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Abstract— The vast majority of work on skyline queries
considers totally ordered domains, whereas in many applications
some attributes are partially ordered, as for instance, domains of
set values, hierarchies, intervals and preferences. The only work
addressing this issue has limited progressiveness and pruning
ability, and it is only applicable to static skylines. This paper
overcomes these problems with the following contributions. (i)
We introduce a generic framework, termed TSS, for handling
partially ordered domains using topological sorting. (ii) We
propose a novel dominance check that eliminates false hits/misses,
further enhancing progressiveness and pruning ability. (iii) We
extend our methodology to dynamic skylines with respect to an
input query. In this case, the dominance relationships change
according to the query specification, and their computation is
rather complex. We perform an extensive experimental evaluation
demonstrating that TSS is up to 9 times and up to 2 orders of
magnitude faster than existing methods in the static and the
dynamic case, respectively.

I. INTRODUCTION

The skyline query returns all points not dominated by
another point [1]. A point pi is said to dominate pj , if pi

is at least as good as pj on all dimensions, and there is at
least one dimension where pi is preferred. Since tuples can
be viewed as points in the multi-dimensional space defined
by their attribute domains, we use the terms tuple and point
interchangeably. Intuitively, the skyline query retrieves the best
tuples, irrespective of how a user weighs each dimension. The
distinctive property of the skyline is that it contains the top-
1 result of any preference function that is monotone on each
attribute. Conversely, for any skyline point there is at least one
preference function for which this point is the top-1 result.

Assume, for instance, a flight reservation system. A user
specifies origin, destination and travel dates, and the system
returns all tickets that satisfy these requirements. Figure 1(a)
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enumerates the result of such a query. The defining char-
acteristics of a ticket are Price, number of Stops and the
Airline company. For the moment, let us focus on the first
two attributes, assuming that all airlines are equally desirable.
A cheap ticket is preferred to a more costly one, and a direct
flight to one with multiple stops. Figure 1(b) draws the tickets
as points in the 2-dimensional space defined by Stops and
Price. Clearly, the lower left corner, corresponding to a ticket
with the minimum price and number of stops, is the most
preferable. Note that p8 (resp. p4) is dominated by p1 and p3

(resp. p6 and p7), as it has the same price (resp. number of
stops) but more stops (resp. is more expensive) than p1, p3

(resp. p6, p7). On the other hand, p1, p3, p6, p7 and p9, drawn
as filled circles, are not dominated by any other ticket and are
thus in the skyline. Any ticket that lies to the right of the line
connecting the skyline points in Figure 1(b) is dominated.

Ticket Price Stops Airline
p1 1,800 0 a
p2 2,000 0 a
p3 1,800 0 b
p4 1,200 1 b
p5 1,400 1 a
p6 1,000 1 b
p7 1,000 1 d
p8 1,800 1 c
p9 500 2 d
p10 1,200 2 c

(a) Example data set
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Fig. 1. Flight reservation example

Consider now the case where a user has specific preferences
among the airline companies. Assume for example, that s/he
favors a over both b and c, and any company over d. However,
s/he states no preference between b and c, implying that they
are equally desirable. The lack of preference for some pairs
of values indicates that the domain is partially ordered (PO).
Compare this to a totally ordered (TO) domain; a cheaper
price is always preferred over a more expensive one. In the
sequel, for simplicity we assume that for two values x, y of



a (partially or totally ordered) domain, x < y denotes that x
is preferred over y.

A domain can be represented by a directed acyclic graph
(DAG), called the Hasse diagram. Each node corresponds to a
value; a directed edge from x to y exists if x < y and there is
no z such that x < z < y. Then, a value x is preferred to y if
there is a (directed) path from x to y in the DAG. Returning
to our example, the user preferences on the airline attribute
induce a partial order represented by the DAG in the first row
of Table I. According to this order, p3 and p7 are no longer
in the skyline; for both tickets, there is an alternative which
has the same price and number of stops but better airline. In
addition, p5 and p10 are no longer dominated and are in the
skyline.

TABLE I
DIFFERENT PARTIAL ORDERS ON THE AIRLINE ATTRIBUTE

Partial order Skyline tickets
a

b c

d

p1, p5, p6, p9, p10

a

b

p3, p6, p7, p8, p9, p10

The problem of computing the skyline in the presence of
partially ordered domains was introduced in [2]. Briefly, the
main idea is to map each PO domain into two TO domains,
transform the entire data set to the new space, and apply
a traditional skyline algorithm. The mapping, however, is
incomplete in that it fails to preserve all preferences stated in
the original domain. Under this restriction, checking for domi-
nance in the transformed domain enforces a stronger notion of
dominance in the original space, termed m-dominance. If pi

m-dominates pj , it follows that pi also dominates pj according
to the conventional definition. However, the converse does not
hold. Subsequently, the result of any skyline algorithm in the
transformed space is bound to contain false hits, i.e., points not
m-dominated, but in fact dominated when all preferences are
considered. To address this issue, cross-examination among
skyline points is necessary. Depending on the number of
preferences not captured, a large percentage of the pair-wise
m-dominance checks can be inaccurate. The double-checking
required reduces considerably the algorithm’s efficiency. We
refer to techniques that perform such dominance checks as
inexact.

A desirable property of any skyline algorithm is precedence,
which states that a point should be examined after all points
that can potentially dominate it. A method that features
precedence avoids unnecessary dominance checks by quickly
identifying dominated, and more importantly, skyline points.
To understand this, consider a point that has been checked for
dominance against all previously seen points. Two outcomes
are possible: the point is either dominated or not. In the second
case, precedence ensures that it is a skyline point; on the

other hand, if precedence is not established, the point is only
a candidate, and the algorithm should continue to check it
for dominance against subsequent points. Unfortunately, the
existing algorithms for visiting points in the transformed space
cannot guarantee precedence.

The progressiveness of an algorithm, i.e., its ability to
output skyline points before examining the entire data set,
and its efficiency, in terms of dominance checks and page
IOs, largely depend on exactness and precedence. In this
work, we present a framework, termed Topologically-Sorted
Skylines (TSS), that exhibits both properties and addresses
all issues related to PO attributes. In short, TSS topologically
sorts the DAG of a domain and extracts a spanning tree. Then,
it associates with each PO value two pieces of information:
(i) the ordinal number in a topological sort, and (ii) multiple
intervals determined by the spanning tree structure. The former
ensures precedence, while the latter guarantees the exactness
of TSS. We apply our framework on the state-of-the-art index-
based algorithm to obtain its PO counterpart, termed sTSS, and
enhance its performance through various optimizations.

In many cases, the preferences among PO values are not
uniquely defined, i.e., there is no objectively good partial order.
Users can have different, often conflicting, preferences. To
capture this scenarios we introduce the concept of dynamic
skylines in PO domains. In the well studied case of only TO
attributes, the dynamic skyline is defined with respect to a
query point q. All dominance relationships are implicitly re-
defined relative to q, so that pi dominates pj if pi is not farther
from q than pj on all dimensions and is strictly closer on at
least one. In the case of PO attributes, a dynamic skyline query
explicitly redefines all dominance relationships, by specifying
a partial order for each PO domain. Consider, for instance a
dynamic skyline query over the airline attribute that defines the
partial order indicated in the second row of Table I, according
to which, the only preference is that of b over a. To compute
the new skyline tickets shown in the table, the methodology
in [2] needs to recompute the mapped coordinates for all
points (a very expensive process) before running anew. The
adaptation of the TSS framework to dynamic skyline queries,
termed dTSS, avoids this pitfall, requiring only minimal pre-
processing. In addition, dTSS allows for caching of past results
to expedite the processing of future queries.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on skyline query processing,
focusing mostly on PO domains. Section III formally defines
exactness and precedence, and introduces the TSS framework.
Section IV proposes an efficient algorithm for computing
skylines with PO domains. Section V discusses dynamic
skyline queries and the re-use of previous results for improving
performance. Section VI evaluates the benefits of our approach
through extensive experiments, and Section VII concludes the
paper.

II. RELATED WORK

Section II-A overviews methods for skylines and related
queries in TO domains. Section II-B discusses the mapping
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from PO to TO domains. Section II-C describes the only
known methodology for skyline processing in PO domains.

A. Skyline Query Processing

Computing the skyline points, also known as finding the
maxima in a set of vectors [3], has been thoroughly studied
in the area of computational geometry where a large number
of theoretical results exist. If the order within each dimension
is treated as a preference, the skyline points correspond to
the Pareto accumulation or composition of all preferences
discussed in [4], [5]. The first work to address skyline com-
putation in the context of databases is [1]. The authors devise
an algorithm that iterates over all points using block nested
loops (BNL), propose a B-tree based approach, and adapt the
multidimensional divide and conquer algorithm [6] to external
memory. An extension of the BNL algorithm, introduced in [7]
and termed SFS, presorts the points according to a monotone
preference function. SaLSa [8] and LESS [9] improve on SFS.
Tan et al. [10] introduce two progressive techniques, Bitmap
and Index, which output points guaranteed to belong in the
skyline without having to scan the entire data set.

The NN algorithm [11] applies nearest neighbor search on
data indexed by an R-tree, based on the observation that the
NN point to the beginning of the axes is always part of
the skyline. This point divides the dataset into overlapping
partitions according to its coordinates. Then, NN repeats the
search process iteratively in each resulting partition. Special
care is taken to remove duplicates found in overlapping
partitions. Branch and bound skyline (BBS) [12] avoids the
pitfalls of the nearest neighbor approach. Starting from the
root, BBS inserts R-tree entries, which correspond to minimum
bounding boxes (MBB), into a heap in ascending order of their
minimum distance to the beginning of the axes. The first point
visited is the nearest neighbor and is inserted in the skyline list.
When a subsequent entry is de-heaped, the lower-left corner of
its MBB is checked for dominance against the skyline list. If it
is dominated, the entire subtree can be pruned. Otherwise, its
children are examined, and those not dominated are inserted
into the heap. Execution terminates when the heap is depleted.
BBS visits only the R-tree nodes that can potentially contain
skyline points, and, hence, is IO optimal.

A large part of the recent literature focuses on skyline-
related topics. The skycube query [13] returns the points
not dominated in a specified subset of the dimensions. Li
et al. [14] investigate dominance relationships from a data-
warehouse perspective. The concept of probabilistic skylines
[15] defines dominance for objects represented by multiple
instances. Given a query point q, a dynamic skyline (for TO
domains) reports the points that are not dominated in a new co-
ordinate system centered at q [12]. The reverse skyline query
[16] retrieves the points whose dynamic skyline includes an
input point. Given a set of points Q, a multi-source skyline
query [17], [18] reports the points not dominated with respect
to Q. Wong et al. [19] identify the minimal set of preferences
that cause the exclusion of a given point from the skyline.

B. Mapping PO to TO Domains

Determining preference in PO domains is analogous to
the problem of detecting graph reachability. Several such
techniques have been proposed in various application domains
(for a survey see [20]). In the sequel we demonstrate a method
adopted from [21], which creates a spanning tree on the DAG.
Each node is associated with an interval [minpost, post],
where post corresponds to the node’s position in a postorder
traversal, and minpost to the minimum post, among its
descendants. Consider the PO domain and the spanning tree
shown in Figure 2(a). The spanning tree edges are shown with
bold lines. The purpose of the small numbers on top of each
node will become apparent later.

If the interval of a node is contained within that of another
node, then the latter is preferred to the former, e.g., d is
considered worse than a as [3, 6] ⊂ [1, 9]. If two intervals
([3, 3], [1, 1]) are disjoint, the preference relationship between
the corresponding nodes (f , h) cannot be determined based on
the information preserved by the spanning tree (in Figure 2(a),
f is better than h). Let I1, I2 be the integer domains associated
with minpost and post. Preference in these domains is defined
by low values in I1 and high values in I2. Figure 2(b) draws
the intervals associated with each value on the I1×I2 domain
and superimposes the spanning tree for reference.

C. Skylines in PO Domains

The only work with a scope similar to ours, which also
serves as a baseline in our experimental evaluation is [2].
The authors use a method similar to that of Figure 2(a), to
map all data points in a new space, where each PO value is
substituted by the associated coordinates in the I1×I2 domain.
Dominance in the new space corresponds to the notion of m-
dominance in the original space. A point pi m-dominates pj

if (i) pi is at least as good in all totally ordered dimensions,
(ii) its interval covers or coincides with pj’s for all partially
ordered dimensions, and (iii) there exists either (a) a totally
ordered dimension in which pi is strictly better, or (b) a
partially ordered dimension for which pj’s interval is contained
in pi’s. Since, not all preference relationships are captured
by the interval representation, m-dominance is stronger than
dominance. Consequently, the set of skyline points determined
according to m-dominance is a superset of the actual skyline
points, i.e., it may contain false hits.

Query processing is based on three variants of BBS, namely
BBS+, SDC and SDC+, that operate on the transformed
space and differ in false hit elimination. BBS+ checks every
non m-dominated point for (actual) dominance against a list
of intermediate skyline points found so far. BBS+ is not
progressive because it cannot report any result until all points
have been examined. SDC distinguishes between two disjoint
subsets of points, called strata, based on the type of the
DAG node representing their value in the PO domain. A
node is completely covered if all edges of its incoming paths
are included in the spanning tree; otherwise, it is partially
covered. The definition can be extended to points in a straight-
forward manner: a point is completely covered if its values
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Node Initial Propagated Final
a [1, 9] [1, 2] [3, 3] [3, 5] [1, 9]
b [1, 8] [3, 3] [3, 5] [1, 8]
c [1, 2] [3, 3] [3, 5] [1, 5]
d [3, 6] [3, 6]
e [7, 7] [3, 5] [3, 5] [7, 7]
f [1, 1] [3, 3] [1, 1] [3, 3]
g [3, 5] [3, 5]
h [3, 3] [3, 3]
i [4, 4] [4, 4]

(d) Interval propagation

Fig. 2. A PO domain example

in all PO domains correspond to completely covered nodes.
A useful property is that m-dominance among completely
covered points corresponds to the actual dominance. During
the execution of SDC, the stratum of a point is determined. If
the point is not m-dominated and is completely covered, then
it definitely belongs to the skyline and can be safely output,
increasing progressiveness. Points in the other stratum cannot
be reported before termination.

SDC+ further distinguishes partially covered points into
multiple strata. The uncovered level of a node is the maximum
number of non-tree edges in any of its incoming paths.
All completely covered vertices have uncovered level of 0,
whereas the partially covered vertices have a level strictly
greater than 0. The small numbers on top of nodes in Fig-
ure 2(a) are their uncovered levels. For instance, the uncovered
level of g is 2 because of the two non-tree edges in the path
a, c, g. This definition can be extended to points, as before.
The main intuition is that points from a particular uncovered
level cannot be dominated by points from higher levels. SDC+
partitions the entire data into strata based on their uncovered
level and stores them in a separate R-tree for each stratum.
Then, strata are processed in sequence, sorted increasingly by
their uncovered level. SDC+ maintains a global list of actual
skyline points and a local list per stratum that may contain
false hits. MBBs are checked for m-dominance against both
lists. When a leaf entry pi is de-heaped, it is checked for
(actual) dominance against the local list. If pi is not dominated,
all points in the local list are cross-examined for dominance
by pi; false hits are, thus, identified and removed. Point pi

is also checked for (actual) dominance against the global list.
Once the heap is empty, the local skyline list contains actual
skyline points, i.e., no false hits, and is appended in the global
list.

III. TSS FRAMEWORK

In this section we present Topologically-sorted Skylines
(TSS), a methodology that achieves efficiency and progressive-
ness in the presence of partially ordered domains. Since TSS
does not restrict, or modify in any other way the dominance
definition, it is not hindered by false hits and does not have
to cross-examine skyline points. Furthermore, TSS can output
skyline points immediately, long before the entire data set is

considered. In fact, TSS is progressive in the strictest sense.
Our framework is also independent of the underlying skyline
algorithm1. Last, but not least, TSS is applicable to dynamic
skyline queries for partially ordered domains.

Section III-A discusses some desirable properties for any
skyline algorithm, and compares the existing methods with re-
spect to these features, focusing mostly on SDC+. Section III-
B describes the enforcement of these properties by TSS and
provides the corresponding dominance definitions.

A. Motivation

Most external memory skyline algorithms, e.g., BNL, In-
dex, SFS, LESS, SaLSa, BBS, follow a common scan-based
paradigm [9]. Specifically, they maintain a candidate list of
skyline points and check each point in turn for dominance
against the candidates. Note that the candidate list contains
the skyline points with respect only to the points seen so far.
As such, a point in the candidate list is not an actual result and
may be evicted if a subsequent point dominates it. The good-
ness of an algorithm is measured by (i) its progressiveness,
i.e., its ability to output results before termination, and (ii)
its efficiency in terms of the number of pair-wise dominance
checks and IO accesses. Ideally, the algorithm should only
examine the skyline points, immediately output a skyline point
as soon as it is identified, and terminate upon discovering the
last skyline point disregarding all the rest. The progressiveness
and the efficiency depend on two crucial properties.

Property 1 (Precedence): A point should be examined be-
fore all points that it can potentially dominate.

Equivalently, a point should be examined after all points
that can potentially dominate it. A straightforward conse-
quence is that the first point considered is always a skyline
point. Intuitively, precedence is desirable as it enables an al-
gorithm to definitely determine if the point under examination
is in the skyline. If no point in the candidate list dominates it
and since not yet examined points cannot dominate it, it must
belong in the skyline. The precedence property is explicitly
exploited by SFS and its derivatives (LESS, SaLSa), which
examine points ordered by a monotonic preference function.
The Index and BBS algorithms also exhibit precedence, as they
visit points ordered according to their minimum Chebyshev

1To guarantee progressiveness, an appropriate method is needed.

4



and rectilinear, respectively, distance to the most preferable
point.

On the other hand, none of the m-dominance methods
satisfies precedence. Consider the PO domain and its inter-
val representation in Figure 2(a). Assume that SDC+ uses
the rectilinear distance to sort entries in the heap; similar
results hold for any Lp distance metric. The dashed lines in
Figure 2(b) correspond to points that are within the same
rectilinear distance of the most preferable point (top left
corner). Observe that a point p1, which has PO value g, will be
examined before another point p2, which has the same value
with p1 in the TO domains, but has PO value either e or c
(both are preferred to g) in the PO. Clearly, this violates the
precedence requirement.

Property 2 (Exactness): A dominance check should always
identify dominance relationships, accurately.

This property implies that when examining a point
against another, the algorithm should unambiguously ascertain
whether it is dominated or not. All existing skyline algorithms
for TO domains satisfy this property, as their dominance check
accurately reflects the dominance relationship among points.
For PO domains, however, the methodology of [2] applies a
stronger, compared to the actual, dominance check. Depending
on the density of the DAG, m-dominance can result in a large
number of false hits, i.e., points incorrectly identified as not
dominated. This necessitates a cross examination among all
such points, as discussed in Section II.

We now revisit the two goodness measures and illustrate
their relationship with the properties introduced. The progres-
siveness measure essentially summarizes the criteria for an
online algorithm [22] as adapted to the skyline computation
problem [11]. According to this notion, skyline points should
be output (and never revoked) during the execution of the
algorithm, before all points are considered. In this work, we
impose harsher requirements on progressiveness. A skyline
computation algorithm is optimally progressive if a point that
belongs in the skyline is output immediately after it has been
examined. It is easy to see that all progressive algorithms
proposed in the literature, e.g., Index, SFS, LESS, SaLSa,
BBS, are also optimally progressive. In comparison, BNL and
BBS+ are neither progressive nor optimally progressive, as
they output the entire skyline at once after all points have been
examined. SDC and SDC+ output skyline points during the
execution of the algorithm and are, thus, progressive. However,
they are not optimally progressive: to output a skyline point
they must first examine all points that belong in the same
stratum. Since SDC+ organizes data in multiple strata, it can
be considered more progressive than SDC.

An important remark is that any algorithm that features
both the precedence and the exactness properties is guaranteed
to exhibit optimal progressiveness. Indeed, when a point p
is considered, the second property ensures that p is always
accurately classified (as dominated or not dominated) with
respect to any point considered so far. The first property
ensures that all necessary dominance checks to accurately
determine whether p is in the skyline have been performed.

Combining the two observations, we conclude that p can be
safely output if not dominated, and hence the algorithm is
optimally progressive.

We turn our attention to the efficiency of the skyline
computation algorithms, as measured by the number of domi-
nance checks and IO operations. According to the scan-based
paradigm, each point will be checked against every point in
the candidate list. The average number of checks performed
per point is therefore determined by the size of the candidate
list (if it does not fit in main memory extra IOs are required).
It should be clear that to incur minimum checks and IOs the
candidate list should only contain actual skyline points and
no intermediate candidates. An algorithm that features both
properties never maintains in the candidate list non-skyline
points. Given that the second property is satisfied (i.e., all
checks are accurate), the first property ensures that points
enter the candidate list only if they belong in the skyline.
To conclude, it is apparent that the existing techniques for
computing skylines over PO domains are hindered by the lack
of precedence and exactness. Next, we show that it is possible
for an algorithm to respect both properties

B. TSS Design Issues

TSS constructs a totally ordered domain by mapping values
from the partially ordered domain in a manner that preserves
all preference relationships, direct (parent to child edges)
and indirect (ascendant to descendant paths). In particular, to
enforce total order we artificially insert additional preference
relationships among incomparable values. Then, any mono-
tonic preference function over the mapped domain is also
monotonic in the original domain and precedence is ensured.
The mapping from PO to TO domains is performed through
topologically sorting the DAG nodes.

Figure 2(a) illustrates the DAG associated with a partially
ordered domain of 9 values, labeled a through i. Figure 2(c),
shows one admissible topological sort, including the edges
of the DAG, of the nodes that corresponds to the total order
a < b < c < · · · < i. It is straightforward to verify that every
preference relationship in the DAG is preserved by the total
order (all edges face down). TSS then maps a PO value into
an integer TO domain, depending on its ordinal number in
the topological sorting, i.e., 1 is assigned to a, 2 to b, and so
forth. Let APO be the PO domain; we refer to the TO domain
generated by topological sorting, as ATO.

Unfortunately, the topological sort is inadequate for the
second property, namely exactness. Consider, for example, two
points p1 and p2 that are identical on all attributes except
for the APO of Figure 2(a), where their values are c and d,
respectively. The dominance check using their ATO values, 3
and 4, respectively, suggests that p1 dominates p2. However,
these points are incomparable in APO. This occurs due to
the artificial preferences inserted, which do not exist in the
original domain.

To address this issue, TSS employs an efficient dominance
check unrelated to the TO domain, which has neither false
hits nor misses and, thus, allows for exactness. Similar to
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the m-dominance notion, TSS’s check is based on the trans-
formation of Section II-B. Unlike m-dominance, however,
it guarantees accurate checks. Specifically, TSS extracts a
spanning tree (containing all nodes, but not all edges) from
the DAG of the PO domain. Next, it associates with each
node the [minpost, post] interval. Assume the spanning tree
for the previous DAG as shown in Figure 2(a). The second
column in Figure 2(d) illustrates the intervals associated to
each node. As discussed in Section II-B, these intervals encode
the preferences associated with the tree paths only.

To capture all preferences, TSS includes, in each node,
information about non-tree edges by propagating intervals. For
instance, to accurately reflect all preferences involving h, its
interval [3, 3] must be propagated along any incoming path
to h that includes a non-tree edge. Therefore, [3, 3] is copied
to f and subsequently to c, b and a. The process is repeated
for all non-tree edges and all propagated intervals are shown
in the third column of Figure 2(d). Each node is, therefore,
associated with multiple intervals. However, most of them can
be merged with, or subsumed by others, decreasing the number
of intervals required for capturing all dominance relationships.
The fourth column of Figure 2(d) illustrates the final intervals
after these operations. Next, we formally introduce the notion
of preference among PO values and finally define TSS’s exact
dominance check.

Definition 1 (t-preference): Given two values x 6= y of a
PO domain, x is t-preferred over y, iff for every interval iy
associated with y there exists an interval ix, associated with
x, such that either iy is contained in ix or ix, iy coincide.
As an example, consider values f , h from the domain of Fig-
ure 2(a). The single interval [3, 3] associated with h coincides
with one of f ’s intervals; hence, f is t-preferred overh.

Definition 2 (t-dominance): A point pi t-dominates pj if (i)
pi is at least as good as pj in all TO dimensions, (ii) pj is not
t-preferred over pi in any PO dimension, and (iii) there exists
either (a) a TO dimension in which pi is strictly better, or (b)
a PO dimension in which piis t-preferred over pj .

Summarizing, since the interval encoding captures all dom-
inance relationships in the DAG, TSS exhibits exactness.
Furthermore, the topological sorting enforces precedence. TSS
is a general framework and can be implemented with various
skyline algorithms. Following [2], we next describe an imple-
mentation based on BBS, which permits a direct comparison
with the previous work on PO skylines.

IV. STATIC SKYLINE IN PO DOMAINS

We first propose a concrete implementation of the TSS
framework, called sTSS for static, i.e., conventional, skylines.
Unlike the BBS-based methods of [2], sTSS achieves op-
timal progressiveness and efficiency due to precedence and
exactness. Section IV-A presents the basic functionality of
the algorithm and Section IV-B focuses on optimizations for
expediting t-dominance checks.

A. Basic Algorithm
For ease of exposition, we describe sTSS through an ex-

ample. We assume that there are only two attributes in the

skyline criteria: A1, with a totally ordered domain, and A2,
with the partially ordered domain of Figure 2(a). The extension
to multiple PO domains is straightforward. sTSS constructs
the DAG corresponding to A2 (we slightly abuse notation
by referring to the attribute and its domain using the same
symbol) and obtains (i) a topological sort of its nodes, and
(ii) a spanning tree and the resulting intervals associated with
each node, as shown in Figure 2(d). In accordance to the
TSS framework, A2 is mapped to an integer domain, ATO,
by assigning to each value (DAG node) the ordinal number
in the topological sort. Also, let I1, I2 be the domains of the
minpost and post number, so that all intervals are expressed
in I1 × I2. As a result, any value in the original domain, A2,
is associated with a single value in ATO and with possibly
multiple intervals (or 2D points) in I1 × I2. Note that all
constructed domains, ATO, I1, I2, have the same cardinality
(9) with A2.

Consider the example data set in Figure 3(a). Each tuple
corresponds to a 2-dimensional point in the A1×ATO domain
as shown in Figure 3(b). For better reference, we also include
the A2 values. Skyline points are denoted with filled circles.
Figure 3(c) illustrates an R-tree on the transformed space,
assuming a maximum node capacity of 3 entries. Each node Ni

(except for the root R) corresponds to a minimum bounding
box (MBB), drawn in Figure 3(b), and is associated with an
entry ei in its parent node. An entry in a leaf node corresponds
to a data point. sTSS, similar to BBS, uses a heap to buffer
R-tree entries and determine the nodes’ visiting order. The
heap always contains at its head the entry with the minimum
distance (mindist) to the most preferable point of the data set,
which, in this case, is the lower-left corner of the transformed
space. Throughout this example, we use the rectilinear distance
(L1 norm) for calculating distances. In particular, assuming
that all points have non-negative coordinates, the mindist of
a point equals the sum of its coordinates, and the mindist of a
node equals the mindist of the lower left corner of its MBB.
Furthermore, the definition of t-dominance can be extended
to cover nodes, i.e., a point pi t-dominates node Nj if pi t-
dominates the lower left corner of Nj .

The sTSS algorithm proceeds in a manner similar to BBS.
Table II demonstrates the contents of the heap and the skyline
points found at each step of sTSS’s execution. Pruned entries
are typed in bold. Initially, the heap is empty. Then, the root
node R is expanded and e1, e3, are inserted in the heap (step
1). The entry e1 with the minimum mindist is de-heaped
and its children e2, e4, e5 are en-heaped (step 2). Next, e2

is replaced by its children p1, p2, p5 (step 3), among which
point p1 has the minimum mindist and is, thus, de-heaped
and inserted in the skyline (step 4). The head now contains
e3, which needs to be checked for t-dominance against p1. The
MBB N3 associated with this entry contains values that extend
from a to h in the PO domain A2. In the interval domain, these
values correspond to intervals which are subsumed by [1, 8].
Since [1, 8] is not t-preferred over the interval [1, 5] of p1, N3

is not t-dominated by p1. Thus, N3 is visited and its entries e6,
e7 are en-heaped (step 5). Subsequently, sTSS has to examine
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id A1 A2 id A1 A2

p1 2 c p8 4 i
p2 3 d p9 2 f
p3 1 h p10 3 g
p4 8 a p11 5 g
p5 6 e p12 7 f
p6 7 c p13 9 h
p7 9 b

(a) Example data set
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N1 N3

N5N2 N4 N7N6
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(c) R-tree structure

Fig. 3. Example data

TABLE II
HEAP AND SKYLINE CONTENTS

Step Heap Skyline
1 〈e1,4〉〈e3,6〉 ∅

2 〈e2,5〉〈e3,6〉〈e4,8〉〈e5,9〉 ∅

3 〈p1,5〉〈e3,6〉〈p2,7〉〈e4,8〉〈e5,9〉〈p5,11〉 ∅

4 〈e3,6〉〈p2,7〉〈e4,8〉〈e5,9〉〈p5,11〉 {p1}

5 〈p2,7〉〈e4,8〉〈e6,8〉〈e5,9〉〈p5,11〉〈e7,11〉 {p1}

6 〈e4,8〉〈e6,8〉〈e5,9〉〈p5,11〉〈e7,11〉 {p1,p2}

7 〈e6,8〉〈e5,9〉〈p5,11〉〈e7,11〉 {p1,p2}

8 〈e5,9〉〈p4,9〉〈p6,10〉〈p5,11〉〈e7,11〉〈p7,11〉 {p1,p2}

9 〈p3,9〉〈p4,9〉〈p6,10〉〈p5,11〉〈e7,11〉〈p7,11〉〈p8,13〉 {p1,p2}

10 〈p4,9〉〈p6,10〉〈p5,11〉〈e7,11〉〈p7,11〉〈p8,13〉 {p1,p2,p3}

11 〈p6,10〉〈p5,11〉〈e7,11〉〈p7,11〉〈p8,13〉 {p1,p2,p3,p4}

12 〈p5,11〉〈e7,11〉〈p7,11〉〈p8,13〉 {p1,p2,p3,p4}

13 〈e7,11〉〈p7,11〉〈p8,13〉 {p1,p2,p3,p4,p5}

14 〈p7,11〉〈p8,13〉 {p1,p2,p3,p4,p5}

15 〈p8,13〉 {p1,p2,p3,p4,p5}

the new head p2, which is incomparable to p1 on A2 because
their intervals [3, 6] and [1, 5] are not related by t-dominance.
Since precedence is guaranteed by topological sorting, p2 is a
skyline point (step 6). The head now contains e4. The MBB N4

associated with this entry contains values that extend from f
to g on A2. In the interval domain, these values correspond to
[1, 1], [3, 3], [3, 5], which are merged to [1, 1], [3, 5]. Observe
that both intervals are contained in p1’s interval [1, 5], p1’s
value on A1 (2) is equal to N4’s corresponding minimum
value. Therefore, p1 t-dominates any point in N4 and the node
is discarded (step 7). BSS* continues in a similar fashion until
the heap is depleted; the final skyline points are p1, p2, p3,
p4, p5.

B. Optimizations

Depending on the size of the skyline and the intervals
associated with the skyline points and the MBBs, determining

t-dominance can be expensive. We describe two optimizations
that together help dramatically reduce the cost. The first
concerns the identification of all the intervals associated with
the PO range of an MBB. Let r denote such a range extending
across the topologically sorted PO domain ATO. Since for
each value in r there is at least one interval, the final set of
intervals, computed after subsumption or merging, requires the
retrieval and examination of at least |r| intervals. For large
MBBs, i.e., those high up in the R-tree, this computation
overhead becomes more pronounced as almost |ATO| intervals
must be considered. One solution for this problem is to pre-
compute for each possible range r ∈ ATO × ATO the set
of intervals associated with r (after subsumption/merging)
and store them in a hash table. When examining an MBB
for t-dominance, its range in the PO domain is used as the
key to retrieve the intervals in constant time. This method’s
applicability is limited by the quadratic (in the PO domain
size) space required to store all ranges.

We present a more attractive solution that balances the space
and time trade-off. Specifically, we pre-compute and store the
intervals associated with a small subset of all, i.e., |ATO|2,
possible ranges. We keep the |ATO| − 1 dyadic ranges (DR)
of the domain. Assuming |ATO| is a power of 2, the DRs are
Il,k =

[
k |AT O|

2l , (k + 1) |AT O|
2l

)
for 0 ≤ l < log |ATO| and

0 ≤ k < 2l, and correspond to the internal nodes of a binary
tree built on top of ATO. For example, I0,0 corresponds to
the root covering the entire domain, and its two children, I1,0,
I1,1, correspond to the first and last half of ATO, respectively.
An important property of DRs is that any given range r can
be decomposed into at most log |r| DRs. Hence, identifying
the intervals associated with a range requires only logarithmic
time at a linear storage overhead, with respect to |ATO|.

The second and most important optimization concerns the
t-dominance check itself. Returning to our running example,
sTSS uses a 3-dimensional main memory R-tree, Tm, to store
the skyline points and to efficiently perform the dominance
check against points and MBBs. The R-tree’s dimensions
include the original A1 and the two interval dimensions I1, I2.
Consequently, each skyline point is represented by possibly
multiple virtual points in A1 × I1 × I2, depending on the
number of intervals associated with the point’s PO value. For
example, p1 has a single virtual point, (2, 1, 5) in the R-tree,
whereas p5 has two, (6, 3, 5) and (6, 7, 7), one for each interval
associated with PO value e. Figure 4(a) shows the virtual
points for the skyline of Figure 3(b). For ease of illustration,
we draw their projection in the I1 × I2 plane. The A1 value
of a virtual point is the single number above it. For example,
p1’s virtual point is at coordinates (1, 5), while its A1 value
is 2. The most preferable point in this plane is the upper-left
corner as it corresponds to [0, 10] containing every possible
interval in I1×I2. Virtual points are inserted in Tm according
to the order that skyline points are discovered by sTSS; in our
example, p1, p2, p3, p4, p5.

Next, we demonstrate the fast t-dominance check based
on the main memory R-tree Tm. Consider step 7 in sTSS’s
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Fig. 4. Main memory R-tree

execution of Table II. In this step, the MBB of N4 must be
checked for t-dominance. Note that Tm contains only two
virtual points corresponding to the current skyline p1, p2.
Using the first optimization, sTSS obtains the intervals [1, 1],
[3, 5], associated with the A2 range defined by N4’s MBB.
Transformed to the A1×I1×I2 domain, this MBB corresponds
to two virtual points, (2, 1, 1) and (2, 3, 5). Figure 4(b) draws
with hollow circles their projections in the I1×I2 plane. sTSS
needs to examine every virtual point for t-dominance. For each
such point, it issues a range query on Tm. The range extends
from the most preferable point in the A1 × I1 × I2 domain
(i.e., (0, 0, 10)) to the virtual point itself. Referring to N4’s
MBB, the two ranges are [0 : 2] × [0 : 1] × [1 : 10] and
[0 : 2]× [0 : 3]× [5 : 10]; their projection in the I1 × I2 plane
is shown shaded in Figure 4(b). If all range queries return
at least one skyline point, then the MBB is t-dominated. In
our case both queries return p1’s virtual point; hence, sTSS
safely prunes N4. Note that the range query can be efficiently
processed as a Boolean query [16], where the answer is a
single Boolean value that is false when the range is empty,
and true otherwise.

V. DYNAMIC SKYLINES IN PO DOMAINS

In the context of PO attributes, a dynamic skyline explicitly
specifies the dominance relationships. sTSS and the methods
of [2] require rebuilding the index structures for each query.
For sTSS this is because of changes in the topological sort,
whereas in [2] this is due to the fact that the spanning tree (in
fact, the entire DAG) is no longer valid.

Section V-A presents the dynamic counterpart of the TSS
framework, termed dTSS, that avoids the pitfalls of existing
static algorithms. Specifically, dTSS does not re-compute the
coordinates, or re-build the index structure, and exhibits TSS
properties. Section V-B proposes optimizations to enhance the
performance of dTSS.

A. The dTSS Algorithm

Let A1, A2 be two TO attributes, and A3 = {a, b, c} be a
PO attribute domain. Given the data set in Figure 5(a), dTSS
partitions the points into disjoint groups, Ga, Gb, Gc based
on their A3 value. Upon receiving a dynamic skyline query
defining a partial order on attribute A3, dTSS (i) topologically

sorts A3 obtaining the integer domain ATO, and (ii) extracts
a spanning tree, and (iii) associates with each value a set of
intervals in I1×I2. Assume that the query specifies the partial
order on A3, topologically sorted as shown in Figure 5(a). In
particular, the skyline query states that value b is better than
c, and that no other preference exists.

id A1 A2 A3 id A1 A2 A3

p1 1 2 a p6 1 5 b
p2 3 1 a p7 2 5 c
p3 3 4 a p8 3 4 c
p4 4 5 a p9 4 4 c
p5 2 2 b p10 5 2 c

a

b

c

[1,1]

[2,3]

[2,2]

(a) Data set and topological sort
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(b) Main memory R-tree
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(c) R-trees groups Ga, Gb, Gc

Fig. 5. Dynamic skyline query processing

The dTSS algorithm visits each group according to its
topological order and processes all points within the group,
before progressing to the next. To enforce exactness, a global
main memory R-tree, Tm, in the A1 × A2 × I1 × I2 domain
is maintained. The t-dominance of a point is determined by
performing range queries in this global tree, as described
in Section IV. Within each group, the skyline is computed
using any algorithm that exhibits precedence; here we use
BBS. Observe that this is sufficient to ensure that precedence
holds for all points. Therefore, any non-dominated point can
be immediately output as it definitely belongs in the skyline.
In addition, all virtual points corresponding to the intervals
associated with its PO value are inserted in Tm.

The following discussion refers to the R-trees of Figure 5(c),
which index points within each group Ga, Gb, Gc. Since all
points in a group have the same A3 value, and, thus, the same
ATO value, all R-trees are two-dimensional and are built in
the A1×A2 domain. Consider the first group Ga. First, MBB
N1 is expanded to N2 and N3, and then N2 is expanded to p1

and p2. The former is the entry with the minimum mindist
and is a skyline point. Its A3 value is associated with the
interval [1, 1] and leads to the insertion of a single virtual
point with coordinates (1, 2, 1, 1) in Tm. Figure 5(b) shows the
projection of all virtual skyline points in the I1 × I2 domain;
the coordinates of the points in the A1, A2 dimensions are
depicted on top of each point. Currently, the tree contains only
p1’s virtual point. The next entry examined is p2, which is not
t-dominated by p1 and, hence, is a skyline point and inserted
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in the global R-tree. The entire N3 MBB is t-dominated by
both skyline points and is discarded, concluding the processing
in the first group. dTSS continues to examine Gb. Since points
in Gb cannot be t-dominated by those in Ga, p5 and p6

are in the skyline and their virtual points are inserted in the
main memory R-tree. Finally, Gc is examined starting with its
root entry N5. The lowest-left corner of N5 has coordinates
(2, 2), and the interval associated with the c value is [2, 2]
(see Figure 5(a)). A Boolean range extending from (2, 2, 2, 2)
to the most preferable point, i.e., (0, 0, 0, 4), is then issued
on the global R-tree, returning p5’s virtual point (2, 2, 2, 3).
Figure 5(b) depicts as shaded the projection of the range in
the I1 × I2 domain. The non-empty result implies that any
point in Gc is dominated. Hence, the execution terminates
without considering the group’s R-tree entries at all. The final
skyline and the virtual points are shown with filled circles in
Figure 5(c) and Figure 5(b), respectively.

Suppose, now, that another dynamic query arrives, defining
the new partial order illustrated in Figure 6(a). Values a and
c are more desirable than b, but no preference exists between
them. Observe that the groups are not affected and, hence,
dTSS does not need to recalculate the coordinates of any point,
or rebuild the R-trees associated with each group. It simply
needs to topologically sort the new domain, extract a spanning
tree and determine the intervals associated with each value.
The result is illustrated in Figure 6(a). The global tree Tm

from the previous run is, of course, discarded. Then, dTSS
proceeds anew, visiting groups, applying BBS in each one and
populating Tm. Points p7, p8, p10, from the first group Gc, and
p1, p2 from the second Ga, are inserted in the skyline (in that
order). The projections of the contents of Tm in the A1 ×A2

and the I1× I2 planes are shown in Figure 6(b). Note that all
points in Gb are dominated by p1 because the virtual point
(1, 2, 2, 2) corresponding to the root MBB N4 is dominated
by p1’s virtual point (1, 2, 2, 3). Hence, the R-tree associated
with this group is not examined.

c

a

b

[1,2]

[2,3]

[2,2]

(a) New partial order
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(b) Main memory R-tree

Fig. 6. New dynamic skyline query

B. Optimizations

We discuss two optimizations, pre-processing and caching
of past dynamic queries, that improve the performance of
dTSS. Initially, we assume that queries affect the dominance
relationships only in the partially ordered attributes. Later,
we consider fully dynamic skyline queries that may alter all
relationships.

The dominance relationships among points of the same
group are unaffected by changes in the partial order; only
cross-group relationships may change. Therefore, completely
ignoring the partial order, we pre-compute the local skyline
points within each group and store them labeled with their
group identifier. Then, for each new partial order that requires
processing, we obtain a topological sort and a spanning tree
of its DAG. We also identify the intervals associated with
each node. Next, we consider groups in topological order, and
examine only their local skyline points. For each such point,
we perform a dominance check in the global R-tree. If the
point is not t-dominated, it is a result. Upon examining the
local skyline points of all groups, the R-tree will contain the
skyline virtual points. We prove the algorithm’s correctness
by contradiction. Assume that there is a skyline point pi not
identified and let Gx be its group. Clearly, pi must not belong
in Gx’s local skyline, otherwise it would have been examined
and correctly identified (due to the accuracy of the dominance
check). Therefore, there is a skyline point pj in Gx that
dominates it locally. Since, pi, pj are in the same group, all
their PO values are equal and pj should dominate pi globally
as well; hence, a contradiction.

In the case of a fully dynamic skyline, which specifies a
partial order on the PO attributes and the ideal values in the TO
attributes, the pre-computed local skyline points are no longer
valid. The skyline within each group must be recomputed.
An interesting observation, however, is that not all preference
relationships in TO domains are affected by the new query.
Caching past results can help reduce the processing cost of
dynamic queries, as shown in [23].

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate TSS framework using syn-
thetically generated data. We use the SDC+ algorithm as a
benchmark to our methods since it outperforms BBS+ and
SDC [2], the only other applicable methods for skyline queries
with PO domains. All algorithms were implemented in C++,
compiled with gcc and executed on a 2Ghz Intel Core 2
Duo CPU. Section VI-A presents the experimental setup and
Sections VI-B, VI-C evaluate sTSS and dTSS on static and
dynamic skylines, repsectively.

A. Experimental Setup

We have modified a publicly available generator2 to con-
struct synthetic data sets using two types of distribution. In
Independent, attribute values are drawn from a uniformly
random distribution. In the Anti-correlated distribution, tuples
with preferable values in one dimension are more likely to
have bad values in the others, e.g., tickets with few stops are
more expensive. The size of each TO domain is set to 10000.
The cardinality of the data set N varies from 100K up to 10M
points. The number of TO and PO attributes in a data set varies
among 2, 3, 4 and 1, 2, respectively.

In the following we discuss the construction of the DAGs
in PO domains. Each PO value corresponds to a DAG node

2http://randdataset.projects.postgresql.org
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TABLE III
PARAMETERS AND VALUES

Parameter Range
Data cardinality (N ) 100K, 500K, 1M, 5M, 10M

Number of TO attributes (|TO|) 2, 3, 4
Number of PO attributes (|PO|) 1, 2

DAG height (h) 2, 4, 6, 8, 10
DAG density (d) 0.2, 0.4, 0.6, 0.8, 1

and the preference among two values is determined by the
existence of a path between them. Initially, we obtain a DAG
constructed by the containment partial order for sets. The
maximum cardinality of the sets determines the number of
nodes |V | and the height (h) of the DAG, i.e., the maximum
length of any path it the graph (diameter). For a domain of
8 distinct objects, the lattice corresponding to all possible
subsets has h = 8 and contains |V | = 28 = 256 nodes. DAGs
obtained in this manner are rather dense. To explicitly control
the density d, defined as the ratio d = |V |

2h , we retain lattice
nodes (along with their incoming and outgoing edges) with a
probability equal to d.

Table III enumerates all parameters involved in our exper-
imental evaluation along with their examined values. In all
settings, to segregate the effect of a specific parameter, we
vary its value within a range, while we set the remaining ones
to default values.

B. Static Skyline Queries

We compare the performance of sTSS (henceforth, denoted
as TSS) and SDC+ in terms of total (IO and CPU) processing
time required to costruct the skyline in the presence of PO
attributes. Note that for fairness we implement TSS without
the main memory R-tree optimization for reducing CPU time
desribed in Section IV-B. In all experiments of this section,
the default values for the examined parameters are N = 1M,
|TO| = 2, |PO| = 2, h = 8 and d = 0.8.

We first study the effect of the data set cardinality in the
algorithms’ performance. Figure 7(a) draws the total process-
ing time for the Independent data set after charging 5 msec
for each IO. On average, SDC+ requires roughly twice as
much time to execute compared to TSS. In the best setting,
N = 500K, TSS costs 2.19 times less (24.5 vs. 11.2 sec),
whereas in the worst, N = 10M, 1.72 times less (96.4 vs. 56.2
sec). The percentage shown next to the markers corresponds
to the ratio of CPU over total time. SDC+ is much more
CPU intensive than TSS as it requires 3 times more processor
cycles, on average. This is an important observation, because
the IO cost, unlike the CPU cost, can be mitigated (to some
extent) using buffers. As a result, if the cost of a single IO is
reduced, TSS can potentially execute 3 times faster.

In Anti-correlated the processing times, shown in Fig-
ure 7(b), increase for both methods, as there are more skyline
points to be found compared to Independent (8811 vs. 3167
when N = 1M). In the best setting, N = 100K, TSS is
more than 3 times faster (31.3 vs. 10.2 sec), whereas in the
worst, N = 10M, 2.33 times (1996 vs. 858 sec). Observe that

in Anti-correlated the skyline query is more CPU intensive,
contributing roughly to 75% and 50% of the total time for
SDC+ and TSS, respectively. However, TSS requires almost
5 times less processor cycles than SDC+ in the default setting
(N = 1M). A general remark is that the performance benefit
of TSS over SDC+ in terms of CPU time increases with the
number of results. This is because as the skyline size increases,
SDC+ needs to cross-check a larger number of points to
eliminate false positives.
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Fig. 7. Static: total time vs. data set cardinality

Figure 8 investigates the effect of the data set dimension-
ality. Each pair of bars indicates the total processing time
and is labelled with two numbers in the x-axis identifying
the setting: the first (second) corresponds to the number of
TO (PO) attributes. The total time in both methods grows
with the number of dimensions due to the increase in the
skyline size. For fixed dimensionality the computation cost
is larger when more PO attributes exist, e.g., as in the case
of (3, 1) compared to (2, 2). This is because in PO domains
there are fewer preference relationships among values and
hence more non-dominated, i.e., skyline, points. In all settings
TSS significantly outperforms SDC+. In particular, Figure 8(a)
shows that in Independent the performance benefit of TSS
ranges from 1.44 times in the (2, 1) setting up to 5.3 times
in the (4, 2) setting. Similar findings hold for Anti-Correlated,
where both methods exhibit longer running times. Figure 8(b)
shows that TSS’s gain is larger as it is 1.7 up to 5 times faster
than SDC+. Note that in the last setting, (4, 2), SDC+ did not
finish within a time frame of one hour.
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Fig. 8. Static: total time vs. dimensionality

In the next two sets of experiments, we study the effect of
the DAG structure associated with the PO domains. First, in
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Figure 9 we vary the DAG height h resulting in an exponential
increase in the number of possible PO values. The relative
benefit of TSS increases with the DAG height, as it executes
5 times faster in Independent and 9 times faster in Anti-
correlated compared to SDC+ when h = 10.
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Fig. 9. Static: total time vs. DAG height

Next, in Figure 10 we vary the DAG density d. The skyline
size increases with denser graphs; it ranges from 1332 to
3619, and from 4157 to 9781 points in Independent and
Anti-correlated, respectively. Figure 10(a) illustrates that the
gain of TSS in Independent increases with density reaching
2.4 times when d = 1. The benefit becomes more pro-
nounced in the Anti-correlated data set where TSS is 4.5
times faster, as depicted in Figure 10(b). This demonstrates
a serious drawback of the methodology in [2]. As d increases,
a spanning tree contains fewer edges. Hence, SDC+ captures
less preferences among PO values, increasing the number of
inexact m-dominance checks.

 0

 10

 20

 30

 40

 50

 0.2  0.4  0.6  0.8  1

T
ot

al
 ti

m
e 

(s
ec

)

DAG density (d)

SDC+
TSS

(a) Independent

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.2  0.4  0.6  0.8  1

T
ot

al
 ti

m
e 

(s
ec

)

DAG density (d)

SDC+
TSS

(b) Anti-correlated

Fig. 10. Static: total time vs. DAG density

The final set of experiments investigates the progressiveness
of TSS and SDC+ in the default setting. Figures 11(a) and
11(b) plot the time required to retrieve a subset of the skyline
for Independent and Anti-correlated, respectively. Recall that
SDC+ can only output results once all points inside a stratum
have been examined. The 6 jumps in processing time shown
in the SDC+ curves correspond to the computation within the
data set’s 6 strata. Clearly TSS is more progressive than SDC+
for both types of distribution. For example, in retrieving 50%
of the results, TSS is 9 and 21 times faster than SDC+ in
Independent and Anti-correlated, respectively.
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Fig. 11. Static: progressiveness

C. Dynamic Skyline Queries

In this section, we consider dynamic skyline queries that
explicitly specify all preference relationships in PO domains
and study the performance of the dTSS algorithm (henceforth
denoted as TSS). To better gauge performance, we imple-
ment a simple adaptation of the SDC+ algorithm suitable
for dynamic queries. Recall that SDC+ needs to extract a
new spanning tree that complies with the input DAG. This
has two serious implications. All node intervals need to be
recalculated. Furthermore, the classification of tuples into
strata is no longer valid. Therefore, SDC+ must build all
index structures from scratch. To expedite the process we
first perform an external sort to partition tuples according to
strata. Subsequently, all R-tree indexes within a stratum are
bulk loaded. The entire process imposes an IO overhead to
the query processing as it requires at least two passes over the
entire data set. It is important to note that this IO cost cannot
be amortized across queries, e.g., using buffers, as suggested in
the previous section. TSS, on the other hand, is subject to such
optimizations. For fairness, no buffers, global main memory
R-tree, pre-processing or caching mechanisms (Section V-B)
are used in the implementation of TSS. The default values
for all experiments presented in this section are N = 1M ,
|TO| = 3, |PO| = 1, h = 6 and d = 0.8.

Figure 12 examines scalability with respect to the data set
cardinality N . In both types of distribution, TSS is around 7
times faster when N = 100K and more than 100 times faster
when N = 10M. In all settings, the IO cost dominates as it
contributes to 90% of the total execution time of SDC+. For
TSS the IO cost is 97% in Independent and ranges from 82%
to 90% in Anti-correlated. The performance benefit of TSS can
further increase by amortizing the cost of an IO operation.

In the next set of experiments we vary the dimensionality
(|TO|, |PO|) of the data set. Compared to SDC+, Figure 13
shows that TSS is 2 orders of magnitude faster in the best
case, (2, 1), and 2 times faster in the worst case, (4, 2).
As the dimensionality increases, especially when |PO| = 2,
the processing is dominated by CPU time since the skyline
becomes larger. For example, in Anti-correlated when |TO| =
4, |PO| = 2, the CPU time is 75% and 89% of the total time
for SDC+ and TSS, respectively. In such settings a global main
memory R-tree would significantly improve the performance
of TSS.
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Fig. 12. Dynamic: total time vs. data set cardinality
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Fig. 13. Dynamic: total time vs. dimensionality

In Figure 14, we investigate the effect of the DAG structure
associated with the PO domains in Anti-correlated; similar
findings hold for Independent. For very small DAGs, h = 2,
the performance benefit of TSS reaches 2 orders of magnitude,
whereas in very large DAGs, h = 10 it amounts to 5 times.
Interpolating from Figure 14(a), we estimate that the execution
time of TSS would reach that of SDC+ in unrealistically large
DAGs containing 214 = 16384 nodes. One factor, besides
skyline size, that contributes to the rapid increase in the cost
of TSS is the large number of R-trees present. Recall that in
the dynamic case TSS maintains a tree for each group, i.e.,
for each PO value (Section V-A). During execution a large
number of root nodes must be visited. To alleviate this IO
cost we could store the roots in contiguous disk pages and
retrieve multiple roots at a time.

Finally, Figure 14(b) shows that SDC+ and TSS are rather
insensitive to the increase of DAG’s density. TSS executes 38
times faster than SDC+ in sparse and 23 times faster in dense
DAGs.
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Fig. 14. Dynamic: DAG structure in Anti-correlated

VII. CONCLUSIONS

We have addressed the problem of finding the skyline
points when the data include attributes with partially or-
dered domains. Unlike previous approaches, the proposed TSS
framework exhibits two desirable properties, precedence and
exactness, resulting in increased progressiveness and large
pruning ability. Furthermore, TSS generalizes to the dynamic
case, where the preference relationships among PO values
are specified by the query. Our experimental evaluation has
demonstrated that TSS outperforms the existing methods by
up to 9 times and up to 2 orders of magnitude in the static
and the dynamic case, respectively.
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