real dataset, as the network size varies.
Similarly, Figures 10b and 10c present these metrics as the dimensionality of the syn-
thetic dataset varies. The main conclusions here are the following. Both the VBI-tree
and MIDAS are equally fair, and are robust both to network size and data dimen-
sionality changes. On the other hand, CAN is considerably unfair. For example, Fig-
ure 10c shows that the 10% heaviest physical peers in CAN contain more than 75%
of the entire 13-dimensional dataset. Finally, MAAN is fair only for small network
sizes; as the number of physical peers increases, the single dimensional approach of
MAAN forces unequal distribution of data, illustrated in Figure 9b.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

0 20K 40K 60K 80K 100K

la
te

n
c
y

network size

can
vbi

maan
midas

(a) Latency

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

0 20K 40K 60K 80K 100K

c
o
n
g
e
s
ti
o
n

network size

can
vbi

maan
midas

(b) Congestion

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20K 40K 60K 80K 100K

p
re

c
is

io
n

network size

midas
vbi

maan
can

(c) Precision

Fig. 11: Point query processing vs. network size for NE.

Index-based Query Processing on Distributed Multidimensional Data 25

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14

la
te

n
c
y

dimensionality

can
maan

vbi
midas

(a) Latency

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14

c
o
n
g
e
s
ti
o
n

dimensionality

can
vbi

maan
midas

(b) Congestion

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

p
re

c
is

io
n

dimensionality

midas
vbi

can
maan

(c) Precision

Fig. 12: Point query processing vs. dimensionality for Synthetic.

Point Queries. Figures 11 and 12 illustrate point query performance on the real
dataset as the network size varies, and on the synthetic dataset as the dimension-
ality varies, respectively. The latency of MIDAS, MAAN and the VBI-tree scales
logarithmically with the network size (Figure 11a) and is independent of the dimen-
sionality (Figure 12a). In all examined cases, MIDAS and MAAN have the lowest
latency and outperform the VBI-tree. Regarding CAN, its expected latency O(d

√
n)

increases with the network size, but decreases with dimensionality, as depicted in
the two figures. Recall that as the dimensionality increases, the state of CAN also
increases (Figure 10a).

With respect to the congestion metric, depicted in Figures 11b and 12b, MIDAS
causes the lowest congestion for all network and all dimensionalities up to 10. When
the dataset has more than 10 attributes, CAN begins to outpeform MIDAS. On the
other hand, CAN’s congestion scales badly as the number of physical peers increases.
The VBI-tree is the second best method with respect to congestion. Similar results
hold for the precision metric, shown in Figures 11c and 12c; note that higher precision
values are preferred. Regarding MAAN, observe that its congestion (resp. precision)
is low (resp. high) for spatial datasets, but grows rapidly (resp. remains constant) in
larger dimensionalities. This phenomenon is due to the single-dimensional indexing
of MAAN, which forces MAAN to contact multiple times the set of physical peers
necessary to process the query.

Range Queries. The latency for range query processing of MIDAS, the VBI-tree,
and CAN exhibits similar trends with the case of point query processing, as shown
in Figures 13a and 14a. In particular, MIDAS latency for processing range queries
scales logarithmically with respect to network size and is unaffected by dimensional-
ity. MAAN’s latency is contingent on its single-dimensional index; it worsens as the
network size or dimensionality increases.

For all methods the congestion metric worsens as the network size (Figure 13b) or
dimensionality (Figure 14b) increases. Note that the congestion of MIDAS, the VBI-
tree, and MAAN for range queries increases much faster than CAN with respect to
network size compared to the case of point queries. Regarding precision, Figures 13c
and 14c show that the precision of all methods improves as the network size or di-

26 G. Tsatsanifos, D. Sacharidis, and T. Sellis

mensionality increases, with the exception of CAN whose precision improves with
the number of peers.

Figure 15 examines the behavior of all methods, as the selectivity, i.e., the num-
ber of qualifying tuples in the range query, is varied. Latency is unaffected by se-
lectivity for all multi-dimensional approaches, and increases linearly for the single-
dimensional MAAN. In terms of the network load, the congestion in all methods
worsens as the number of returned tuples increases. On the other hand, the precision
improves slightly for all methods.

 0

 50

 100

 150

 200

0 20K 40K 60K 80K 100K

la
te

n
c
y

network size

can
maan

vbi
midas

(a) latency

 1

 10

 100

 1000

0 20K 40K 60K 80K 100K

c
o
n
g
e
s
ti
o
n

network size

maan
vbi

midas
can

(b) congestion

0

0.2

0.4

0.6

0.8

1

0 20K 40K 60K 80K 100K
p
re

c
is

io
n

network size

can
midas

vbi
maan

(c) precision

Fig. 13: Range query processing vs. network size for NE.

 1

 10

 100

 1000

 2 4 6 8 10 12 14

la
te

n
c
y

dimensionality

maan
can
vbi

midas

(a) latency

 10

 100

 1000

 10000

 2 4 6 8 10 12 14

c
o
n
g
e
s
ti
o
n

dimensionality

maan
can
vbi

midas

(b) congestion

0

0.2

0.4

0.6

0.8

1

 2 4 6 8 10 12 14

p
re

c
is

io
n

dimensionality

vbi
midas

can
maan

(c) precision

Fig. 14: Range query processing vs. dimensionality size for Synthetic.

Figures 13b, 15b and 14b illustrate that the congestion in MIDAS is relatively low
when compared to its competitors. MIDAS’ congestion can be explained by the fact
that it spans all values of the range query in parallel. Hence, multiple parallel routes
are used simultaneously in order to fulfill a single range query. However, VBI-tree
peers are more congested at all cases due to additional horizontal routes in the tree.
This is a prudent approach for the VBI-tree, as horizontal traversals aim at alleviating
the peers corresponding to the root and the other top nodes of the tree, which other-
wise would become a critical bottleneck. Nonetheless, this effort causes an overhead

Index-based Query Processing on Distributed Multidimensional Data 27

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

la
te

n
c
y

selectivity

can
maan

vbi
midas

(a) latency

 0

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120 140 160

c
o
n
g
e
s
ti
o
n

selectivity

can
vbi

midas
maan

(b) congestion

0

0.2

0.4

0.6

0.8

1

 20 40 60 80 100 120 140 160

p
re

c
is

io
n

selectivity

can
midas

vbi
maan

(c) precision

Fig. 15: Range query processing vs. selectivity for NE.

with respect to latency and congestion. Besides, for MIDAS, internal nodes do not
correspond to actual peers, but constitute routing directives instead, and therefore,
none such consideration is needed. Moreover, in Figures 13c and 14c, precision is
worse for VBI-tree and MAAN compared to MIDAS because they encounter more
peers until all relevant peers are accessed. In Figure 15c precision improves with
query size, as the number of encountered relevant peers grows faster than the overall
accessed peers.

Nearest Neighbor Queries. Regarding nearest neighbor search, MIDAS’ latency for
K-NN iterative processing search is bounded by O(log2 n), and by O(logn) for eager
processing, as Lemmas 6 and 8 predict, respectively, according to a worst-case anal-
ysis. However, in Figure 16a both methods show logarithmic behavior with respect
to the overlay size. So does the VBI-tree, unlike MAAN’s latency which increases
linearly with overlay size. For CAN, we compare MIDAS with the method presented
in [9]. This approach takes advantage of the vicinity in the construction of CAN’s
routing tables in order to disseminate a query to the physical peers surrounding its
center. Albeit effective, CAN performs poorly for low-dimensional workloads, like
the spatial NE workload, as shown in Figure 16a.

Figure 16b illustrates congestion with respect to the overlay size. Quite notably,
the average load per physical peer for MIDAS iterative processing is the lowest, a
result which is accompanied by high levels of precision in Figure 16c. Our eager
processing method, despite having low latency, involves a significant burden on the
network due to the bad initial estimate of the radius of the query. Additionally, this
estimate worsens as the network becomes bigger in Figure 16c.

In Figure 17 both MIDAS methods for nearest neighbor search are unaffected by
the increased dimensionality and are asymptotically better than all competitors. On
the other hand, CAN exploits dimensionality by establishing a number of links per
physical peer analogous to the dimensionality, and therewith, latency and congestion
ameliorate drastically. MAAN suffers severely from the curse of dimensionality as
latency, congestion and precision worsen dramatically.

Finally, selectivity, depicted in Figure 18, affects MIDAS iterative processing
slightly, as it exhibits the best latency, congestion and precision. Eager processing,
has also constant latency, but its congestion and precision scale badly with selectiv-

28 G. Tsatsanifos, D. Sacharidis, and T. Sellis

ity. CAN is also not affected by selectivity, but has much larger values. The latency
of VBI-tree and MAAN slightly increases with selectivity. Figure 18b shows that the
congestion of all methods increases with selectivity, with CAN, the VBI-tree and it-
erative processing being the most robust. Figure 18c shows that precision improves
with selectivity for CAN, VBI-tree and iterative processing method, as the number of
encountered relevant physical peers grows faster than the overall accessed physical
peers. On the other hand, precision deteriorates for eager processing.

 0

 50

 100

 150

 200

0 20K 40K 60K 80K 100K

la
te

n
c
y

network size

maan
can
vbi

midas-it
midas-e

(a) latency

 1

 10

 100

 1000

0 20K 40K 60K 80K 100K

c
o
n
g
e
s
ti
o
n

network size

midas-e
maan

can
vbi

midas-it

(b) congestion

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20K 40K 60K 80K 100K

p
re

c
is

io
n

network size

midas-it
vbi

can
maan

midas-e

(c) precision

Fig. 16: 50-NN query processing vs. network size for NE.

 1

 10

 100

 1000

 2 4 6 8 10 12 14

la
te

n
c
y

dimensionality

maan
can
vbi

midas-it
midas-e

(a) latency

 10

 100

 1000

 10000

 2 4 6 8 10 12 14

c
o
n
g
e
s
ti
o
n

dimensionality

maan
can

midas-e
vbi

midas-it

(b) congestion

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

p
re

c
is

io
n

dimensionality

midas-it
vbi

midas-e
can

maan

(c) precision

Fig. 17: 50-NN query processing vs. dimensionality for Synthetic.

5 Related Work

Structured peer-to-peer networks employ a globally consistent protocol to ensure that
any peer can efficiently route a search to the peer that has the desired content, regard-
less of how rare it is or where it is located. Such a guarantee necessitates a structured
overlay pattern. The most prominent class of approaches is distributed hash tables
(DHTs). A DHT is a decentralized, distributed system that provides a lookup ser-
vice similar to a hash-table. DHTs employ a consistent hashing variant [14] that is

Index-based Query Processing on Distributed Multidimensional Data 29

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120 140 160

la
te

n
c
y

selectivity

can
maan

vbi
midas-it
midas-e

(a) latency

 0

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120 140 160

c
o
n
g
e
s
ti
o
n

selectivity

midas-e
maan

can
vbi

midas-it

(b) congestion

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140 160

p
re

c
is

io
n

selectivity

midas-it
vbi

can
maan

midas-e

(c) precision

Fig. 18: 50-NN query processing vs. selectivity for NE.

used to assign ownership of a key-value pair to a particular peer of an overlay net-
work. Because of their structure, they offer certain guarantees when retrieving a key
(e.g., worst-case logarithmic number of hops for lookups, i.e., point queries, with
respect to network size). DHTs form a reliable infrastructure for building complex
services, such as distributed file systems, content distribution systems, cooperative
web caching, multicast, domain name services, etc.

Chord [21] uses a consistent hashing variant to associate unique, single-dimen-
sional, identifiers with resources and peers. A key is assigned to the first peer whose
identifier is equal to, or follows the key, in the identifier space. Each peer in Chord
has logn state, i.e., number of neighbors, and resolves lookups in logn hops, where n
is the size of the overlay network, i.e., the number of peers.

Another line of work involves tree-like structures, such as P-Grid [1], Kademlia
[15], Tapestry [24] and Pastry [19]. Peer lookup in these systems is based on Plaxton’s
algorithm [16]. The main idea is to locate the neighbor whose identifier shares the
longest common prefix with the requested (single-dimensional) key, and repeat this
procedure recursively until the owner of the key is found. Lookups cost O(logn) hops
and each peer has O(logn) state. MIDAS is similar to these works in that it has a tree-
like structure with logarithmic number of neighbors at each peer, but differs in that it
is able to perform multidimensional lookups in O(logn) hops.

We next discuss various structured peer-to-peer systems that natively index multi-
attribute keys. In CAN [17], each peer is responsible for its zone, which is an axis-
parallel orthogonal region of the d-dimensional space. Each peer holds information
about a number of adjacent zones in the space, which results in O(d) state. A d-
dimensional key lookup is greedily routed towards the peer whose zone contains the
key and costs O(d d

√
n) hops. Note that an R-Tree based adaptation of CAN for cloud

computing environments is described in [23]. Analogous results hold for MURK [10],
where the space is a d-dimensional torus. The main concern with these approaches is
that their cost (although sublinear to n) is considerate for large networks.

Several approaches, e.g., SCRAP [10], ZNet [20], employ a space filling curve to
map the multidimensional space to a single dimension and then use a conventional
system to index the resulting space. For instance, [5] uses the z-curve and P-Grid
to support multi-attribute range queries. The problem with such methods is that the

30 G. Tsatsanifos, D. Sacharidis, and T. Sellis

locality of the original space cannot be preserved well, especially in high dimension-
ality. As a result a single range query is decomposed to multiple range queries in the
mapped space, which increases the processing cost.

MAAN [6] extends Chord to support multidimensional range queries by mapping
attribute values to the Chord identifier space via uniform locality preserving hashing.
MAAN and Mercury [4] can support multi-attribute range queries through single-
attribute query resolution. They do not feature pure multidimensional schemes, as
they treat attributes independently. As a result, a range query is forwarded to the first
value appearing in the range and then it is spread along neighboring peers exploiting
the contiguity of the range. This procedure is very costly particularly in MAAN,
which prunes the search space using only one dimension.

The VBI-tree [12] is a distributed framework based on balanced multidimensional
tree structured overlays, e.g., R-tree. It provides an abstract tree structure on top of an
overlay network that supports any kind of hierarchical tree indexing structures, i.e.,
when the region managed by a node covers those managed by its children. However,
it was shown in [5] that for range queries the VBI-tree suffers in scalability in terms
of throughput. Furthermore, it can cause unfairness as peers corresponding to nodes
high in the tree are heavily hit.

6 Conclusion

This work presented query processing techniques for decentralized networks using
a multidimensional indexing scheme termed MIDAS. MIDAS differs significantly
from other popular systems, and allows for multidimensional queries with latency
guarantees. In particular, point and range queries are, in expectance, resolved in
O(logn) hops, where n is the size of the network. For nearest neighbor searching,
MIDAS offers two alternatives. The first has low latency (expected value of O(logn)
hops) but may involve a large number of peers. The second has higher latency (ex-
pected value of O(log2 n) hops) but involves far fewer peers. A detailed experimental
evaluation demonstrated that MIDAS outperforms existing methods, in real and syn-
thetic datasets, while introducing low burden on peers. An interesting future direction
would be to investigate the implementation of MIDAS in a cloud computing environ-
ment, similarly to how CAN was extended in [23].

References

1. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., Schmidt, R.:
P-grid: a self-organizing structured p2p system. SIGMOD Record 32(3), 29–33 (2003)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM
18(9), 509–517 (1975)

3. Bentley, J.L.: K-d trees for semidynamic point sets. In: Symposium on Computational Geometry, pp.
187–197 (1990)

4. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries.
In: SIGCOMM, pp. 353–366 (2004)

5. Blanas, S., Samoladas, V.: Contention-based performance evaluation of multidimensional range
search in p2p networks. In: InfoScale’07, pp. 1–8 (2007)

Index-based Query Processing on Distributed Multidimensional Data 31

6. Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: Maan: A multi-attribute addressable network for grid
information services. J. Grid Comp. 2(1), 3–14 (2004)

7. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in trie-structured overlays.
In: P2P Computing, pp. 57–66 (2005)

8. Duch, A., Estivill-Castro, V., Martı́nez, C.: Randomized k-dimensional binary search trees. In:
ISAAC, pp. 199–208 (1998)

9. Falchi, F., Gennaro, C., Zezula, P.: Nearest neighbor search in metric spaces through content-
addressable networks. Inf. Process. Manage. 44(1), 411–429 (2008)

10. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: Multidimensional queries in p2p
systems. In: WebDB, pp. 19–24 (2004)

11. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-to-peer networks. In:
VLDB, pp. 661–672 (2005)

12. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer framework for
supporting multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)

13. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for resource
allocation in shared computer systems. In: DEC Research Report TR-301 (1984)

14. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and
random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: ACM
Symp. on Theory of Comp., pp. 654–663 (1997)

15. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on the xor metric.
In: IPTPS, pp. 53–65 (2002)

16. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a dis-
tributed environment. Theory Comput. Syst. 32(3), 241–280 (1999)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-addressable net-
work. In: SIGCOMM ’01, pp. 161–172 (2001)

18. Reed, B.A.: The height of a random binary search tree. Journal of the ACM 50(3), 306–332 (2003)
19. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-

scale peer-to-peer systems. In: Middleware, pp. 329–350 (2001)
20. Shu, Y., Ooi, B.C., Tan, K.L., Zhou, A.: Supporting multi-dimensional range queries in peer-to-peer

systems. In: Peer-to-Peer Computing, pp. 173–180 (2005)
21. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.:

Chord: a scalable p2p lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–
32 (2003)

22. Tsatsanifos, G., Sacharidis, D., Sellis, T.: Midas: Multi-attribute indexing for distributed architecture
systems. In: Proceedings of the International Symposium on Spatial and Temporal Databases (SSTD)
(2011)

23. Wang, J., Wu, S., Gao, H., Li, J., Ooi, B.C.: Indexing multi-dimensional data in a cloud system. In:
SIGMOD, pp. 591–602 (2010)

24. Zhao, B., Kubiatowicz, J., Joseph, A.D.: Tapestry: a resilient global-scale overlay for service deploy-
ment. IEEE Journal on Selected Areas in Comm. 22(1), 41–53 (2004)

George Tsatsanifos is a PhD Student at the School of Electrical and Computer En-
gineering of the National Technical University of Athens, Greece. He received his
Diploma degree from the Department of Electronic and Computer Engineering of
the Technical University of Crete. His research interests include indexing, spatial
databases, distributed systems, peer-to-peer systems, RDF stores.

32 G. Tsatsanifos, D. Sacharidis, and T. Sellis

Dimitris Sacharidis is a Postdoctoral Fellow at the Institute for the Management of
Information Systems (IMIS) of Research Center “Athena”, Greece. He received his
BSc and PhD degrees from the National Technical University of Athens (NTUA),
and his MSc degree from the University of Southern California. His research in-
terests include spatio-temporal databases, indexing techniques, ranking, data stream
algorithms, and privacy.

Timos Sellis is the Director of the Institute for the Management of Information Sys-
tems (IMIS) of Research Center “Athena”, Greece and a Professor at the National
Technical University of Athens (NTUA), Greece. He received his Diploma from
NTUA, his MSc degree from Harvard University, and his PhD from the University
of California at Berkeley, where he was a member of the INGRES group. He was
an Associate Professor at the Department of Computer Science of the University of
Maryland, College Park. He has received the Presidential Young Investigator award
for 1990-1995 and the VLDB 1997 10 Year Paper Award for his work on spatial
databases. He was the president of the National Council for Research and Technol-
ogy of Greece (2001-2003) and a member of the VLDB Endowment (1996-2000).
His research interests include data streams, peer-to-peer databases, data warehouses,
the integration of Web and databases, and spatio-temporal databases.

