
Spatial Cohesion Queries

Dimitris Sacharidis
Technische Universität Wien

Vienna, Austria
dimitris@ec.tuwien.ac.at

Antonios Deligiannakis
Technical University of Crete

Chania, Greece
adeli@softnet.tuc.gr

ABSTRACT
Given a set of attractors and repellers, the cohesion query re-
turns the point in database that is as close to the attractors
and as far from the repellers as possible. Cohesion queries
find applications in various settings, such as facility location
problems, location-based services. For example, when at-
tractors represent favorable plases, e.g., tourist attractions,
and repellers denote undesirable locations, e.g., competitor
stores, the cohesion query would return the ideal location,
among a database of possible options, to open a new store.
These queries are not trivial to process as the best loca-
tion, unlike aggregate nearest or farthest neighbor queries,
may be far from the optimal point in space. Therefore, to
achieve sub-linear performance in practice, we employ novel
best-first search and branch and bound paradigms that take
advantage of the geometrical interpretation of the problem.
Our methods are up to orders of magnitude faster than linear
scan and adaptations of existing aggregate nearest/farthest
neighbor algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords
nearest neighbor, farthest neighbor

1. INTRODUCTION
This paper introduces the spatial cohesion query. Assume

a database D of point objects, a setA of attractors, and a set
R of repellers, all located within some area; attractors and
repellers need not be points, but could also be arbitrarily
shaped regions. Then, the attraction of an object o ∈ D is
the opposite of its minimum distance to any attractor among
A, while the repulsion of o is the opposite of its minimum

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGSPATIAL’15, November 03–06, 2015, Bellevue, WA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3967-4/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2820783.2820834.

distance to any repeller in R. The spatial cohesion query
returns the object o∗ ∈ D that has maximum cohesion, i.e.,
maximizes the weighted difference of its attraction and re-
pulsion. Intuitively, the result is an object that is both close
to the attractors and far from the repellers.

The motivation for cohesion queries comes from various
spatial optimization problems that seek to balance opposing
forces. For example, consider a scenario where the goal is to
determine a profitable location, among a list of vacancies,
for opening a new tourist shop. The cohesion query models
this as follows: vacancies constitute the database of objects;
touristic attractions, popular intersections, city landmarks,
etc., act as attractors; while existing competitor shops and
bad neighborhoods act as repellers.

Moreover, cohesion queries appear as submodules in some
common but computationally hard analytic methods. For
instance, in k-means clustering, the goal is to partition the
data into k clusters so as to minimize the sum of each ob-
ject’s distance to its closest cluster mean. A standard heuris-
tic [12] for this NP-hard problem is to perform multiple
passes over the objects, and determine at each pass, the
best object to relocate from its cluster to another. This
sub-problem can be stated as a cohesion query, where the
cluster objects are the database, the cluster mean acts as the
single repeller, and the other cluster means act as attractors.

As another analytic tool, consider the spatial diversifica-
tion problem, where the goal is to determine a set of k ob-
jects that are relevant, i.e., close, to some given query loca-
tion, and dissimilar, i.e., far, from each other. The standard
approach for this NP-hard problem is to progressively con-
struct the result set, where at each step, choose for inclusion
in the result set the object that minimizes a weighted com-
bination of two components. The first component is the rel-
evance to the query location, i.e., the single attractor, while
the second is the aggregate distance to objects already in
the result set, i.e., the repellers.

Cohesion queries are reminiscent of nearest neighbor (NN)
variants, such as the aggregate NN (ANN) query, which re-
trieves the object that is closest to a group of attractors,
and the aggregate farthest neighbor (AFN) query, which re-
trieves the object that is farthest from a group of repellers.
In contrast, the cohesion query seeks for the object that
strikes the perfect balance between attraction and repulsion
forces, an object that can significantly differ from the ANN
or AFN answers.

To illustrate this, consider Figure 1 that depicts an attrac-
tor a, two repellers r1, r2, and four objects, o1 through o4.
We assume that distances are measured by the Euclidean

3.2

6.1

1.4

4.1

a

r1

r2

o1

o2

o3

o4

p1

p2

H1

H2

Figure 1: Cohesion query with one attractor a and
two repellers r1, r2; object o1 has the largest cohe-
sion of around 2.9

distance (we draw a grid for ease of reference), and seek
to maximize the difference between attraction and repulsion
(equal weights are assigned to the two forces). Observe that
object o2 is the ANN of the attractor, while o4 is the AFN
of {r1, r2}. The answer to the cohesion query is o1 with
a cohesion of around 2.9, as the distance to its closest re-
peller (6.1) minus the distance to the attractor (3.2) is the
largest; for example, o3 has a lower cohesion value of about
4.1− 1.4 = 2.7.

Moreover, the methodology used in processing NN vari-
ants does not apply for cohesion queries. These methods
operate on the premise that the result lies near the opti-
mal point in space under the corresponding objective func-
tion, and thus guide the search towards it. In ANN (resp.
AFN) the point that minimizes (resp. maximizes) the min-
aggregate distance to the attractors (resp. repellers) is an
attractor (resp. a vertex in the bounded Voronoi diagram of
the repellers; see [9]). For the cohesion query (under equal
attraction, repulsion weights), the optimal point in space is
also an attractor, but the actual result may not be close to
the optimal point, or to the optimal points for ANN, AFN.

Returning to Figure 1, the optimal point in space for the
cohesion query and ANN is the attractor a, while the op-
timal points for AFN are p1, p2. Observe that the closest
object to a is o2, while that closest to p1 or p2 is o4. How-
ever, neither object is the result (o1) to the cohesion query.

A simple method for processing a cohesion query is to
perform a linear scan on the database D and compute the
cohesion of each object. Another approach is to combine
the ANN and AFN search, progressively retrieving objects
from each until a common object is seen (or a threshold is
exceeded), similar to top-k processing algorithms [7].

We propose a best-first search algorithm, termed BFS,
suitable for tree-based space-partitioning indices, which, sim-
ilar to other methods in its class (i.e., the BF algorithm of
[13] for NN queries), defines an optimistic bound (admis-
sible heuristic) for the cohesion function (e.g., mindist for
NN queries), and uses it to guides the search. The efficiency
of such a method depends on the tightness of the derived
bounds. In fact, obtaining tight bounds on the cohesion of
objects within sub-trees, would result in an index IO-optimal
method, meaning that no other algorithm operating on the
same index can perform fewer index node accesses. Unlike
some NN variants though, it is computationally hard, if at all
generally possible, to derive a tight bound for the cohesion
function; it entails solving a non-smooth constrained op-
timization problem [8]. Nevertheless, our evaluation shows
that a simple non-tight bound is able to achieve up to orders

of magnitude better performance than existing methods.
Still, for some difficult settings, especially when the attrac-

tion and repulsion forces have equal weight, BFS performs
poorly and at times worse than a linear scan. To address
this issue, we take a branch and bound approach, termed
BB, which introduces pruning criteria to eliminate objects
that would be otherwise visited by BFS. As a result, BB is
more efficient than BFS, often by a factor between 2 to 4.
This is an interesting result, given than in other problems
branch and bound may not outperform best-first search; e.g.,
for NN queries, the pruning criteria of [21] offer little bene-
fit compared to the IO-optimal best-first search algorithm of
[13]. The reason for the performance increase of BB is that
the optimistic bounds we derive are not tight, and hence
leave the door open for further pruning. Had they been
tight, BB would not prune more objects than BFS, which is
exactly the case in NN queries.

For the intuition behind BB’s pruning, refer to Figure 1
and assume that object o3 has the best seen so far cohesion
of about 2.7. Considering only repeller r2, the locus of points
in space that have cohesion equal to that of o3’s defines the
hyperbola branch H2 (since the distance from r2 minus the
distance from a is constant, given equal attraction, repul-
sion weights). Hyperbola branch H1 is similarly defined for
repeller r1 setting the difference of distances equal to the
cohesion of o3. Based on these hyperbolas, it is possible to
characterize the space with respect to best seen cohesion so
far. In Figure 1, the shaded area, defined as the intersec-
tion of the interior of the two hyperbolas, contains points in
space that have cohesion greater than o3’s, and thus may
contain a better object, in our case o1. So, given any co-
hesion value (in our example 2.7), it is possible to define
pruning criteria that eliminate parts of the space containing
objects with lower cohesion. Then, the challenge is how to
apply this idea to prune index sub-trees.

The contributions of this work are the following:

• We introduce and study the spatial cohesion query.

• We introduce a tree-based space-partitioning method,
termed BFS, which follows the best-first search paradigm,
by deriving optimistic bounds on the cohesion of ob-
jects within index subtree.

• We further introduce a branch and bound algorithm
(BB) to further expedite cohesion query processing by
introducing geometry-based pruning criteria.

• We extend our methods for non-point attractors and
repellers, as well as for non-Euclidean distance metrics.

• We perform a detailed experimental study on real and
synthetic data, showing that BFS is up to orders of
magnitude faster than a simple linear scan and existing
techniques based on NN query processing. Further, BB
is shown to be about 2–4 times faster than BFS.

Outline. Section 2 reviews related work. Section 3 defines
all concepts and formally states the cohesion query, while
Section 4 presents baseline approaches. Then Section 5 in-
troduces our best-first search algorithm, and Section 6 de-
tails our branch and bound approach. Section 7 discusses
some extensions. Section 8 presents our experimental study,
and Section 9 concludes this paper.

2. RELATED WORK
Nearest Neighbor Queries. There is an enormous body
of work on the nearest neighbor (NN) query, also known
as similarity search, which returns the object that has the
smallest distance to a given query point; kNN queries output
the k nearest objects in ascending distance. An overview
of index-based approaches to accelerate the search can be
found in [4]. Recently, more efficient approaches for metric
spaces, e.g., [14], and high-dimensional data, e.g., [23], have
been proposed.

For a set of query points, the aggregate nearest neighbor
(ANN) query [19] retrieves the object that minimizes an ag-
gregate distance to the query points. As an example, for
the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times,
ANN outputs the location that minimizes the time neces-
sary for all users to meet. In the case of the SUM function
and Euclidean distances, the optimal location is also known
as the Fermat-Weber point, for which no formula for the co-
ordinates exists. The k-medoid problem is a generalization,
which seeks a set of k objects that collectively minimizes
an aggregate distance to the query points. The problem is
NP-hard and has applications in clustering [17, 18].

A cohesion query, although also an optimization problem
involving distances from a set of points (the repellers and
the attractor), cannot be mapped to an ANN problem or its
variants, and cannot be solved by adapting existing ANN
algorithms. The reason is that the cohesion answer is an ob-
ject that maximizes an aggregate distance to repellers (and
minimizes the distance to the attractor), instead of minimiz-
ing an aggregate distance, as in ANN variants.

Cohesion queries are also related to aggregate farthest
neighbor queries. The farthest neighbor (FN) query returns
the object that has the largest distance to a given query
point, and can be used, for example, to determine the min-
imum radius required to cover a set of points from a given
location. Naturally, the aggregate farthest neighbor (AFN)
query seeks the object that maximizes an aggregate distance
to a set of query points. The work in [10] proposes an R-tree
based algorithm for processing AFN queries for the SUM,
MAX, MIN functions. Again, a cohesion query cannot be
mapped to an AFN query and, thus, cannot be solved by al-
gorithms for AFN queries, but an AFN algorithm together
with an NN algorithm, can be used as a module for pro-
cessing cohesion queries. This is the baseline approach de-
scribed in Section 4. We note that the cohesion query is not
related to reverse variants of the aforementioned problems,
e.g., where the goal is to determine the objects that have a
given query as their nearest neighbor [22, 16].

Diversification. The notion of (content-based) diversifi-
cation first appears in information retrieval systems. The
seminal work of [5] shows that a diversity-based reranking
of the results list, which combines relevance and diversity
similar to our formulation, achieves higher precision/recall
values. An interesting study on diversification objectives
is [11], which categorizes common diversification objectives
and proves NP-hardness.

Note that, in general, diversification problems seek a group
of documents that are relevant and diverse. Thus, they
are not directly related to cohesion queries. However, sub-
problems similar to cohesion queries appear in many heuris-
tic solutions to diversification problems. We emphasize that

Table 1: Notation
Symbol Definition

D,o database of objects, an object
A,a set of attractors, an attractor
R, r the set of repellers, a repeller
c(o) cohesion of o given A and R
τ a cohesion threshold

all referenced works in this section, unless stated otherwise,
process these sub-problems by performing an exhaustive lin-
ear scan.

There are other types of diversification, such as coverage
based approaches [1, 6], which however are not related to our
problem. A more relevant line of work combines diversifica-
tion and NN queries. [15] introduces the k-nearest diverse
neighbor (kNDN) query, whose goal is to return a set of k
objects that are as close as possible to a given query point,
and at the same time no two objects have diversity below
a given hard threshold. Similarly, [20] defines a variation of
top-k search, adding the restriction that the result set must
not contain any pair of objects having similarity above a
user-specified hard threshold. In both these problems the
hard threshold on diversity is fundamentally different than
our notion of repulsion; hence such methods do not apply
for cohesion queries.

A more related problem appears in [24], where relevance
is defined as the distance to a query point, and diversity is
defined either as the smallest distance (a formulation simi-
lar to cohesion queries) or the angle similarity to an object
in the result. The proposed algorithms, however, avoid an
exhaustive linear scan only for the angle-defined diversity.
Moreover, the function that combines relevance and diver-
sity is not a weighted combination, and thus their solutions
do not apply for cohesion.

The most related diversification problem appears in [9].
Their iterative approach solves a sub-problem identical to
a restricted version of the cohesion query, when we restrict
cohesion to Euclidean space and distance. Using cohesion
terminology, the key idea of [9] is to alternate between NN
retrievals from the attractor and from certain points com-
puted using the Voronoi diagram of the repellers. We note
that [9] is proposed for a more restrictive setting, where only
NN modules are available, and thus its application to cohe-
sion queries does not result in a strong competitor.

3. PROBLEM DEFINITION
We now present the necessary definitions and formally

introduce the cohesion query. Table 1 gathers the most im-
portant symbols used throughout this paper.

Consider a set D, termed the database, of point objects.
Given a set A of attractors, such that A ∩ D = ∅, the at-
traction of an object o ∈ D is defined as:

a(o) = −min
a∈A

d(o,a),

where d denotes the Euclidean distance. Note that in the
following, we assume that attractors and repellers are point
objects; the discussion about non-point objects as well as
the necessary changes to our methodology is deferred until
Section 7.1. Moreover, the discussion about other distance
metrics is in Section 7.2. The smaller the distance to the
closest attractor is, the greater the attraction. The object
that maximizes the attraction is the min-aggregate nearest

neighbor (ANN) of A.
Given a set R of repellers, such that R ∩ D = ∅, the

repulsion of object o ∈ D is defined as:

r(o) = −min
r∈R

d(o, r).

The smaller the distance to the closest repeller is, the greater
the repulsion. The object that minimizes the repulsion is the
min-aggregate farthest neighbor (AFN) of R.

Given a set of attractors A and a set of repellers R, we
define the cohesion of an object o to be equal to the weighted
difference of its attraction and repulsion:

c(o) = λ · a(o)− r(o) = min
r∈R

d(o, r)− λ ·min
a∈A

d(o,a), (1)

where the single weight λ controls the relative strength of
attraction and repulsion.

In this work we answer the cohesion query: how to effi-
ciently find the object that has the highest cohesion.

Problem 1. [Cohesion Query] Given attractors A
and repellers R, find an object o∗ ∈ D such that o∗ =
argmax

o∈D
c(o).

A final note concerns the extension of the previous defi-
nition to the corresponding top-k problem, i.e., determining
the k objects with the highest cohesion values. Adapting our
methods to process such a query in a progressive manner is
straightforward and it is not further discussed.

4. BASELINE METHODS
A simple baseline approach is to exhaustively scan all ob-

jects, compute their cohesion, and then determine the object
with the highest one. We refer to this method as LIN.

Another baseline processing technique is to decompose a
cohesion query into an aggregate nearest neighbor (ANN)
query on the set of attractors and an aggregate farthest
neighbor (AFN) query on the set of repellers. The basic
idea is to retrieve, in a round robin manner, objects from
the ANN and the AFN search until a termination condition
is met. Therefore, we require modules capable of progres-
sively processing ANN and AFN queries. For ANN queries,
we use the MBM algorithm [19], whereas for AFN queries
the algorithm of [10]. We now present this method, which
we term RR.

The algorithm maintains two threshold values, τa, τr,
which represent the smallest possible aggregate distance of
an object not yet retrieved by the ANN search, and the
largest possible aggregate distance of an object not yet seen
in the AFN search, initially set to 0 and ∞, respectively.
Also RR initializes the result o∗ to null and the next search
module to ANN. Then, RR begins a loop with progressive
object retrievals, until the largest attainable cohesion by re-
trieving additional objects, which is τr − λ · τa, drops below
the current best cohesion. At each iteration, a single object
is retrieved, the appropriate threshold is updated, and the
other search method is set for the next retrieval. Because
the search modules are progressive, the thresholds set are a
lower bound on the aggregate distance to A, and an upper
bound on the aggregate distance to R of any object not seen
in ANN and AFN search, respectively. The answer object is
updated if an object with better cohesion is retrieved.

As another baseline, we adapt the SPP algorithm from [9],
which was proposed for a top-k diversification setting. Simi-
lar to RR, our SPP implementation employs an ANN search

Algorithm 1: RR

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: cohesion threshold τ

1 o∗ ← ∅; τa ← 0; τr ←∞; search← ANN
2 while o∗ = ∅ or τr − λ · τa > c(o∗) do
3 if search = ANN then
4 o← ANN.getNext()
5 τa ← d(o, a)
6 search← AFN

7 else
8 o← AFN.getNext()
9 τr ← minr∈R d(o, r)

10 search← ANN

11 if c(o) > c(o∗) then
12 o∗ ← o

module, but unlike RR it does not use an AFN module. In-
stead, SPP determines probing locations around which the
aggregate most farthest neighbor should lie and performs
NN search around them. These probing locations are the
vertices of the Voronoi diagram computed over the set of
repellers. SPP uses a NN search module for each probing
location and maintains a threshold for each. A round robin
strategy for selecting the next search module is also used
in SPP; the authors also examine more elaborate strategies,
but with no significant performance gains. Our experimen-
tal study has shown that SPP performs much worse than
RR, both in terms of I/O operations and CPU time, be-
cause the objects retrieved by the NN search around the
probing locations are not guaranteed to maximize the ag-
gregate distance from the repellers, and the thresholds used
are CPU intensive, requiring the computation of intersec-
tions between circles and Voronoi edges.

5. THE BEST-FIRST SEARCH METHOD
This section describes an index-based Best-First Search

algorithm, denoted as BFS, for processing cohesion queries.
The method assumes a hierarchical space-partitioning index
on the set of objects.

Therefore, we consider a tree structure T that indexes the
database of objects D. A node N of the index corresponds
to a subtree rooted at N and hierarchically indexes all ob-
jects that reside in this subtree. In the following, we abuse
notation and refer to N as the set of all objects that reside
in N ’s subtree. To facilitate object retrieval, the index keeps
aggregate information about the objects within N and stores
it in an entry at the parent node of N ; to simplify notation
we simply refer to the entry for N as the node N . The aggre-
gate information, which depends on the type of the tree, is
typically the minimum bounding rectangle (MBR) or sphere
(MBS) that covers all objects within N .

In the remainder of this paper, we assume that T is an
R∗-Tree [2], since it is perhaps the most well-known and
studied spatial index. We note, that our methodology does
not depend on the exact index type and is readily applicable
to other indices.

As is characteristic to any best-first search method, BFS
requires an optimistic bound (admissible heuristic) on the
cohesion of objects contained within a particular subtree,
represented by an index node. For cohesion queries, opti-
mistic translates into an upper bound. Given a tree node
N , let o ∈ N denote that object o is contained in the sub-
tree rooted at N . Also, assume d+(N,x) (resp. d−(N,x))
denote an upper (resp. lower) bound on the distance d(o,x)

Algorithm 2: BFS

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: H a heap with nodes sorted by c+()

1 H ← ∅
2 Nx ← Nroot . root node of T
3 while Nx is an internal node do
4 read node Nx

5 foreach child N of Nx do
6 compute c+(N) . Lemma 1

7 H.push(N, c+(N))

8 Nx ← H.pop()

9 o∗ ← Nx

of any object o ∈ N from point x. Then, it is easy to con-
struct an upper bound on the cohesion of any object within
a node, as follows.

Lemma 1 (Upper Bound). Given a non-leaf node N , the
cohesion of an object o ∈ D within N cannot be more than
c+(N) = minr∈R d

+(N, r)− λ ·mina∈A d
−(N,a).

Proof. Follows from the definitions of d− and d+.

Note that even though the distance bounds d−, d+ are
tight, the resulting cohesion bound of Lemma 1 may not be.
This occurs because the point in the space contained by a
node N that gives the distance bound for the attraction part
may not coincide with the respective point for the repulsion
part. Deriving a tight bound means finding the point in the
space of N that maximizes the cohesion function. This es-
sentially entails solving a non-smooth constrained optimiza-
tion problem, which is computationally challenging and out-
side the scope of this paper. Nonetheless, our evaluation has
shown that, in most cases, this bound suffices as it results
in significant speedup over baseline methods.

Lemma 1 provides BFS with the means to guide the search,
visiting more promising nodes first. Algorithm 2 shows the
pseudocode of BFS. It takes as input the index T storing all
objects in the databaseD, the attractorsA, and the repellers
R, and returns the object o∗ with the largest cohesion.

BFS directs the search using the heap H, which contains
index nodes and is sorted descending on their upper bound
on cohesion, computed according to Lemma 1; initially H
is empty (Line 1). BFS performs a number of iterations
(Lines 3–8). At the end of each iteration the node Nx at
the top of the heap is popped (Line 8); for the first iteration
Nx is set to the root node of T (Line 2). Index traversal
terminates when node Nx is an external node, corresponding
to an object, which in this case is the answer o∗ (Line 9).
Assuming that Nx is an internal node, BB reads this node
from disk (Line 4), and for each child (Lines 5–8) it computes
its upper cohesion bound (Line 6) and inserts it into the heap
(Line 7). We next prove the correctness of BFS.

Theorem 1. The BFS algorithm returns the object with
the largest cohesion.

Proof. BFS terminates when it pops from the heap a non-
index node corresponding to object ox. As the heap contains
nodes sorted by the upper bound of Lemma 1, it holds that
c(ox) ≥ c+(N) for all nodes in H. Therefore ox has higher
cohesion than any object within any node in the heap and
thus any object in D.

6. THE BRANCH AND BOUND METHOD
This section describes an index-based Branch and Bound

algorithm, denoted as BB, for processing cohesion queries.

BB has the same index requirements as BFS and also uses
an optimistic cohesion bound to direct the search towards
promising nodes. In addition, BB applies the branch and
bound paradigm to prune parts of the space (subtrees rooted
at nodes) that may not contain the most cohesive object. In
particular, BB: (1) computes pessimistic cohesion bounds
on index nodes to derive threshold τ , which acts as a lower
bound on the solution to the cohesion query, and (2) employs
two pruning criteria to eliminate nodes containing objects
with cohesion smaller than τ .

Computing the Threshold. Using the distance bounds
d−, d+ of Section 5, we can also compute a lower bound on
the cohesion of any object within a tree node.

Lemma 2 (Lower Bound). Given a non-leaf node N , the
cohesion of an object o ∈ D within N cannot be less than
c−(N) = minr∈R d

−(N, r)− λ ·mina∈A d
+(N,a).

Proof. Follows from the definitions of d+ and d−.

The threshold τ is set to the largest among the lower co-
hesion bound of any seen node and the cohesion values of
any seen object.

Pruning Criteria. The discussion here assumes a cohe-
sion threshold value τ is computed. The following theorem,
which is a direct consequence of the coherence definition,
determines whether an object o can be pruned given an at-
tractor and a repeller.

Theorem 2. Given attractors A, a repeller r ∈ R and a
cohesion threshold τ , any object o ∈ D such that dr(o, r)−
λ ·mina∈A d

a(o,a) < τ has cohesion less than τ .

Theorem 2 can prune individual objects. However, we
need a method to prune an entire subtree rooted at a given
tree node. We thus consider the aggregation information
stored within a node. Then, Criterion 1 holds.

Criterion 1. Given a cohesion threshold τ , a node N con-
tains objects with cohesion less than τ , if there exists a re-
peller r ∈ R such that for every attractor a ∈ A it holds
that d+(N, r)− λ · d−(N,a) < τ .

Proof. From the definitions of d+(N,a) and d−(N, r), we
derive that ∀a ∈ A, ∃r ∈ R such that dr(o, r)−λ·da(o,a) ≤
d+(N, r)−λ ·d−(N,a) < τ and, thus, Theorem 2 applies for
all objects within N .

Criterion 1 is simple to check and succesfully prunes nodes.
However, it is based on rather loose bounds on the cohe-
sion of objects within nodes. To understand this, consider
the geometric interpretation of Theorem 2 for the case of
λ = 1, i.e., when attraction and repulsion forces are equally
weighted, which is the most computationally challenging
case for all algorithms as our experiments have shown.

We study the geometry of the function f(x) = d(x, r) −
d(x,a), where x is a point in the vector space. Then the
locus of points x satisfying equation f(x) = τ , for a given
constant τ , defines one of the two branches of a hyperbola
curve with foci the attractor a and the repeller r. Partic-
ularly, we distinguish three cases with respect to τ ’s value.

(a) When τ < 0, the locus is the branch around r. Theo-
rem 2 implies that any object that lies inside this branch
(i.e., in the part of space containing focus r) has cohe-
sion less than τ ; see Figure 2a.

(b) When τ = 0, the locus is the bisector of segment ar.
Theorem 2 implies that any object that lies closer to the

a r

(a) τ < 0

a r

(b) τ = 0

a r

(c) τ > 0

Figure 2: Geometric interpetation of Theorem 2 for
λ = 1; locus of points x satisfying d(x, r)− d(x,a) < τ

N

d+(N, r)

d−(N, a)

−τ
f(x) = τ

a r

Figure 3: Criterion 2 for λ = 1 and τ < 0

repeller r than the attractor a has cohesion less than τ ;
see Figure 2b.

(c) When τ > 0, the locus is the branch around the at-
tractor a. Theorem 2 implies that any object that lies
outside this branch (i.e., in the part of space containing
focus r) has cohesion less than τ ; see Figure 2c.

The pruned space increases with τ . A higher τ value
causes the locus to move closer to a, and the correspond-
ing branch to become narrower.

Now, let us turn our attention to the case of τ < 0, and
consider a node N , attractor a, and repeller r as shown in
Figure 3; the absolute value of τ depicted on the bottom
right. Node N lies completely within the shaded area, and
thus cannot contain any points with cohesion more that τ .
Observe that Criterion 1 does not hold for N . The upper
distance bound d+(N, r) to the repeller is greater than the
lower distance bound d−(N,a) to the attractor, and thus
d+(N, r) − d−(N,a) > 0, which is clearly greater than the
negative threshold τ .

The reason for the previous observation is that the point
within N that has attraction from a equal to d−(N,a) and
the point that has repulsion from r equal to d−(N, r) do not
coincide in general. In Figure 3, the former is the bottom
left corner of N , while the latter is the top right corner of
N . As a result, the value d−(N, r)− d−(N,a) is not a tight
upper bound for the cohesion of any object within N .

In what follows, we derive a stronger criterion for pruning
nodes when λ = 1 and τ ≤ 0. The key observation is that
in this case the pruned space is convex.

Lemma 3. Given repeller r, an attractor a, and a cohesion
threshold τ ≤ 0, the space defined by points x such that
d(x, r)− d(x,a) < τ is convex.

Proof. The equation d(x, r)−d(x,a) = τ defines a hyperbola
branch around r for τ < 0. The inequality d(x, r)−d(x,a) <
τ defines the space inside the branch, i.e., that contains r,
which is known to be convex. For τ = 0 the branch reduces
to the bisector and the half-space closer to r is convex.

Convexity is desirable for its following property.

N

τ
f(x) = τ

a r

Figure 4: Non-convex pruning area for λ = 1, τ > 0

Lemma 4. A rectangle R is completely inside a convex
space S if and only if all its corners are inside the convex
space S.

Proof. The ⇒ direction is obvious. For the ⇐ direction,
assume otherwise that all corners of R are inside S, but
there exists a point p inside R which is outside S. From the
convexity of S, we derive that each edge of R is completely
inside S (any point in an edge of R is a linear combination
of two corners). With similar reasoning, we derive that any
face ofR is completely inside S. Then, since p can be written
as a linear combination of two points on faces of R, point p
must also be completely inside S — a contradiction.

Combining the previous two lemmas we derive the follow-
ing pruning criterion.

Criterion 2 (λ = 1, τ ≤ 0). Given attractors A, a repeller
r ∈ R, and a cohesion threshold τ ≤ 0, a node N contains
objects with cohesion less than τ for λ = 1, if for each corner
c of N it holds that d(c, r)−mina∈A d(c,a) < τ .

Proof. From Lemmas 3 and 4, we derive that for any point
x inside R it holds that d(x, r)−mina∈A d(x,a) < τ . Thus
Theorem 2 holds for all points in R.

Consider again the example of Figure 3, where the prereq-
uisites (λ = 1, τ ≤ 0) of Criterion 2 hold. It is easy to see
that all corners of node N are within the shaded are, and
thus Criterion 2 prunes this node.

Unfortunately, the pruning space for τ > 0 is not convex,
meaning that Criterion 2 does not apply. Consider Figure 4,
which depicts an example for λ = 1 and τ > 0. Observe that
while all corners of node N are within the shaded area, there
exists a part of N that is outside; hence, the node cannot
be pruned.

The BB Algorithm. Algorithm 3 shows the pseudocode
of the BB algorithm. It takes as input the index T storing
all objects in the database D, the set of attractors A, and
the set of repellers R. BB returns the object o∗ with the
largest cohesion.

BB operates largely similar to BFS. It also uses a data
structure L containing index nodes sorted descending on
their upper bound on cohesion (Lemma 1). BB requires
sorted access, and thus L could be implemented as a binary
search tree. In addition, BB maintains a cohesion thresh-
old τ , which corresponds to a lower bound of the maximum
cohesion, initially set to −∞. BB operates similar to BFS
with the following exceptions. BB updates the threshold
(Lines 8–10) whenever a node with a higher upper bound or
an object with a higher cohesion is seen. Also, BB marks
this event raising a flag (Line 10). Subsequently, after all
children nodes are inserted in L and if the flag was raised

Algorithm 3: BB

Input: index T ; attractors A; repellers R
Output: o∗ the answer to the cohesion query
Variables: L a list with nodes sorted by c+(); cohesion

threshold τ
1 τ ← −∞; L← ∅
2 Nx ← Nroot . root node of T
3 while Nx is an internal node do
4 read node Nx

5 foreach child N of Nx do
6 compute c+(N) . Lemma 1

7 L.insert(N, c+(N))

8 if c−(N) > τ then . Lemma 2

9 τ ← c−(N)
10 flag ← true

11 if flag = true then
12 flag ← false
13 foreach N ∈ L do
14 foreach r ∈ R do
15 pruned← true
16 foreach a ∈ A do
17 if d+(N, r)−λ · d−(N, a) ≥ τ then . Criterion 1
18 pruned← false
19 break

20 if λ = 1 and τ ≤ 0 and ∃ corner c of N :
d(c, r)− d(c, a) ≥ τ then . Criterion 2

21 pruned← false
22 break

23 if pruned = true then
24 L.erase(N)
25 break

26 Nx ← L.pop()

27 o∗ ← Nx

Algorithm 4: BB PruneCheck

Input: node N ; attractor a; repeller r
1 pruned← d−(N, r)− λ · d−(N, a) < τ . Criterion 1
2 return pruned

(Line 11), the list L of nodes is traversed (Lines 13–25), and
Criteria 1 and 2 are examined. If there exists a repeller r
such that after considering all attractors the pruned flag re-
mains true based on bothe criteria (Lines 17–22), then the
currently examined node is pruned (Lines 23–25). The next
theorem proves the correctness of BB.

Theorem 3. The BB algorithm returns the object with the
largest cohesion.

Proof. BB operates as BFS with the addition of the pruning
criteria. We only need to show that BB cannot miss the
answer object o∗ due to pruning. BB prunes index nodes
based on Criteria 1 and 2, and the threshold computed based
on Lemma 2. Therefore, by the correctness of these lemmas,
o∗ cannot be in any pruned node.

7. EXTENSIONS
Section 7.1 discusses the case of non-point attractors and

repellers, and Section 7.2 overviews other distance metrics.

7.1 Non-point Attractors and Repellers
We assume that attractor and repellers are not points and

define a simply connected area, i.e., without holes. Consider
such an area A. The distance d(p, A) of an arbitrary point
p in the space to area A is defined as the minimum distance
of p to any point within A.

Depending on the complexity of the area A, computing
distances to A can be computationally hard. Therefore, we
show how to use its minimum bounding rectangle, denoted

A

A

N

minmaxdist(N,A)

mindist(N,A)

Figure 5: Distance bounds of node N to area A

as A, to compute lower and upper bounds on the distance
to A of points and tree nodes.

We first start with a point p in space. It is easy to see
that the following holds:

mindist(p, A) ≤ d(p, A) ≤ minmaxdist(p, A),

where mindist(p, A) is the minimum possible distance of p
to any point within A, and minmaxdist(p, A) is the mini-
mum across all faces of A of the maximum possible distance
of p to any point on an A face.

We next consider the case of a node N and seek to bound
the distance to area A of any object o within N . A similar
result holds for any o ∈ N :

mindist(N,A) ≤ d(o, A) ≤ minmaxdist(N,A), (2)

where mindist(N,A) is the minimum possible distance of
any point in N to any point in A, and minmaxdist(N,A) is
the minimum across all faces of A of the maximum possible
distance of any point within N to any point on an A face.

Figure 5 depicts the previous bounds for an areaA bounded
by A and node N . Note that the only necessary change to
the algorithms is that whenever bounds d±(N, ·) of the dis-
tance of a node N to a non-point attractor or repellers are
required, Equation 2 is employed. A final note is that Crite-
rion 2 does not apply for non-point attractors and repellers,
simply because the geometric interpretation of the pruning
area is no longer defined by a hyperbola.

7.2 Other Distance Metrics
An MBR-based node N is associated with a rectangle de-

fined by its lower N.` and upper N.u corners. In what fol-
lows, we seek to bound d(o,p) for an object o within N ,
and some object p in the space, for the Lp distance metrics:

dp(o,p) =

 |A|∑
i=1

|o[i]− p[i]|p
1/p

.

Consider the points x−p , x+
p inside N ’s MBR defined as:

x−p [i] =

N.`[i] if p[i] < N.`[i]

p[i] if N.`[i] ≤ p[i] ≤ N.u[i]

N.u[i] if p[i] > N.u[i]

, and

x+
p [i] =

{
N.u[i] if p[i] < 1

2
(N.`[i] +N.u[i])

N.`[i] if p[i] ≥ 1
2
(N.`[i] +N.u[i])

.

Then, define values: d−p (N,p) = dp(x−p ,p) and d+p (N,p) =
dp(x+

p ,p) for which the following lemma holds.

Lemma 5. The values d−p (N,p), d+p (N,p) are a tight lower
and a tight upper bound, respectively, on dp(o,p) for any
object o ∈ N and an arbitrary object p.

Proof. The function f(x) =
(∑|A|

i=1 |x[i]|p
)1/p

is non-decreasing

Table 2: Dataset Characteristics
Dataset Cardinality Dimensions Attraction Repulsion

SYNTH 5 · 106 – 108 2 – 10 d2 d2
FACTUAL 2,120,732 2 d2 d2

MIRFLICKR 1,000,000 50 d1 d1

monotonous in each dimension i. Therefore, it holds that the
lowest (resp. highest) possible values of x in all dimensions
gives a lower (resp. upper) bound for f().

Observe that |o[i]−p[i]| ≥ |x−p [i]−p[i]| and |o[i]−p[i]| ≤
|x+

p [i]−p[i]| for any o[i] ∈ [N.`[i], N.u[i]]. Hence, the lemma
follows from the monotonicity of the Lp distance metric and
the fact that the specified x−p ,x

+
p points that determine the

values of d−p (N,p) and d+p (N,p) reside within N .

8. EXPERIMENTAL EVALUATION
Section 8.1 describes the experimental setting, while Sec-

tion 8.2 presents the results.

8.1 Experimental Setting
Methods. We implement our proposed BFS and BB al-
gorithms, discussed in Sections 5–6, for processing cohesion
queries over R-Trees. Moreover, we also implement the base-
line LIN algorithm, which performs an exhaustive linear scan
over the database of objects, as well as methods RR and SPP
described in Section 4. All algorithms are implemented in
C++ and executed on a 3GHz machine. We note that SPP
was consistenly slower than RR as it makes a series of ex-
pensive computations (finding intersections between Voronoi
edges and circles defining the search frontier [9]); hence SPP
is omitted from all figures. Moreover RR’s performance was
better than LIN only for very small or large values of weight
λ. Since we focus on the hard cases (λ = 1 and close values),
we only include RR in the first set of figures.

Datasets. Our evaluation includes both real and synthetic
datasets, whose characteristics are shown in Table 2. The
synthetic datasets, denoted as SYNTH, contain objects that
are randomly distributed around 1,000 cluster centers, se-
lected independently and uniformly at random. The proba-
bility that a cluster center attracts objects is drawn from a
Zipfian distribution with skew (zipfian parameter) 0.8.

The real dataset FACTUAL is a collection of 2,120,732
locations of places1 (restaurants, shops, etc.) in the U.S.
To check the applicability of our methods for other dis-
tance metrics, we use another real dataset, denoted as MIR-
FLICKR, which is a collection of 1,000,000 images used in
the evaluation of content-based image retrieval methods.2

In our experiments, we use the first 50 buckets (out of 150)
of edge histogram descriptors, of the MPEG-7 specification
[25], as the feature vector. This is thus a high dimensional
data set, where indices are expected to be less helpful in
pruning the search space. For the MIRFLICKR dataset,
the L1 norm (d1) is used as the distance metric.

Parameters, queries and metrics. We study the per-
formance of the algorithms by varying four parameters: (1)
the number of objects |D|, from 5M up to 100M in SYNTH,
(2) the dimensionality of the space |S|, from 2 up to 10 in
SYNTH and from 5 up to 50 in MIRFLICKR, (3) the num-
ber of repellers |R| from 1 up to 1000, and (4) the weight

1
Retrieved using the API http://www.factual.com/data/t/places

2
Available at http://press.liacs.nl/mirflickr/

Table 3: Parameters
Parameter Symbol Range Default

Number of Repellers |R| 1 – 1000 10
Weight λ 0.1 – 10 1

Cardinality (SYNTH) |D| 106 – 108 107

Dimensionality (SYNTH) |S| 2 – 10 2

Table 4: Pruning Power (|R| = 10)

λ Criterion 1 Criterion 2

0.5 75% —
0.9 59% —
1 59% 45%

1.1 60% —
2 63% —

parameter λ from 0.1 up to 10. The default values of these
parameters are specified in Table 3. Note that in all exper-
iments we assume a single attractor, |A| = 1. As we will
demonstrate in our experimental evaluation, our selected
value of λ = 1 is actually a worst-case scenario for our al-
gorithms, since their I/O and running time improvements
compared to LIN quickly improve as the value of λ deviates
from 1 (either higher or lower values of λ).

In each experiment, the set of attractors is constructed by
performing an |A|-NN query on a point uniformly selected
from the space at random. For the NBA dataset, this point
is a tuple with attributes values the best in all statistics.
The set of repellers is constructed progressively: we pose |R|
cohesion queries withA constructed as before andR initially
empty, inserting the result of each query to R. After these
steps, we obtain the set of attractors and repellers that will
ultimately be used in our evaluation for cohesion queries.
To quantify performance, we measure the number of I/O
operations, and the processing time for a cohesion query.
All reported quantities for all algorithms are measured after
the attractors and repellers have been chosen. The reported
values are in each case the averages of 10 distinct queries.

8.2 Results
Effect of λ. We first study the effect of the weight λ as
it varies from 0.1 up to 10 at the FACTUAL and SYNTH
datasets. The remaining parameters obtain their default
values, depicted in Table 3.

The results for the number of required I/O operations and
the total running time (in seconds) of the algorithms are
depicted in Figures 6 and 7 for FACTUAL and SYNTH, re-
spectively. The findings are identical between the datasets.
Please note that the y-axis in the figures is often in logarith-
mic scale. In this case, the x-axis is also logarithmic.

The number of I/O operations and running time in LIN
is independent of λ. The performance of RR is often worse
than LIN, especially its running time. Since RR was rou-
tinely outperformed by our algorithms, we omit it from the
remaining experiments. Note that our adaptation of the
SPP algorithm described in Section 2 performed even worse
than RR and it is also omitted. The effect of λ in all other
methods is similar. Our proposed algorithms offer signifi-
cant (up to 3 orders of magnitude) I/O and running time
savings over the LIN method, especially for values of λ much
lower or higher than 1. This behavior is inherent in co-
hesion queries and explains why they are more challenging
than NN or AFN queries. Large λ values assign more weight
to attraction, and thus cohesion query processing resembles

Table 5: Pruning Power (λ = 1)

|R| Criterion 1 Criterion 2

1 16% 4%
5 61% 28%
10 59% 45%
50 62% 40%
100 64% 35%

10
0

10
1

10
2

10
3

10
4

10
5

 0.1 1 10
λ

I/O Operations

RR
LIN

BFS
BB

(a) Page Accesses

10
-3

10
-2

10
-1

10
0

10
1

 0.1 1 10
λ

Time (sec)

RR
LIN

BFS
BB

(b) Time

Figure 6: Effect of λ, FACTUAL

10
0

10
1

10
2

10
3

10
4

10
5

 0.1 1 10
λ

I/O Operations

LIN
BFS

BB

(a) Page Accesses

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0.1 1 10
λ

Time (sec)

LIN
BFS

BB

(b) Time

Figure 7: Effect of λ, SYNTH

NN search. On the other hand, small λ values assign more
weight to repulsion resembling AFN search. Values around
1 mean that attraction and repulsion are equally strong,
making it harder to identify the best object.

For the challenging case of λ = 1, BFS does not perform
better than LIN. The reason is that it cannot guide the
search towards the result as efficiently as in other cases (due
to the inherent difficulty of λ = 1 and non-tight bounds),
and consequently its computational overhead (computing
bounds and prioritizing sub-trees) outweights the savings.
On the other hand, when λ = 1, BB is almost an order of
magnitude faster than LIN, thanks to its pruning criteria.

To better illustrate the running time improvements, the
important area around λ = 1 is depicted in Figure 8a, but
in this case the x-axis is in linear scale. Figure 8b shows
the corresponding results for the SYNTH dataset (using the
default parameter values). Our BB algorithm is more than
6 times faster than LIN, even when λ = 1, with the benefits
quickly increasing for smaller or larger values of λ. BFS also
provides significant improvements over LIN, but not around
the value λ = 1. The superiority of BB is attributed to the
additional pruning that can be achieved.

In order to assess the effectiveness of the individual prun-
ing criteria in BB, Table 4 details the percentage of nodes
pruned per criterion with respect to the number of nodes
encountered during cohesion query processing. Empty cells
indicate that the corresponding criterion does not apply to
the specific setting. Please note that both criteria might
prune the same node.

10
-3

10
-2

10
-1

10
0

10
1

 0.8 0.9 1 1.1 1.2
λ

Time (sec)

LIN
BFS

BB

(a) FACTUAL

10
-2

10
-1

10
0

10
1

10
2

 0.8 0.9 1 1.1 1.2
λ

Time (msec)

LIN
BFS

BB

(b) SYNTH

Figure 8: Effect of λ in range [0.75, 1.25]

10
-1

10
0

10
1

10
2

 1 10 100 1000
|R|

Time (sec)

LIN
BFS

BB

(a) FACTUAL, λ=1

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1 10 100 1000
|R|

Time (sec)

LIN
BFS

BB

(b) FACTUAL, λ=0.75

Figure 9: Effect of |R|

Effect of |R|. We now study the effect of the number
of repellers |R|, while fixing the weight at λ = 1. Recall
that this is the worst case scenario for our three algorithms.
In Figure 9a we present results on the FACTUAL dataset.
As the number of repellers increases, so does the running
time of all methods, as more distance computations need
to be performed. While more repellers offer more chances
for pruning, based on Theorem 2, what happens when |R|
increases significantly is that each repeller ends up being
close to other repellers, thus limiting the pruning power of
new repellers (recall that we insert repellers incrementally).
However, some small benefits are observed for BB, since a
100-fold increase in |R| results in a lower than 100-fold in
its running time.

The same graph, but for λ = 0.75 is depicted in Figure 9b.
As previously, when the value of λ deviates significantly from
1, both our algorithms provide running time improvements
around 2 orders of magnitude over LIN. For large values of
|R|, our algorithms have comparable performance. Table 5
shows the criteria pruning power for various |R| values.

Effect of |D|. In this experiment, we measure the effi-
ciency of queries using the synthetic SYNTH dataset, while
varying the cardinality |D| from 5M to 100M. As always,
the remaining parameters obtain their default values. Fig-
ure 10a depicts the total processing time as a function of |D|.
All methods scale linearly with the dataset cardinality. Our
BB algorithm actually scales slightly better than the other
approaches, since its relative benefits slightly increase with
the increase of |D|. While not depicting the results, we note
that for values of λ deviating significantly from 1, our BFS
and BB algorithms showed the same trends as in previously
experiments, significantly outperforming LIN.

Effect of |S|. We next study the effect of dimensionality
in processing cohesion queries, using the SYNTH dataset,
and vary the number of attributes |S| from 2 up to 10. Fig-
ure 10b depicts the total processing time as a function of |S|.

10
-1

10
0

10
1

10
2

10
3

5M 10M 20M 50M 100M
|D|

Time (sec)

LIN
BFS

BB

(a) Impact of |D|, SYNTH

10
-1

10
0

10
1

10
2

 2 3 4 5 6 7 8 9 10
|S|

Time (sec)

LIN
BFS

BB

(b) Impact of |S|, SYNTH

Figure 10: Effect of |D| and |S|, SYNTH

 0

 10

 20

 30

 40

 50

 60

 0.1 1 10
λ

Time (sec)

LIN
BFS

BB

(a) Effect of λ

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50
|S|

Time (sec)

LIN
BFS

BB

(b) Effect of |S|
Figure 11: MIRFLICKR, d1

The efficiency of all methods decreases as the dimensionality
increases. For BFS, the impact is smaller, as the algorithm
has poor performance in all cases of λ = 1. The effect of |S|
is more pronounced for BB due to the performance degrada-
tion of the underlying index (see, e.g., the study in [3]). Still,
for small or medium dimensionalities, BB remains up to 2
times faster than LIN. We note that, while not depicting it
due to space constraints, BB and BFS maintain significant
benefits over LIN for values of λ that deviate significantly
from 1, similarly to previous experiments.

Effect of distance metrics. In this experiment, we in-
vestigate the performance of our framework using the real
dataset MIRFLICKR. As already mentioned, we use the
histogram intersection distance. The used distance metrics
make more sense for the specific data sets.

Figure 11a shows the effect of the weight λ on cohesion
queries over the NBA dataset. In the chosen metrics, the
value of λ does not have a significant impact on the running
time of our BB and BFS algorithms. Both our algorithms
are faster than LIN, typically by a factor of 3 (for BFS)
and 4 (for BB). Figure 11b demonstrates the scalability of
the tested algorithms when we vary the dimensionality (|S|)
from 5 to 50. The improvements of BB and BFS over LIN
are important in all cases. For |S|=50, BFS (resp. BB) is
over 3 (resp. 4) times faster than LIN.

9. CONCLUSIONS
This work introduced the cohesion query, which given an

attractor and a set of repellers, returns the object that is
closer to the attractor and at the same time farther than
the repellers. For this problem, best-first search and branch
and bound algorithms were designed. The challenging case
of equal weight between the attraction and repulsion forces
is particularly studied and an optimized pruning criterion
was proposed. All methods have shown to be up to orders
of magnitude more efficient than a linear scan and existing

methods based on NN search.

10. REFERENCES
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM, 2009.
[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD, 1990.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In VLDB,
1996.

[4] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for improving
the performance of multimedia databases. ACM Comput.
Surv., 33(3), 2001.

[5] J. G. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[6] M. Drosou and E. Pitoura. Disc diversity: result
diversification based on dissimilarity and coverage.
PVLDB, 6(1), 2012.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[8] R. Fletcher. Practical Methods of Optimization; (2Nd Ed.).
Wiley-Interscience, New York, NY, USA, 1987.

[9] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k
bounded diversification. In SIGMOD, 2012.

[10] Y. Gao, L. Shou, K. Chen, and G. Chen. Aggregate
farthest-neighbor queries over spatial data. In DASFAA,
2011.

[11] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In WWW, 2009.

[12] J. A. Hartigan. Clustering Algorithms. Wiley series in
probability and mathematical statistics: Applied
probability and statistics. John Wiley & Sons Inc, 1975.

[13] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. TODS, 24(2), 1999.

[14] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

idistance: An adaptive b+-tree based indexing method for
nearest neighbor search. TODS, 30(2), 2005.

[15] A. Jain, P. Sarda, and J. R. Haritsa. Providing diversity in
k-nearest neighbor query results. In PAKDD, 2004.

[16] F. Korn and S. Muthukrishnan. Influence sets based on
reverse nearest neighbor queries. In SIGMOD, 2000.

[17] K. Mouratidis, D. Papadias, and S. Papadimitriou.
Tree-based partition querying: a methodology for
computing medoids in large spatial datasets. VLDBJ,
17(4):923–945, 2008.

[18] R. T. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. In VLDB, 1994.

[19] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate nearest neighbor queries in spatial databases.
TODS, 30(2), 2005.

[20] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results.
Proc. of the VLDB, 5(11), 2012.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, pages 71–79, 1995.

[22] I. Stanoi, D. Agrawal, and A. El Abbadi. Reverse nearest
neighbor queries for dynamic databases. In SIGMOD
Workshop, 2000.

[23] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and
efficiency in high dimensional nearest neighbor search. In
SIGMOD, 2009.

[24] M. J. van Kreveld, I. Reinbacher, A. Arampatzis, and
R. van Zwol. Multi-dimensional scattered ranking methods
for geographic information retrieval. GeoInformatica, 9(1),
2005.

[25] C. S. Won, D. K. Park, and S.-J. Park. Efficient use of
mpeg-7 edge histogram descriptor. Etri Journal, 24(1),
2002.

