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Abstract— The skyline query returns the most interesting
tuples according to a set of explicitly defined preferences among
attribute values. This work relaxes this requirement, and allows
users to pose meaningful skyline queries without stating their
choices. To compensate for missing knowledge, we first determine
a set of uncertain preferences based on user profiles, i.e.,
information collected for previous contexts. Then, we define a
probabilistic contextual skyline query (p-CSQ) that returns the
tuples which are interesting with high probability. We emphasize
that, unlike past work, uncertainty lies within the query and
not the data, i.e., it is in the relationships among tuples rather
than in their attribute values. Furthermore, due to the nature
of this uncertainty, popular skyline methods, which rely on a
particular tuple visit order, do not apply for p-CSQs. Therefore,
we present novel non-indexed and index-based algorithms for
answering p-CSQs. Our experimental evaluation concludes that
the proposed techniques are significantly more efficient compared
to a standard block nested loops approach.

I. I NTRODUCTION

Given a set of preferences, a skyline query [1] returns the
non-dominated records. A tupledominatesanother if it is at
least as good (i.e., preferred) in all attributes and strictly better
in at least one. For example, consider a database containing
information about hotels. A skyline query returns those hotels
for which there is no cheaper and, at the same time, closer
to the beach alternative. In many cases, it is meaningful to
specify preferences with respect to thecontext, i.e., the current
query situation, and pose dynamic skyline queries [2], [3],[4],
[5], [6], [7]. To emphasize that preferences and dominance
relationships are defined relative to a context, we adopt the
term contextual skyline queries(CSQ). Returning to the hotel
example, a user for her/his business trip may opt for hotels
that are close to the airport and, further, provide good service.
The same user for her/his vacation (another context) would
prefer a hotel close to the beach with a low price.

All previous works assume that the user explicitly states
her/his preferences for each CSQ posed. In this paper, we relax
this assumption and allow users to pose skyline querieswithout
stating their preferences. As a running example, we use the
hotels dataset illustrated in Figure 1(a). The table contains
information about Price, Distance to the city center and
Amenity. Note that the latter is a set-valued attribute, since a
hotel can offer multiple amenities. For ease of presentation, we
assume hotels with a single amenity; our methods, however,
apply to the most general case. Lower values are preferred
on the first two attributes, whereas for Amenity, preferences

depend on the situation. Figure 1(b) draws hotels on the Price–
Distance plane; Amenity values are shown next to each tuple.
Assuming all amenities are equally attractive, the conventional
skyline contains hotelsh4, h5, for which there is no cheaper
and closer alternative.

Hotel Price Distance Amenity
h1 200 10 Pool (P )
h2 300 10 Spa (S)
h3 400 15 Internet (I)
h4 200 5 Gym (G)
h5 100 20 Internet (I)
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Fig. 1. Hotels example

Table I exemplifies CSQs for the three contextsC1–C3,
shown in the first column. The second column contains the
Hasse diagrams of the contextual preferences, while the third
presents the resulting skylines. Initially, consider thatthe user
prefers Internet (I) over Gym (G), and both over any other
amenity, when s/he is on a Business trip in June (context
C1). Based on these preferences, hotelsh3, h4, h5 are the
results to the CSQ forC1, as shown in the first row of
Table I. Althoughh3 is more expensive and distant thanh1,
h2, h4, it offers a more desirable amenity,I, and hence is not
dominated. In addition, the user has specified preferences for
contextsC2 (Vacation trip) andC3 (in the Summer), with the
corresponding skylines included in Table I.

Examine now situationCq (fourth row in Table I), where
the user plans a Business trip in the Summer but states no
preferences. To understand the resulting uncertainty inCq

preferences, consider amenities InternetI and PoolP . Should
(i) I be preferred overP as inC1, (ii) P be preferred overI
as inC3, or (iii) I andP be equally favorable as inC2? In
fact, all three cases hold with a probability that depends onthe
similarity of Cq to C1, C2, C3. Furthermore, the uncertainty



propagates to the dominance relationships, i.e., each hotel
dominates every other with a probability that depends on
context.

TABLE I

CONTEXTS, PREFERENCES AND CONTEXTUAL SKYLINES

Context Preferences Skyline

C1: Business,
June

I

P

G

S

h3, h4, h5

C2: Vacation

S

IP G

h2, h4, h5

C3: Summer

P

I

S

G

h1, h2, h4,
h5

Cq : Business,
Summer

— ?

Motivated by the previous example, we propose a frame-
work that compensates for missing knowledge in user pref-
erences. In particular, we solve two distinct sub-problems. (i)
We determine a set ofuncertain preferencessuitable for the
current query context based on users’ profiles. (ii) We address
uncertainty in dominance relationships, with aprobabilistic
contextual skyline query(p-CSQ) that returns the tuples not
dominated with high probability.

For the first sub-problem, we borrow ideas from person-
alization systems [8] and, in particular, the preference rec-
onciliation of [9] and context resolution of [10]. The user
has specified (or, the system has collected) a profile, that
is, preferences for a set of characteristic contextsCis, such
as a business trip or a vacation. Based on this information,
we assess the similarity of the current query contextCq to
each Ci, and use it to assign probabilities to preferences.
The uncertainty of preferences also affects dominance rela-
tionships. For the second sub-problem, the probability of a
tuple to belong to the skyline is set to the probability that it is
not dominated by any other tuple.p-CSQ returns all records
whose aforementioned probability is above a certain threshold.
Note that if all preferences are certain, e.g., whenCq exactly
matches oneCi, p-CSQ reduces to a conventional contextual
skyline query.

While variations of the first sub-problem have been studied,
to the best of our knowledge no previous work discusses the
second. Note that probabilistic skylines have appeared in the
past to handleuncertainty in the tuples’ values[11], [12].
Here, they serve a fundamentally different purpose as they
account foruncertainty in the users’ preferences. Existing
approaches do not apply top-CSQs for the following reason.
Almost all skyline algorithms (with the exception of the block
nested loops (BNL) algorithm) visit tuples in a monotonic
order from more to less preferred attribute values. Such an
order exists even in the case of [11], [12], given that their
values can be bounded. This reduces the average number of

dominance checks and allows progressive output of results.
However, when preferences are uncertain, a monotonic order
does not exist due to the lack of transitivity, as discussed
in Section IV-A. Therefore,p-CSQ necessitates novel query
processing methods.

Our main contributions include the following.

• We introduce uncertain preferences and define probabilis-
tic contextual skyline queries (p-CSQ).

• Given a current contextCq and a set of preferences
for contextsCis, we propose a simple methodology that
derives probabilities for the uncertain preferences inCq.

• We devise non-indexed and index-based algorithms for
processingp-CSQs that are significantly faster than a
standard BNL approach.

• We perform an extensive experimental evaluation verify-
ing the efficiency of the proposed algorithms.

The remainder of this paper is structured as follows.
Section II reviews relevant bibliography. Section III defines
the problem and describes an example. Sections IV and V
present non-indexed and index-based algorithms, respectively,
for answeringp-CSQs. Section VI presents the experimental
results and Section VII concludes this paper.

II. RELATED WORK

Section II-A reviews bibliography regarding personalization
systems and contextual preferences. Section II-B overviews
methods for skylines queries.

A. Personalization Systems

There are two ways to define interest on attribute values and
tuples.Quantitativepreferences, used in [13], [14], [8], assign
numeric scores to values via ascoring functionimposing a
total order. For example, valuesa, b, c are assigned scores
0.9, 0.7, 0.1, respectively. On the other hand,qualitative
preferences, used in [15], [16], are specified using binary
predicates and induce strict partial orders. For example, value
a is preferred overb and c, but b, c are indifferent. In this
paper, we focus on qualitative preferences as they are more
generic: quantitative can be expressed as qualitative, butnot
the other way around.

The general goal of personalization systems is to offer
custom-tailored services based on collected user profiles.Per-
sonalized database systems, e.g., [17], [13], [18], [14], [15],
[16], [8], provide ranked query results by combining user
preferences. The work in [17] augments queries with a prefer
clause that functions as a soft constraint; if no tuples satisfy
it, the clause is relaxed. In [13] generic functions that merge
quantitative preferences are presented. The works in [18],
[14] deal with linear combinations of preference scores and
propose index and view based techniques for ranking tuples.
For qualitative preferences, [15], [16] introduce a framework
for composing or accumulating interests. Among the discussed
methods is the Pareto composition, which corresponds to
the skyline query reviewed in Section II-B. The work in
[8] provides personalized answers by considering preferences
specified on attribute values and join conditions.



More recently, focus has turned to context-aware personal-
ization systems, wherecontextual preferencesthat only apply
to a particular situation, are defined. The work in [9] is the
most relevant to ours. Given a set of contextual qualitative
preferences, the authors provide a context-aware ranking of
query results. For every stored contextCi, they initially
compute the similarity to the query contextCq. Then, they
assign to each possible ordering of query results a score that
reflects the degree of agreement between the preferences ofCi

and the order. The best order is the one that has the highest
(weighted by the similarities) sum of scores across all contexts.
The authors turn to heuristic approaches for finding the best
order, as the problem is NP-hard. For the case of a single
user, the work in [10] solves a similar context-aware ranking
problem involving quantitative contextual preferences. In this
paper, rather than computing aglobal order for all tuples, we
compute a number oflocal probabilistic orders (the uncertain
preferences) for the values of each attribute; the final ranking
is due to the skyline.

B. Skyline Query Processing

The skyline query returns the set of not dominated tuples.
If records are seen as points in a multi-dimensional space,
the skyline query returns the maximal elements, a problem
which has been extensively studied in computational geometry
literature, e.g., [19]. The seminal work of [1] presents various
external memory algorithms. The most well-known method
is Block Nested Loops (BNL), which checks each point for
dominance against the entire dataset. Furthermore, the authors
describe an index (B-tree) based approach, as well as an exten-
sion of the main memory multidimensional divide and conquer
algorithm of [20]. Tan et al. [21] introduce techniques, which
progressively output skyline tuples without having to scanthe
entire dataset. The work in [22] observes that examining points
according to a monotone (in all attributes) preference function
reduces the average number of dominance checks. Based on
this fact, the authors propose the Sort-first Skyline algorithm
(SFS), which is similar to BNL but includes a presorting
step. Several optimizations to the SFS algorithm, e.g., [23],
[24], increase its efficiency. There are attributes, e.g., nominal,
hierarchical, set-valued, etc., whose values cannot be sorted
from most to least preferred, i.e., a total order on preferences
does not exist. This occurs because certain values cannot
be compared with each other, i.e., preference among them
constitutes a (strict) partial order. To handle such attributes,
the work in [25] proposes an algorithm based on a stronger
notion of dominance, which however causes false positives in
the skyline and requires an additional filtering step. The work
in [26] identifies the minimal set of preferences that cause the
exclusion of a given point from the skyline.

Multidimensional (spatial) indexes are used to guide the
search for skyline points and prune large parts of the space.
The Nearest Neighbor (NN) algorithm [27] uses an R-tree to
index tuples and performs nearest neighbor search on non-
dominated areas. Assuming small values are preferred in all
attributes, the basic idea of NN is that the record closest tothe

lower corner of a non-dominated area always belongs to the
skyline. Note that the algorithm must perform duplicate result
elimination, because the examined areas are overlapping. On
the other hand, the Branch and Bound Skyline (BBS) method
[2], which also uses an R-tree, is shown to be I/O optimal. BBS
maintains (i) a heap of R-tree entries sorted in ascending order
of their minimum distance (MINDIST) to the axes origin, and
(ii) a list of skyline tuples found so far. Upon deheaping an
entry, the lower corner of its MBB is checked for dominance
against the list. If it is dominated, the entire subtree is pruned.
Otherwise, its children are examined, and those not dominated
are inserted into the heap. Execution terminates when the heap
is depleted. Similar to SFS, BBS visits points according to a
monotone preference function, but in addition disregards large
sets of points (inside a subtree) without even accessing them.
Analogous results hold when records are packed according to
the z-order space filling curve [28].

Several extensions and related concepts to the skyline query
have been studied. Thek-skyband [2] contains the tuples
dominated by less thank other records; the skyline is the
1-skyband. Theskycube query[29] returns the tuples not
dominated in a specified subset of the dimensions. In the
dynamic, or contextual skyline query (CSQ) [2], preferences
among attribute values can vary and are specified at query
time. Two recent works [30], [7] discuss CSQs in the presence
of attributes with partially ordered domains. In the simplest
CSQ form, an exemplar recordq is provided so that all
dominance relationships are definedrelative to q, rather than
the axes origin. The work in [6] presents techniques for
caching past results to expedite processing of future queries.
The multi-source skyline query[5], [3] retrieves the records
not dominated with respect to a set of exemplar tuples. The
reverse skylineof p [4], [12] contains pointsp′ such thatp is
in the relative skyline w.r.t.p′. Seen from a data-warehouse
perspective, the work in [31] studies dominance relationships
beyond skylines.

The work in [32] combines top-k with skyline queries,
using aggregate R-trees to rank tuples based on the number
of records they dominate. The work in [33] deals with the
problem that the skyline in high dimensional spaces is too
large. For this purpose, it relaxes the notion of dominance
to k-dominance, so that more points are dominated. Thek
most representative skyline operator is proposed in [34]. This
selects a set ofk skyline points, so that the number of points
dominated by at least one of them is maximized.

The notion of probabilistic skyline queries was introduced
in [11] to deal with uncertain databases, where each object
(tuple) corresponds to a collection of independent instances.
An uncertain object is represented as a minimum bounding box
(MBB) that encloses all instances. Dominance relationships
among objects are probabilistic, as MBBs may overlap each
other in one or multiple dimensions. The skyline probability
of an object is equal to the probability of its instances
not being dominated by any other object. Thep-skyline
contains objects with skyline probability abovep. Based on
the aforementioned definitions, the work in [12] adapts the



notion of reverse skyline queries for uncertain objects. Both
works define probabilistic dominance relationships to handle
uncertainty in the database. On the other hand this work deals
with uncertainty present in the preference relationships and,
therefore, the techniques of [11], [12] do not apply.

III. PROBLEM DEFINITION

Section III-A introduces contexts, preferences and the sky-
line query. Section III-B extends the previous definitions in the
case of uncertainty and formalizes the problem. Section III-C
discusses extraction of uncertain preferences and SectionIII-
D presents an example. Table II contains the frequently used
notation and its meaning.

TABLE II

NOTATION

Symbol Definition
D dataset

dom(Aj) domain of attributeAj

Ci context
u ≻Aj

v |Ci valueu is preferred tov in Ci, for u, v ∈ dom(Aj)

CSQ(D|Cq) contextual skyline query
Pr[u ≻Aj

v |Ci] probability thatu ≻Aj
v |Ci holds

t ≻ t′ tuple t dominatest′

Pr[t ≻ t′ |Cq] probability that tuplet dominatest′ in Cq

P
Cq
sky

(t) probability that tuplet belongs to the skyline
p-CSQ(D|Cq) probabilistic contextual skyline query

Gi group ofD
eij , ei−j , ei+j a node of aR-treeTi , its lower and upper corner

p(eij , t) expected probability thateij ’s tuples dominatet

A. Contextual Skylines

Consider a relationD with attributesA1 . . . Ad. A con-
text C is a particular situation or state associated with the
user/query, and is represented as a set of parameter-value pairs
[9], [10]. For example, contextC1 of Table I is expressed
as {Purpose=Business, Period=June}. We denote attributes
for which preferences are explicitly defined with respect to
a context asrelatively preferred(RP). On the other hand,
attributes for which preferences are fixed and independent
of contexts are calledstatically preferred(SP). Referring to
Figure 1(a), Price and Distance are SP, since lower values are
always better, whereas Amenity is an RP attribute.

A preferenceapplies to a specific attributeAj and has the
form u ≻Aj

v, where u, v ∈ dom(Aj). This implies that
if for tuples t, t′ it holds that t.Aj = u, t′.Aj = v and
t.Ak = t′.Ak for all k 6= j, then t is preferred tot′. For RP
attributes, preferences arecontextual, i.e., they only hold for
a specific contextCi, and are denoted asu ≻Aj

v |Ci. Since
preferences for SP attributes hold for all contexts, we unify
notation usingu ≻Aj

v |Ci for any RP or SPAj . Continuing
our example, the user has specified preferencesI ≻AG |C1,
I ≻A P |C1, I ≻A S |C1, G ≻A P |C1, G ≻A S |C1,
regarding the Amenity attribute (abbreviated asA) for context
C1. We assume that preferences for a particular contextCi

and attributeAj are non-conflicting, i.e., for any two values
u 6= v ∈ dom(Aj), u ≻Aj

v |Ci and v ≻Aj
u |Ci cannot

simultaneously hold. This means that the set of preferences
for Aj in contextCi defines a (strict) partial order; Table I

depicts the Hasse diagrams of the partial orders corresponding
to the defined preferences.

We say that a recordt dominatesanother t′ in context
Ci, denoted ast ≻ t′ |Ci, if t is preferred or equal to
t′ in all attribute values and preferred in at least one, i.e.,
∀j t.Aj �Aj

t′.Aj |Ci
1 and ∃k t.Ak ≻Ak

t′.Ak |Ci. The
contextual skyline query(CSQ) for contextCi, denoted as
CSQ(D|Ci), returns the tuples not dominated by any other
in Ci. Note that the above definitions are in accordance to
existing skyline literature. Conventional skyline queries need
not be associated with a specific query context, as all attributes
are statically preferred. On the other hand, for dynamic skyline
queries (i.e., when RP attributes exist), past works assume
a query context for which preferences are stated, but do
not explicitly describe it. In this work, we treat all skyline
queries as contextual, i.e., they are associated with a particular
situation, which is formally stated as a context.

B. Probabilistic Contextual Skylines

All past works deal with CSQs, where user preferences
for all RP attributes are concretely stated along the query.
This section shows that it is possible to provide meaningful
results to skyline queries without requiring the user to specify
choices. The only requirement is that information regarding
preferences for other contexts exists. Note that in the absence
of such data, other users’ preferences can be used instead. Let
the profile of a user refer to the set of contextual preferences
specified/collected in the past. The goal of this work can be
roughly stated as: given the current contextCq and the user’s
profile, determine the non-dominated tuples inCq. To solve
this, we identify and formulate two sub-problems discussedin
the following.

When the current situation perfectly matches with only one
of the contexts included in the profile, the problem naturally
reduces to a contextual skyline query. Interesting challenges
arise whenCq is not in the profile; what should the user’s
preferences be in this case? SinceCq preferences are missing,
the system has to interpolate them based on the profile, a
process which entails uncertainty. We model uncertainty using
probabilities. For contextCi and two valuesu, v ∈ dom(Aj),
an uncertain contextual preferencestates predisposition of
u over v that holds with probabilityPr[u ≻Aj

v |Ci]. In
the absence of uncertainty, the probability is either 0 or 1.
Similar to concrete preferences, we do not allow conflicts.
This translates to the following condition for any two values
u 6= v ∈ dom(Aj), Pr[u ≻Aj

v |Ci] ≤ 1 − Pr[v ≻Aj

u |Ci]; the inequality accounts for the possibility thatu, v are
incomparable. We are now ready to state the first sub-problem,
further discussed in Section III-C.

Problem 1 [Uncertain Preferences Extraction] Based on
the user’s profile, derive a set of uncertain preferences for
the current contextCq.

The uncertainty associated with preferences leads touncer-
tain dominance relationships. Assuming independence among

1The shorthandu �A v stands foru ≻A v ∨ u = v.



attribute preferences, the probability that tuplet dominatest′

in the contextCi is

Pr[t ≻ t′ |Ci] =

{

∏

j Pr[t.Aj �Aj
t′.Aj |Ci], if t 6= t′

0, if t = t′,
(1)

where the first case applies only when tuples do not have the
same values in all attributes. It is important to note that this
definition reduces to the conventional notion of dominance
when all preferences are certain, i.e., the probability is 1if
t ≻ t′ |Ci and 0 otherwise. This holds because the condition
∀j t.Aj �Aj

t′.Aj |Ci suffices for a tuplet to dominatet′ 6= t.
Based on the previous discussion, we now adapt the defi-

nition of skyline queries. Intuitively, a tuple is in the skyline
when it is not dominated; since dominance is uncertain, this
is a probabilistic event. Theskyline probabilityof a tuplet is
defined as

PCi

sky(t) =
∏

t′ 6=t

(1− Pr[t′ ≻ t |Ci]) . (2)

In accordance to the deterministic case, when all preferences
are certain,PCi

sky(t) is 1 if t is not dominated and 0 otherwise.
We now state the second sub-problem.

Problem 2 [Probabilistic Contextual Skyline Query
(p-CSQ)] Given a database and a set of uncertain prefer-
ences, return the tuplest whose skyline probability is above
a threshold, i.e.,t ∈ p-CSQ(D|Ci) ⇔ PCi

sky(t) ≥ p.

We introduce efficient algorithms for Problem 2 in Sec-
tions IV, V, but first we elaborate on Problem 1 and present
a concrete example.

C. Extracting Uncertain Preferences

This section presents a simple interpretation and solution
to Problem 1; although others could apply, examining them is
beyond the scope of this paper.

Initially, we define a measure of context similarity. Assume
that for each context parameterXi, there exists a function
simXi

that assesses the similarity between two values of
its domain dom(Xi). This function takes values in[0, 1],
where higher ones express greater similarity. Depending onthe
domain type, different functions apply. For numerical domains
simXi

(a, b) = 1− |a−b|
M−m , whereM (m) is the maximum (mini-

mum) value indom(Xi). For categorical/hierarchical domains,
simXi

(a, b) = | lvs(a)∩lvs(b)|
| lvs(a)∪lvs(b)| , i.e., the Jaccard coefficient,

where lvs(a) denotes the set of leaves undera. For nominal
domains,simXi

(a, b) = 1 whena = b, 0 otherwise. Based on
these functions, we define similarity between contextsC,C′

as sim(C,C′) =
∏

i simXi
(c.Xi, c

′.Xi). Note that a context
parameter value not specified completely matches any value
from the same domain.

We apply the previous definitions to compute the similarity
of current contextCq to all contexts present in the user’s
profile, and use them to extract the uncertain preferences.
Intuitively, we require a valueu to be preferred overv in
Cq with a probability that increases with the number ofu ≻ v

occurrences in the contexts, and with the similarity of those
contexts toCq. For each pair ofu, v ∈ dom(Ai), we define:

Pr[u ≻Ai
v |Cq] =

∑

j (sim(Cq , Cj) · |u ≻Ai
v |Cj |)

∑

j sim(Cq, Cj)
, (3)

where |u ≻Ai
v |Cj | is 1 if such a preference exists, and 0

otherwise.
Equation 3 has the following properties, foru, v ∈

dom(Ai). WhenCq matches exactly oneCi, the probability
Pr[u ≻Ai

v |Cq] is 1 if u ≻Ai
v |Ci holds, 0 otherwise.

When u ≻ v in all contexts, Pr[u ≻Ai
v |Cq] is 1. Finally,

since there is no conflict in the input preferences, the derived
uncertain preferences are non-conflicting, i.e., it holds that
Pr[u ≻Ai

v |Cq] ≤ 1− Pr[v ≻Ai
u |Cq].

D. A Concrete Example

We demonstrate the definitions presented in the previous
sections, using the example of Section I. Consider a proba-
bilistic contextual skyline query that requests the tupleswith
skyline probability above 1/2.

Problem 1 First, we assess the similarity of contextsC1,
C2, C3 to the query contextCq shown in Table I. Assum-
ing similarities among parameter valuessimPurpose(Business,
Vacation) = 0, simPeriod(June, Summer) = 1/3, we obtain
sim(Cq, C1) = 1/3, sim(Cq, C2) = 0 and sim(Cq , C3) =
1. Then, based on Equation 3, we compute the uncertain
preferences depicted on Table III; the number inside a cell
is the probability that the value corresponding to the row is
preferred over the value in the column. Consider valuesI, P ,
for example; we havePr[I ≻AP |Cq] =

1/3+0+0
1+0+1/3 = 1/4 and

Pr[P ≻A I |Cq] =
0+0+1

1+0+1/3 = 3/4.

TABLE III

PREFERENCE PROBABILITIESPr[u ≻A v |Cq ] BASED ON TABLE I

u
v

I G P S

I — 1/4 1/4 1/4

G 0 — 1/4 1/4

P 3/4 3/4 — 1/4

S 3/4 3/4 0 —

Problem 2 To obtain the probabilistic contextual skyline, we
need to compute the uncertain dominance relationships among
the tuples shown in Figure 1(a). The respective dominance
probabilities are depicted in Table IV; the number inside a
cell is the probability that the tuple corresponding to the
row dominates the one in the column. Consider hotelh4.
Figure 1(a) shows thath4 does not dominateh5 with respect
to the statically preferred attributes. It follows thath4 can
only have 0 probability of dominatingh5 when all attributes
are considered. Figure 1(a) also shows thath4 dominates
h1, h2, h3 on the SP attributes. Sinceh4’s amenity value
G is preferred with 1/4 probability toh1’s P , we obtain
Pr[h4 ≻ h1 |Cq] = 1 · 1 · 1/4 = 1/4. Similarly, Pr[h4 ≻
h2 |Cq] = 1 · 1 · 1/4 = 1/4 becausePr[G ≻AS |Cq] = 1/4.



On the other hand,G is not preferred overI and hence,
Pr[h4 ≻ h3 |Cq] = 1 · 1 · 0 = 0. Finally, h4 cannot dominate
itself according to Equation 1.

TABLE IV

DOMINANCE PROBABILITIESPr[t′ ≻ t |Cq ] FOR FIGURE 1(A)

t′
t

h1 h2 h3 h4 h5

h1 0 0 3/4 0 0

h2 0 0 3/4 0 0

h3 0 0 0 0 0

h4 1/4 1/4 0 0 0

h5 0 0 0 0 0

P
Cq

sky
(t) 3/4 3/4 1/16 1 1

The final step involves computing the skyline probability
for each tuple. Let us consider hotelh3. Table IV shows
thath3 has a non-negative probability of being dominated by
only h1, h2. Equation 2 implies thatPCq

sky(h3) = (1 − 3/4) ·
(1 − 3/4) · 1 · 1 = 1/16. In a similar manner, the skyline
probabilities for all hotels, shown in the last row of Table IV,
are computed. Therefore, hotelsh1, h2, h4, h5 are the result to
0.5-CSQ(D|Cq).

IV. N ON-INDEXED ALGORITHMS

This section discusses algorithms for answeringp-CSQs
that do not use index structures. Section IV-A presents a
straightforward method similar to the BNL algorithm [1],
whereas Section IV-B makes various useful observations that
increase efficiency.

A. Basic Iterative Algorithm

The majority of skyline algorithms visit tuples in a mono-
tonic order from more to less preferred attribute values, either
explicitly, e.g., by pre-sorting [21], [22], [23], [11], [24],
or implicitly, e.g., using a heap [27], [2], [12], [7]. Note
that even when tuples are uncertain, such an order exists if
one considers the minimum bounding box of each record
[11], [12]. Due to the transitivity property of the dominance
relationship (t1 ≻ t2, t2 ≻ t3 ⇒ t1 ≻ t3), a monotonic order
reduces the average number of dominance checks and allows
progressive output of results.

In the following, we demonstrate that transitivity and mono-
tonicity do not hold in the case of uncertain preferences and
thus neither in dominance relationships. Consider the uncertain
preferences in Table III among valuesS, I, P for a given
contextCq. Value S is preferred toI with probability 3/4
and I to P with 1/4, as shown in Figure 2(a). If transitivity
held, we would expectS to be preferred overP (the grey
arrow in Figure 2(a)) with some probability, e.g.,3/16.
However,Pr[S ≻A P |Cq] = 0, i.e., the probability is less
than expected. Similarly, whilePr[S ≻A P |Cq] = 0 and
Pr[P ≻A I |Cq] = 3/4, we getPr[S ≻A I |Cq] = 3/4, i.e.,
more than expected, as shown in Figure 2(b). Similar results
hold for the not-preferred probability1 − Pr[· ≻A · |Cq], as

demonstrated by the dashed arrows in Figures 2(c) and 2(d).
Based on this example, no (partial) order from more to less
preferred values exists, when preferences are uncertain.
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Fig. 2. Intransitivity and non-monotonicity; preferred probability decreases
(a), increases (b); not-preferred probability decreases (c), increases (d)

The lack of transitivity and monotonicity, suggests that
a sort-based algorithm (e.g., like SFS) does not exist for
p-CSQs. In the following, we present a baseline solution
termed Basic Iterative Algorithm (BIA). Assuming, tuples are
stored in consecutive disk blocks, the main idea of BIA is to
compute the skyline probability for each tuple by scanning
the entire dataset in a block nested loops paradigm. More
specifically, letM , N denote the available memory and dataset
size, respectively, measured in disk blocks. BIA partitions the
dataset into N

M−1 batches ofM−1 blocks and examines them
in sequence. For each batch, BIA loads it into memory and
repeats the following procedure.

BIA initializes the skyline probability of each batch tuplet
to P

Cq

sky(t) = 1. Then, it scans the entire database loading one
block at a time in memory. For each tuplet in the batch and
eacht′ in the retrieved block, BIA computes the probability
that t′ dominatest and updatest’s skyline probability, i.e.,
P

Cq

sky(t) := P
Cq

sky(t) · (1− Pr[t′ ≻ t |Cq]). As soon asPCq

sky(t)
falls below the desired threshold,t is excluded from further
dominance checks. If all tuples in the current batch are
eliminated, BIA continues with the next. On the other hand,
once the entire database is scanned, the skyline probabilities of
the non-eliminated tuples are above the threshold and finalized;
hence, all remaining batch tuples are returned.

It is straightforward to see that the Basic Iterative Algorithm
answers probabilistic contextual skyline queries correctly with
anO

(

N2

M

)

worst case I/O complexity.

B. Candidate Selection Algorithm

This section presents two preprocessing steps that signifi-
cantly reduce the necessary pairwise dominance checks. Let
{Gi} denote the set of relations that correspond to a group-by
RP attributes statement on the datasetD, after projecting on
the SPs. Therefore, eachGi contains tuples for a particular
value combination of the relative preferred attributes. Asan
example, consider the dataset of Figure 1. There is a single



SP with four distinct values, and hence four groups exist
GI = {h3, h5}, GS = {h2}, GP = {h1}, GG = {h4}. Let
CSQ(Gi) be the skyline (on the SP attributes) of tuples inGi;
the following holds.

Lemma 1:For any probability thresholdp > 0 and context
Cq, p-CSQ(D|Cq) ⊆

⋃

i CSQ(Gi).
Proof: We prove by contradiction. Assume that a tuple

t exists such thatt ∈ p-CSQ(D|Cq) but t 6∈
⋃

i CSQ(Gi), for
somep andCq. Further, letGk be the group thatt belongs
to. Sincet 6∈ CSQ(Gk), there exists another tuplet′ ∈ Gk,
such thatt′ dominatest with respect to the SP attributes, i.e.,
t′ ≻SP t. Since t, t′ are in the same group, they have equal
values in all RP attributes, and thust′ dominatest in any
context, i.e.,Pr[t′ ≻ t |Cq] = 1. As a resultPCq

sky(t) = 0 and
t 6∈ p-CSQ(D|Cq), a contradiction.

Returning to our example, no tuple can be eliminated as
they all belong to their respective group skyline.

Lemma 2:For any probability thresholdp and contextCq,
if for a tuple t ∈ CSQ(

⋃

i Gi) there exists not′ ∈ D such that
t, t′ have equal SP attribute values, thent ∈ p-CSQ(D|Cq).

Proof: Consider a tuplet such thatt ∈ CSQ(
⋃

i Gi)
and there is not′ ∈ D such thatt, t′ have equal SP attribute
values. Note that the first condition implies thatt belongs
to the skyline of the entire dataset with respect to the SP
attributes. We will argue that for allt∗ 6= t ∈ D we have
Pr[t∗ ≻ t |Cq] = 0. Assume otherwise; then at∗ must be
preferred (with non-zero probability) or be equal tot in all
attributes. However, this cannot hold for the SP attributes: (i)
there is no tuple with equal SP values (due tot’s uniqueness
property), and (ii) no tuple is preferred tot in the SPs (because
t is in the skyline w.r.t. SPs). The assumption is wrong and
Pr[t∗ ≻ t |Cq] = 0 holds for all t∗ 6= t ∈ D. Therefore,
Equation 2 givesPr

Cq

sky(t) = 1, which implies thatt is in
p-CSQ(D|Cq) for any p, Cq.

In the example depicted in Figure 1(b), tuplesh4, h5 are in
the skyline w.r.t. the SP attributes. Hence, they belong in the
skyline for anyp-CSQ, as shown in Tables I and IV.

Note that the skyline of the union of groups is the same
as the skyline computed over the union of the group skyline
points, i.e., CSQ(

⋃

i Gi) = CSQ(
⋃

i CSQ(Gi)). Therefore,
CSQ(

⋃

i Gi) ⊆
⋃

i CSQ(Gi). In other words, among the set of
candidates of Lemma 1, Lemma 2 identifies those tuples that
are definitely in the result set of any probabilistic contextual
skyline query and can be immediately returned. It is important
to note that the skyline within each group CSQ(Gi) depends
only on the (static) preferences on the SP attributes, and thus
is the same for any query. Therefore, both lemmas can be used
as a preprocessing step.

The Candidate Selection Algorithm (CSA) uses the above
results to expedite query processing. LetC denote the set of
candidate tuples, i.e., all tuplest in

⋃

i CSQ(Gi) excluding
those identified by Lemma 2 to havePr

Cq

sky(t) = 1. CSA is
identical to BIA except for the batch creation process. Instead
of partitioning the entire database, CSA sortsC using the
Hilbert curve and partitions it into batches that fit in main
memory. CSA then calculates the probability of each tuple in

C. We emphasize that, similar to BIA, CSA needs to scan the
entire database (and not justC) for each batch, as tuples outside
C can dominate those inC with non-zero probability. Note that
when all candidate skyline points fit in main memory, the I/O
cost of CSA becomesO(N).

V. I NDEX-BASED ALGORITHMS

This section discusses methods forp-CSQs that utilize index
structures. Unlike the boolean case of conventional skylines
(is tuple t dominated?), ap-CSQ needs to find outhow
manytuples, andwith what probability, dominatet. Therefore,
all three algorithms discussed below employ index structures
with aggregate information. We note that the index structures
described in the following are built independent of the current
context and its preferences and thus remain valid for all
possiblep-CSQs.

A. Basic Group Counting

The Basic Group Counting (BGC) algorithm depends on
two key ideas. The first is to decouple SP and RP domi-
nance, which is possible due to the distributive property of
Equation 1. This implies that for a tuplet′ to dominatet
with non-zero probability,t′, t should be distinct (i.e., with
different attribute values) and, further,t′ should dominatet
with respect to the statically preferred attributes. The second
is the observation that all tuplest′ that belong to groupGi

have the same probability of dominatingt w.r.t. the relatively
preferred attributes. Combining the two, BGC’s goal is to
count the number of tuples that dominatet w.r.t. the SP
attributes, for each groupGi.

To obtain quick counts per group, BGC builds a COUNT
aggregate R-tree (aR-tree) to index tuples that belong to the
same group. Similar to an R-tree, the structure groups tuples
together and assigns them into leaf nodes. Then, the minimum
bounding boxes (MBBs) of non-leaf nodes are hierarchically
grouped together to produce higher level nodes, according to
a maximum capacity. An aR-tree node contains entries of
the form 〈ei,MBBi, ci〉 for its children nodesNi; ei is a
pointer toNi, MBBi is theNi’s MBB and ci is the aggregate
information, i.e., the number of tuples located at the subtree
rooted atNi. In the following, MBBi is represented by its
lower e−i and upper cornere+i . Figure 3 shows an aR-tree
with node capacity 3 for a group of 12 tuples. In particular,
Figure 3(a) draws the MBBs, Figure 3(b) zooms in on nodeN4

displaying the lower and upper corner points, and Figure 3(c)
shows the structure of the node entries.

Following the discussion of Section IV-B, BGC calculates
the skyline probability only for the candidate tuples. Notethat
the group skylines, used to extract the candidate setC, can
be computed using the BBS method [2] on the aR-trees (the
aggregate information is simply ignored). In the following, we
fix a tuplet ∈ C and letGt be the group thatt belongs to. We
use the notation≻SP (≻RP) to indicate dominance w.r.t. the SP
(RP) attributes; the corresponding probabilities are computed
by Equation 1, when iterating only through the SP (RP)
Ajs. Without loss of generality, SP attributes are numerical
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and small values are more preferred. Furthermore, we write
Pr[Gt′ ≻RPGt |Cq] to denote the probabilityPr[t′ ≻RPt |Cq]
that any tuplet′ ∈ Gt′ RP dominates anyt ∈ Gt.

A straightforward implementation of BGC computest’s
skyline probability visiting all aR-trees in sequence; initially
Pr

cq
sky(t) = 1. For each aR-treeTi, which contains tuples from

groupGi, a range-count query is issued to obtain the number
ni of tuples that dominatet w.r.t. SP. The shaded region in
Figure 3(a) corresponds to such a range query; after traversing
nodesR, N1 andN4, the correct answer 3 is computed (t3 and
two tuples insideN3). Then,t’s skyline probability is updated
Pr

cq
sky(t) := Pr

cq
sky(t) · (1− Pr[Gi ≻RPGt |Cq])

ni .
While the above procedure is correct, it may incur unneces-

sary I/Os for a tuplet that does not satisfy thep-CSQ. In these
cases, it is crucial to quickly disqualifyt. Therefore, BGC
visits nodes, across aR-trees, in an order that increases the
chances oft reaching a skyline probability below the threshold.
We note that this effects only the visit order of BGC and not
the set of visited nodes.

The BGC algorithm, shown in Figure 4, repeats the follow-
ing procedure for each candidate tuplet. BGC maintains a
minheapH with entries〈eij , p(e

i
j , t)〉, whereeij corresponds

to a node in the aR-treeTi and p(eij , t) is the key ofH,
which portrays the contribution of nodeeij to t’s skyline
probability. In particular,p(eij , t) is the expected probability
that tuples in eij dominate t; we discuss its computation
(function ComputeProb in Figure 5) in the sequel. Initially,
the skyline probability oft is set to 1 (Line 4), and an entry
〈eiR, p(e

i
R, t)〉 is created and enheaped for the root nodeeiR of

each treeTi (Lines 5–7)2.
The algorithm proceeds (Lines 8–16) examining entries

until either the heap is depleted, in which caset is inserted in
the result set (Lines 17–18), or the skyline probability drops
below the threshold. Let〈eij , p(e

i
j, t)〉 be the deheaped entry,

2To avoid blowing up heap space when the number of aR-trees is large,
we examine aR-trees in batches instead of concurrently.

Basic/Super Group Counting
Input : C, p, Cq , aR-trees{Ti}
Output : S the answer top-CSQ(D|Cq)
Variables: H a minheap with entries〈e, p(e, t)〉 and keyp(e, t)
begin1

S := ∅2
foreach t ∈ C do3

Pr
Cq
SKY

(t) := 14
foreach Ti do5

p(eiR) := ComputeProb (eiR , t, Cq) // for the root eiR of Ti6
enheap〈eiR, p(eiR, t)〉7

while H not empty andPr
Cq
SKY

(t) ≥ p do8
deheap〈eij , p(e

i
j , t)〉9

if ei+j ≻SP t then10

Pr
Cq
SKY (t) := Pr

Cq
SKY (t) · p(eij , t)11

else12
foreach child eik of eij do13

if ei−
k

≻SP t then14
p(eik, t) := ComputeProb (eik , t, Cq)15
enheap〈eik, p(e

i
k, t)〉16

if Pr
Cq
SKY

(t) ≥ p then17
insert t in S18

return S19
end20

Fig. 4. BGC/SGC Algorithm

i.e., the one with the minimum key (Line 9). Ifeij ’s upper
corner dominatest w.r.t. the SP attributes (Line 10), then all
records within it dominatet. In this case, the expected proba-
bility value p(eij , t) is exact and thust’s skyline probability is
updated by that quantity (Line 11). Otherwise, BGC needs to
retrieve the nodeeij and examine its children (Lines 13–16).
A heap entry for child nodeeik is created only if it contains
a tuple that can dominatet, i.e., if eij ’s lower corner SP
dominatest (Line 14). Then, nodeeik’s expected dominance
probability is calculated (Line 15) and the appropriate entry
in enheaped (Line 16).

The final issue that remains is the computation ofp(e, t),
i.e., the expected probability by which a nodee dominatest.
Each tuplet′ of e that dominatest w.r.t. the SPs contributes
by 1 − Pr[Ge ≻RP Gt |Cq] to t’s skyline probability. The
question is how many such tuplest′ exist. Given only the
node’s MBB, and assuming uniformity within the node, it is
reasonable to assume that the number of dominating tuples
is analogous to the volume of the space they can exist in.
Figure 3(b) shows an example for tuplet and nodeN4;
any tuple in the shaded region can dominatet. Let ρ =
∏

k max
{

min{t.Ak,e
+.Ak}−e−.Ak

e+.Ak−e−.Ak
, 0
}

be the volume fraction of
the dominating space. Then, there areρ · c expected tuples
within the space, wherec is the node’s count. Therefore, the
expected probability isp(e, t) = (1− Pr[Ge ≻RPGt |Cq])

ρ·c,
as computed by functionComputeProb shown in Figure 5.

B. Super Group Counting

The BGC algorithm’s performance degrades as the number
of groups increases. When the number of tuples per aR-
trees decreases, the space becomes sparse and nodes occupy
larger volumes. Therefore, it becomes less likely for an entire
node to dominatet, which means fewer subtree prunings.



ComputeProb
Input : e, t, Cq

Output : p(e, t) the expected
∏

t′∈e(1 − Pr[t′ ≻ t])
Variables: c the count associated with entrye,

Ge the group of tuples contained ine,
Gt the group oft,
ρ the fraction ofe volume that dominatest w.r.t. SP

begin1
ρ := 12
foreach SP attributeAk do3

ρ := ρ · max

{

min{t.Ak,e+.Ak}−e−.Ak
e+.Ak−e−.Ak

, 0

}

4

p(e, t) := (1 − Pr[Ge ≻RPGt |Cq ])
ρ·c5

return p(e, t)6
end7

Fig. 5. ComputeProb Function for BGC

To address this issue we propose the Super Group Counting
(SGC) algorithm, which assigns groups to supergroups and
builds a modified aR-tree per supergroup.

Since an aR-tree contains tuples from different groups, the
aggregate information stored must be properly adapted. The
entry for a nodeNi has the form〈ei,MBBi, ci[]〉, whereci[] is
an array containing the number of tuples beneathNi for each
group; i.e.,ci[j] corresponds to the count forGj tuples. The
SGC algorithm operates exactly like BGC (Figure 4). How-
ever, theComputeProb function changes considering counts
for multiple groups (Figure 6).

ComputeProb
Input : e, t, Cq

Output : p(e, t) the expected
∏

t′∈e(1 − Pr[t′ ≻ t])
Variables: c[] the count array associated with entrye,

{Gj} the groups of tuples contained ine,
Gt the group oft,
ρ the fraction ofe volume that dominatest w.r.t. SP

begin1
ρ := 12
foreach SP attributeAk do3

ρ := ρ · max

{

min{t.Ak,e+.Ak}−e−.Ak
e+.Ak−e−.Ak

, 0

}

4

p(e, t) := 15
foreach groupGj 6= Gt do6

p(e, t) := p(e, t) · (1 − Pr[Gj ≻RPGt |Cq])
ρ·c[j]7

return p(e, t)8
end9

Fig. 6. ComputeProb Function for SGC

C. Batch Counting Algorithm

The previous methods share a disadvantage: they examine
aR-tree nodes multiple times, one for each tuple. The Batch
Counting Algorithm (BCA) offers a more efficient approach
that processes multiple records concurrently. We assume that
all candidate tuples fit in main memory; otherwise, BCA
partitions the set of candidates into batches, similar to CSA,
and proceeds for each batch independently. Note that since
BCA can use either an aR-tree per group or super group, we
do not distinct between the two options.

Examining tuples in batch introduces additional challenges.
Consider tuplest, t′ and let e be the aR-tree node currently
under examination. Assume that the node’s upper cornere+

SP dominatest but not t′, i.e., only e− SP dominatest′.
BCA updates the skyline probability fort (using theCom-
puteProb function). Note that the subtree rooted ate cannot
be disregarded, because it contains tuples that SP dominatet′.

Therefore, BCA needs to make sure thate’s children do not
contribute tot’s skyline probability, as their contribution has
already been accounted for. A straightforward approach would
be to explicitly associate each nodee with the set of tuples to
examine. However, even if compressed bitmaps (e.g., Bloom
filters) are used, the space overhead is large. BCA takes a
different direction. It associates with each nodee, the upper
corner of its parentb+. If b+ SP dominates a tuplet, e’s parent
completely SP dominatest. Thus,e is not considered fort, as
the contribution of alle’s tuples has been accounted for.

Batch Counting Algorithm
Input : C, p, Cq , aR-trees{Ti}
Output : S the answer top-CSQ(D|Cq)
Variables: H a minheap with entries〈e, b+〉 and key MINDIST(e)
begin1

S := C2
foreach t ∈ S do3

Pr
Cq
SKY

(t) := 14

foreach Ti do5
enheap〈eiR, ei+R 〉 // for the root eiR of Ti6

while H andS not emptydo7
deheap〈eij , b

+〉8
foreach t ∈ S do9

if ei+j ≻SP t and b+ 6≻SP t then10
p(eij , t) := ComputeProb (eij , t, Cq)11

Pr
Cq
SKY (t) := Pr

Cq
SKY (t) · p(eij , t)12

if Pr
Cq
SKY

(t) < p then13
removet from S14

else if ei−j ≻SP t then15
foreach child eik of eij do16

if ei−
k

≻SP t and 〈eik, e
i+
j 〉 not in H then17

enheap〈eik, e
i+
j 〉18

return S19
end20

Fig. 7. BCA Algorithm

The pseudocode for BCA is given in Figure 7. Similar to
BGC and SGC, BCA uses a minheapH with entries for nodes
that may belong to different aR-trees. Note that BCA’s heap
entries have the form〈e, b+〉 and are sorted by MINDIST(e),
wheree is an aR-tree node andb+ is the upper corner ofe’s
parent. Initially the skyline probability of each candidate is set
to 1 (Lines 3–4) and an entry〈eiR, e

i+
R 〉 is enheaped for each

root node (Lines 5–6). Since the root has no parent, its own
upper cornerei+R is used as theb+ point.

BCA proceeds iteratively until either the heap is depleted or
there is no candidate tuple left (Lines 7–18). Let〈eij, b

+〉 be
the entry with the minimum MINDIST (Line 8). All remaining
candidate skyline tuples are examined in sequence; lett denote
the current. Ifei+j SP dominatest and b+ does not (Line
10), then all tuples beneatheij should contribute tot’s skyline
probability as they have not been considered ineij ’s parent.

Thus,Pr
Cq

SKY (t) is properly updated (Lines 11–12); if it drops
below the threshold,t is disqualified fromS (Lines 13–14).
When only eij ’s lower corner SP dominatest (Line 15–18),
the node’s childreneik are examined in turn (Lines 16–18). If
eik’s lower corner SP dominatest then the entry〈eik, e

i+
j 〉 is

enheaped only if it is not already inH (Lines 17–18). The



non eliminated tuples are the answer top-CSQ (Line 20).

VI. EXPERIMENTAL STUDY

In this section, we evaluate the proposed methods using syn-
thetically generated data, assuming the preference probabilities
for the current context have been extracted. The examined
algorithms along with their acronyms and the section they
are discussed in are shown in Table V. All techniques were
implemented in C++, compiled with gcc and executed on a
2Ghz Intel Core 2 Duo CPU. The page block size is 4096
bytes, and each random I/O costs 10 msecs. A memory buffer
equivalent to 100 pages (410 Kbytes) was allotted to all
algorithms. CSA and BCA use this buffer to process candidate
tuples in batches. On the other hand, since SGC processes a
single candidate at each iteration, the buffer is used to cache
aR-tree nodes.

TABLE V

PROPOSED ALGORITHMS

Algorithm Acronym Section
Basic Iterative Algorithm BIA IV-A

Candidate Selection Algorithm CSA IV-B
Super Group Counting SGC V-A, V-B

Batch Counting Algorithm BCA V-C

We use a publicly available generator3 to construct synthetic
datasets. We distinguish two classes based on the distribution
of the statically preferred attributes. In Independent, SPat-
tribute values are drawn from a uniformly random distribution.
In Anti-correlated, tuples with preferable SP values in one
dimension are more likely to have non preferable values in the
others, e.g., hotels closer to the city center are more expensive.
The size of SP domain is set to 10000, whereas that of RP
varies from 8 up to 128 values. The cardinality of the dataset
N varies from 100K up to 10M points. The number of SP
and RP attributes isdSP = {2, 3, 4} and dRP = {1, 2},
respectively. Each tuple has a fixed size of 100 bytes. The
preference probabilities are provided as input to the algorithms
for each tested scenario.

For the index-based methods, we investigate the effect of
super groups and vary|sg|, the number of groups assigned to
each super group, from 1 up to 32. Note that when|sg| = 1
SGC reduces to BGC. The examined probability threshold
values p for the p-CSQ range from 0.1 to 0.9. In each
experimental setup, we vary a single parameter while setting
the remaining to their default values. Table VI displays the
parameters under investigation and their corresponding ranges;
default values are shown bold.

Scalability vs. Dataset Cardinality In the first set of exper-
iments we investigate the performance of all methods with
respect to the dataset cardinality. In particular, we varyN
from 100K up to 10M tuples and measure the number of
I/O operations, the time spent on CPU and the total query
processing time. The results are depicted in Figures 8, 9 and
10, respectively.

3http://randdataset.projects.postgresql.org

TABLE VI

PARAMETERS AND VALUES

Parameter Range
Data cardinality (N ) 100K, 500K,1M, 5M, 10M

SP dimensionality (dSP ) 2, 3, 4
RP dimensionality (dRP ) 1, 2
RP domain size (|RP |) 8, 16, 32, 64, 128

Groups per super group (|sg|) 1, 4, 8, 16, 32
Probability threshold (p) 0.1, 0.3,0.5, 0.7, 0.9

Consider Figure 8; all methods incur higher I/O costs, since
the number of blocks occupied by the dataset increases with
N . The naive block nested loops variant BIA has a quadratic
dependence onN and thus quickly becomes infeasible for
datasets with more than 500 thousand tuples. On the other
hand, all other methods examine only candidate skyline points
(following the lemmas of Section IV-B) and scale almost
linearly. In fact, when all candidates fit in memory, the non-
indexed method CSA has exactly linear dependence onN as
it scans once over the entire database.

Figure 8(a) shows that CSA, SGC, BCA have over two
orders of magnitude improvement over BIA on 500K tuples for
the Independent dataset. Among the three, the aR-tree based
algorithms SGC, BCA are significantly more efficient, exhibit-
ing around an order of magnitude less I/Os for the largest
dataset; 43,123 and 20,741, respectively, versus 250,000 I/Os
for CSA. Regarding SGC and BCA, the latter incurs on
average 2 times less I/Os in all but the smallest dataset.
Figure 8(b) shows similar trends for BIA, CSA, BCA. Note,
however, that the performance of SGC degrades for the Anti-
correlated dataset, as there are many more candidate skyline
tuples. Recall that SGC’s I/O complexity critically depends
on the size ofC, since it has to traverse the aR-trees once per
candidate.
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Fig. 8. I/O cost vs.N

Figure 9 plots the CPU processing cost for all methods
as N increases. The non-indexed methods, BIA and CSA,
scale similarly to Figure 8. On the other hand, SGC has little
processing overhead, whereas BCA is very CPU intensive. The
latter is attributed mainly to BCA’s large heap. In the default
scenario, the maximum heap size for BCA is 6,036 entries
(60 Kbytes), whereas for SGC is 57 entries (0.4 Kbytes). This
occurs because in BCA, an aR-tree node is enheaped when it
dominatesat least onecandidate, i.e., a very frequent event.
Furthermore, a deheaped entry〈e, b+〉 requires dominance
checks against every candidate fore as well asb+. Hence



a heap entry incurs around3 · |S| checks, whereS is the
current candidate set. In the Anti-correlated dataset shown in
Figure 9(b), tuples are harder to dominate each other and the
number of dominance checks and the required CPU cycles
increases. Therefore, the required CPU time of all methods
grows.

 1

 10

 100

 1000

100K 500K 1M 5M 10M

C
P

U
 ti

m
e 

(s
ec

)

Dataset cardinality (N)

BIA
CSA
BCA
SGC

(a) Independent

 1

 10

 100

 1000

100K 500K 1M 5M 10M

C
P

U
 ti

m
e 

(s
ec

)

Dataset cardinality (N)

BIA
CSA

BCA
SGC

(b) Anti-correlated

Fig. 9. CPU time vs.N

Figure 10 draws the total processing time (CPU and I/O
cost) as the dataset cardinality increases. Notice that among
the two individual costs, the required number of I/Os is the
dominating factor. Figure 10(a) shows that the index-based
algorithms are significantly faster than CSA following the
trends of Figure 8(a). Similarly, Figure 10(b) exhibits the
trends of Figure 8(b) for Anti-correlated datasets. BCA is up
to 6.4 and 8.7 times faster than CSA and SGC, respectively.
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Fig. 10. Total time vs.N

In what follows, we exclude the naive Basic Iterative
Algorithm from the figures.

Scalability vs. RP attributes domain sizeFigure 11 plots
the total processing time as a function of the domain size
of the RP attributes. The cost for the non-indexed approach
CSA remains largely unaffected by the increase in|RP |.
This occurs, because even though the candidate skyline tuples
increase with|RP |, they can still fit in main memory. Thus,
CSA still performs only a single linear scan on the database.
On the other hand, BCA performs more I/O operations and
CPU cycles as|RP | increases, since the increased number of
candidate skylines leads to more entries being inserted into the
heap. As discussed in the context of Figure 8(b), SGC is very
sensitive to largeC sizes, which leads to a dramatic total time
increase in both the Independent and Anti-correlated dataset.

Scalability vs. probability threshold Figure 12 draws the
query time against the probability thresholdp. Note that
varying p has no effect on the number of candidate skyline
tuples. Larger threshold values mean that candidate tuplescan
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Fig. 11. Total time vs.|RP |

be quickly disqualified. This is the trend exhibited by SGC and
BCA in both distributions. Regarding CSA, however, note that
when there exists even one candidate tuple such that it belongs
in the skyline, CSA needs to scan the entire dataset. This is
the case with all scenarios examined in Figure 12. As a result
only CSA’s CPU time can decrease, which accounts for its
marginal total time decrement asp increases.

 10

 100

 1000

 0.1  0.3  0.5  0.7  0.9

T
ot

al
 ti

m
e 

(s
ec

)

Probability Threshold (p)

CSA
SGC
BCA

(a) Independent

 10

 100

 1000

 0.1  0.3  0.5  0.7  0.9

T
ot

al
 ti

m
e 

(s
ec

)

Probability Threshold (p)

SGC
CSA
BCA

(b) Anti-correlated

Fig. 12. Total time vs.p

Scalability vs. dimensionalityFigure 13 examines the effect
of dimensionality in total processing time. When the number
of SP attributesdSP increases, the number of candidate (i.e.,
local skyline) tuples grows due to the curse of dimensionality.
However, whendRP increases the candidates multiply at a
higher rate, since the number of groups rises exponentially.
SGC is mostly affected because of its sensitivity in the
number of candidates. This is demonstrated in Figure 13,
where although SGC is the most efficient method in low
dimensionality, it quickly becomes impractical for more than
four dimensions. On the other hand, CSA and BCA achieve
reasonable execution times even for large dimensionalities.
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Fig. 13. Total time vs.dSP , dRP

Scalability vs. number of groups per super groupFinally,
Figure 14 portrays the effect of the total processing time for
the index-based methods as we vary the number of groups
we include in a super group. For ease of comparison, we



also include the time for CSA, which is unaffected by the
|sg| factor. Note that|sg| = 1 corresponds to a single group
per super group, which implies that SGC degenerates to the
BGC algorithm. It becomes apparent that in any case BGC’s
performance is inferior to SGC’s for|sg| > 1. In general, both
SGC and BCA are benefited by fewer aR-trees as explained
in Section V-B. Because the RP domain size is 32 and there
is a single RP attribute in the default scenario, the case of
|sg| = 32 suggests that only a single aR-tree exists, which
indexes all points. In this extreme setting, SGC and BCA
achieve their maximum efficiency.
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Fig. 14. Total time vs.|sg|

In conclusion, we make the following remarks regarding
the proposed algorithms for processing probabilistic contextual
skyline queries. The naive BIA algorithm is impractical in
all settings. Although SGC exhibits low CPU time, it is an
attractive solution only when the number of candidates is
small, i.e., in independent low cardinality and dimensionality
datasets. The other non-indexed approach, CSA performs
relatively well for medium-sized datasets and remains efficient
even for very large RP domain sizes. The BCA algorithm is
the most practical of the pack, as it exhibits solid performance
in all scenarios tested.

VII. C ONCLUSION

We introduced a methodology that allows the expression of
skyline queries without explicitly stating preferences among
attribute values. To handle the case of missing information, we
derive a set of uncertain preferences based on users’ profiles,
i.e., from stated preferences for past situations or contexts.
As a result, the dominance relationships among tuples be-
come uncertain, which gives rise to probabilistic contextual
skyline queries (p-CSQ). We introduced several non-indexed
and index-based algorithms for processingp-CSQs, which are
experimentally shown to significantly outperform a naive block
nested loops approach.

In the future we plan to follow two directions for further
work on this subject. The first is to develop techniques for
efficiently processing top-k queries, where tuples are ranked
based on their skyline probability. The second is to design
methods that are cache-aware, i.e., use past query results in
order to expedite processing of currentp-CSQs.
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