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ABSTRACT
Large amounts of user-generated content are posted daily on
the Web, including textual, spatial and temporal informa-
tion. Exploiting this content to detect, analyze and monitor
events and topics that have a potentially large span in space
and time requires efficient retrieval and ranking based on
criteria including all three dimensions. In this paper, we
introduce a novel type of spatial-temporal-keyword query
that combines keyword search with the task of maximizing
the spatio-temporal coverage and diversity of the returned
top-k results. We first describe a baseline algorithm based
on related search results diversification problems. Then,
we develop an efficient approach which exploits a hybrid
spatial-temporal-keyword index to drastically reduce query
execution time. To that end, we extend two state-of-the-
art indices for top-k spatio-textual queries and describe how
our proposed approach can be applied on top of them. We
evaluate the efficiency of our algorithms by conducting ex-
periments on two large, real-world datasets containing geo-
tagged tweets and photos.

CCS Concepts
•Information systems → Spatial-temporal systems;
Information retrieval diversity;

Keywords
spatio-temporal keyword queries, coverage, diversity

1. INTRODUCTION
With the widespread use of online social networks and

GPS-enabled mobile devices, there are large amounts of con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996941

tent created daily containing textual, spatial and temporal
information. Typical examples include geotagged tweets,
photos or check-ins, where the textual content is a short text
or a set of tags, while the spatio-temporal content refers to
the location and time of the post. Analyzing such data is
valuable in a wide range of applications, such as event detec-
tion [23, 20], topic detection [10] and opinion mining [26].
Moreover, users often want to browse and navigate across
content in microblogs to track and monitor the evolution of
events and stories as they unfold in the dimensions of space
and time. A basic functionality for any such analysis and
exploratory search is spatio-temporal keyword queries, i.e.
queries including filters in each of these three dimensions:
text, space and time. Over the past years, both spatial key-
word queries and temporal information retrieval have been
studied extensively, exploring and combining techniques at
the intersection of these fields [12, 9, 5, 3].

With respect to spatial keyword queries, several variants
have been studied, depending on the type of textual and
spatial predicates used. The text part comprises a set of
keywords, which can be used either for ranked retrieval,
e.g. ranking documents or web pages based on term fre-
quencies, or as boolean filters, e.g. when searching through
short text messages or metadata. Similarly, the spatial part
may specify a location, in which case the results can be
ranked by proximity to it, or a spatial region, which acts
as a boolean filter. For instance, the survey presented in
[9] identifies the following types of queries: Boolean Range
Query, which applies a set of keywords and a spatial re-
gion as boolean filters, returning all matching documents;
Boolean kNN Query, which applies a set of keywords as
boolean filter, and ranks the results based on their proxim-
ity to the query location, returning the k nearest neighbors;
and Top-k kNN Query, which retrieves the top-k documents
based on an aggregate score combining both text relevance
and spatial proximity. Similarly, temporal information re-
trieval combines the notion of text relevance with temporal
relevance [5, 3]. As with space, the temporal condition may
specify either a single point in time, e.g. when ranking doc-
uments by recency, or a time interval, e.g. for retrieving all
posts within a given time window.

Nevertheless, the problem becomes even more complex
and challenging when all three dimensions need to be taken



into account during the retrieval and selection of results.
Consider a user searching microblogs for information about
a topic or event. For example, the blue dots/lines in Fig-
ures 1(a) and 1(b) depict, respectively, the spatial and tem-
poral distribution of tweets in the U.S. for a search with
keywords “obama, election”, for a period of 40 days starting
on 01/08/2012. This search returns thousands of results.
Ranking results by textual relevance is often not suitable
when it involves short texts or tags – essentially, every post
that contains the query keyword(s) is relevant. Instead, se-
lection and ranking of relevant posts based on their spatial
and temporal attributes is much more interesting. As shown
from the aforementioned query types, ranking on these di-
mensions typically assumes that a single point in time and
space is specified, so that the posts can be ranked accord-
ing to their proximity to it. However, for topics or events
that have a long span in space and time, as in this example,
there is not a single“central”point to use for spatio-temporal
ranking. Thus, there is a need for a query type that allows
for specifying a desired spatial range and time window, while
still being able to retrieve top-k results according to spatio-
temporal criteria.

To that end, we introduce in this paper a novel type
of query, the top-k Coverage and Diversity aware Spatio-
Temporal Keyword (kCD-STK) query. Intuitively, the goal
is to return top-k results, where the ranking is driven by
the spatio-temporal distribution of the posts. Thus, we
consider as more relevant, posts that lie within dense ar-
eas in the three-dimensional spatio-temporal space. Specifi-
cally, we introduce the criterion of spatio-temporal coverage,
which assigns a score to each post based on the number of
other posts that lie within a specified distance threshold to
it in the spatio-temporal dimensions. Furthermore, to avoid
over-representing these areas while missing other interesting
results, we also try to maximize the spatio-temporal diver-
sity among the selected posts. Returning to the example
presented in Figure 1, the red stars correspond to a subset
of 100 results selected by the kCD-STK query. Notice that
the selected results are more spread out in space and time,
instead of focusing around a single area, thus better repre-
senting the whole set of relevant posts.

The kCD-STK query is founded on the basic concepts com-
monly used for search results diversification. In particular,
it introduces the concept of coverage [15] in the search re-
sults diversification framework presented in [18] (see Section
2.2 for more details). By determining the relevance of each
result to the query indirectly, i.e. based on the number of
other results it covers, it allows the spatio-temporal filters in
the query to be defined more flexibly, indicating a whole spa-
tial region and a time window rather than requiring the user
to restrict his search around a specific location and point in
time. This makes the kCD-STK query more suitable for ex-
ploratory search. As the returned top-k results more closely
reflect the spatio-temporal distribution of the whole result
set, they can serve as “anchor” points for further exploration
of the available posts.

Since typical diversification problems are known to be NP-
hard, the challenge that arises in practice is how to efficiently
evaluate a kCD-STK query, so that the results can still be
retrieved in real time. The aforementioned approaches are
general frameworks for results diversification, thus none of
them deals particularly with the spatio-temporal coverage
or diversity of posts. To the best of our knowledge, our

(a) Spatial distribution.

(b) Temporal distribution.

Figure 1: Example of results returned by a boolean
query (blue) and the corresponding kCD-STK query
(red).

work is the first to introduce these criteria and to consider
their efficient evaluation in the context of spatial-temporal-
keyword queries. More specifically, the main contributions
of our work can be summarized as follows:
• We formally introduce a novel type of spatial-temporal-

keyword query, the kCD-STK query. This query allows a
keyword search to be issued with spatial and temporal
range filters, and then ranks the matching results ac-
cording to the criteria of spatio-temporal coverage and
diversity.
• We propose an efficient strategy for evaluating a kCD-
STK query. Then, we show how state-of-the-art hybrid
spatio-textual indices can be adapted and extended to
be used with this strategy for efficiently selecting the
top-k results from the whole set of relevant posts.
• We experimentally evaluate our approach, using two

large, real world datasets containing geotagged tweets
and photos. The experiments demonstrate that our
approach can effectively exploit the underlying index
structure, thus significantly reducing the time for com-
puting the top-k coverage and diversity aware results.

The rest of the paper is structured as follows. Section 2
reviews related work, focusing on spatial-temporal-keyword
queries and search results diversification. Then, the kCD-
STK query is formally introduced in Section 3, defining the
criteria for spatio-temporal coverage and diversity. Section
4 presents our approach and describes how it can be ap-
plied with state-of-the-art hybrid indices for spatial keyword
queries, after extending them to include the temporal di-
mension. Finally, Section 5 presents our experimental eval-
uation, and Section 6 concludes the paper.

2. RELATED WORK
Next, we review related work on spatial and temporal key-

word queries and on search results diversification.



2.1 Spatial and Temporal Keyword Queries
Spatial keyword queries have received a lot of attention

over the past years. The main focus is on combining spatial
and textual indices into hybrid ones, and investigating differ-
ent query evaluation strategies (e.g. text-first vs. space-first
[12]). In building hybrid index structures, various combi-
nations have been proposed, including the use of an R-tree,
grid or space filling curve for the spatial part and an inverted
file or bitmap for the textual part. A comprehensive survey
and comparison of existing approaches can be found in [9].
Characteristic examples include the IF-R*-tree, where the
top-level index is an inverted file with the postings in each
inverted list indexed by an R-tree, and the R*-tree-IF, where
the top-level index is an R*-tree with inverted files attached
to each leaf node [32]. Several similar variants exist (e.g. the
IR-tree [29]), while other works have combined inverted files
with grid [25] or space filling curves [11, 12].

Two state-of-the-art approaches for top-k spatial keyword
queries are the I3 hybrid index [31] and the RCA algorithm
[30]. The I3 index maintains a Quadtree for each keyword,
indexing the documents containing it. Each keyword is used
as a key in a lookup table and it is associated with a pointer.
If the documents containing this keyword can fit in a single
disk page, the pointer links directly to that page; otherwise,
it points to the root of a Quadtree which spatially indexes
the relevant documents. The leaf nodes of the Quadtree
point to the disk pages where the documents are stored.

The RCA approach uses only an inverted index. In partic-
ular, it maintains two inverted lists for each keyword. The
first is a standard inverted list which stores the documents
containing the keyword in decreasing order of relevance. The
second stores documents according to the Z-order encoding
of their coordinates [17]. Query processing exploits the fol-
lowing property of the Z-order encoding. Assume a spatial
bounding box R, with zmin and zmax being the Z-order en-
codings of its top-left and bottom-right corners, respectively.
Then, the Z-order encoding of any point that lies within R
has a value z ∈ [zmin, zmax]. This allows to efficiently pro-
cess top-k queries using an adaptation of the CA algorithm
[16] for rank aggregation.

All aforementioned approaches consider only the spatial
dimension of documents. On the other hand, a large amount
of research in temporal information retrieval (TIR) exists
as well (see [5, 3] for recent surveys). However, only few
works have considered both dimensions of space and time
in keyword queries. The index presented in [21] comprises a
shallow R-tree extended with an inverted index at each leaf
node to index the terms of the contained documents. To deal
with the temporal dimension, the original document ids are
replaced with new ones that are assigned chronologically,
thus facilitating the retrieval of documents within a given
temporal range.

In a different direction, the problem of continuously main-
taining top-k most relevant results over a stream of geo-
textual documents is presented in [8]. This work combines
the criteria of text relevance, spatial proximity, and recency.
Finally, other works in TIR have dealt with timelines and
summaries of event-related information in microblogs [2, 19].

However, these approaches either apply the spatio-temporal
criteria as boolean filters or use them to rank documents
based on spatial proximity and/or recency. To the best
of our knowledge, our work first introduces the criteria of
spatio-temporal coverage and diversity in keyword queries.

2.2 Search Results Diversification
Ranking search results purely by relevance often leads to

including many similar documents in the top results, hence
causing repetition and redundancy in the result set. Search
results diversification has been proposed as a more advanced
technique for selecting a subset of results to present to the
user. The goal is to improve the utility of the results by
increasing their novelty, thus improving the user experi-
ence, especially during exploratory search. More specifically,
content-based diversification aims at selecting a subset of
documents that maximizes an objective function with two
components: relevance and diversity. The former measures
how relevant a result is for the query, while the latter mea-
sures the dissimilarity or novelty of that result w.r.t. others
already selected.

Many different formulations have been proposed for search
results diversification (refer to [18, 14] for classification).
The most well-known approach is the framework proposed
in [18]. According to it, the problem is defined as selecting
a subset R∗ of the whole result set R, with |R∗| = k, that
maximizes an objective function φ, which combines the cri-
teria of relevance and diversity. There exist different ways to
define φ, leading to different variants of the problem. For ex-
ample, in the MaxSum variant, φ is defined as the weighted
sum of two components: the total relevance of documents
and the sum of pairwise distances among the documents.

As shown in [18], the MaxSum problem, as well as other
similar variants, is NP-hard by reduction to the MaxSumDis-
persion problem. Thus, greedy heuristics are used in prac-
tice to efficiently compute a diversified subset of the results.
The main approach is to incrementally construct the diversi-
fied result set by choosing at each step the object that max-
imizes a certain scoring function. A well-known function
for this purpose is the maximal marginal relevance (mmr)
[6]. An evaluation of various object scoring functions and
different heuristics can be found in [28].

Other types of diversification problems have also been
studied, such as taxonomy/classification-based diversifica-
tion [1, 27] or multi-criteria diversification [13]. Closer to
our work is the coverage problem [15]. Here, the goal is to
select the minimum subset of documents such that the se-
lected documents are diverse, i.e. have distance to each other
at least ε, and cover the whole dataset, i.e. each remaining
object lies within distance ε from a selected one. This for-
mulation is suitable for data exploration and summarization;
however, in this case the size of the selected subset is not
fixed, but depends instead on the distance threshold ε.

More recently, diversity has also been considered in the
context of publish/subscribe systems for text streams [7]. In
this setting, the top-k results are continuously maintained
over a stream of documents. A newly arriving document en-
ters the top-k results if: (a) it contains any of the query key-
words and (b) replacing the oldest document in the current
result set with the new one increases the overall relevance
and diversity of the results.

In our work, we combine the criterion of coverage from
[15] with the general diversification framework of [18]. Thus,
the relevance of each result is determined indirectly based
on the number of other results it covers from the original
set, while the number of results to return is still explicitly
specified in the query. Moreover, all aforementioned works
focus on formulating the diversification problem in a generic
manner, using abstract definitions for document relevance



and distance. Subsequently, the efficiency of computation is
addressed by introducing heuristic algorithms that compute
an approximation of the optimal solution. In our work, we
focus on the specific problem of selecting spatio-temporally
diverse subsets of results. We define concrete criteria for
spatio-temporal coverage and diversity, and we show how an
underlying spatio-temporal index can be exploited to further
speed up the computation.

3. PROBLEM DEFINITION
We first provide the basic definitions necessary to formu-

late the problem at hand.

Definition 1 (Post). A spatio-temporal post D is rep-
resented by a tuple D = 〈loc, t,Ψ〉, where loc = (x, y) are the
coordinates of the location where the post was made, t is the
timestamp of the post, and Ψ is a keyword vector containing
zero or more terms, keywords or tags contained in the post.

Definition 2 (STK Filter). A spatial-temporal-key-
word filter F is a tuple F = 〈R, T,Ψ〉, where the spatial filter
R = [(xmin, ymin), (xmax, ymax)] specifies a spatial bounding
box, the temporal filter T = [tmin, tmax] specifies a time win-
dow, and the keyword filter Ψ = {ψ1, ψ2, . . . , ψn} specifies a
set of keywords.

For the remainder of this paper, we use dot notation to refer
to a tuple’s attribute values. The next definition determines
when a post is considered relevant for a given STK filter.

Definition 3 (Relevant Posts). Given a collection
D of posts and an STK filter F , the set of relevant posts
DF contains all posts D ∈ D such that (i) D.loc ∈ F.R,
(ii) D.t ∈ F.T , and either (iii-a) D.Ψ ∩ F.Ψ 6= ∅ under OR
semantics, or (iii-b) D.Ψ ⊇ F.Ψ under AND semantics.

Notice that the difference between OR and AND semantics
is whether a relevant post must contain at least one or all
of the keywords that appear in the filter.

As discussed in Section 1, for the type of posts and STK
filters that motivate our work, i.e. exploratory search for
topics or events that are distributed across potentially large
intervals in space and time, the number of relevant posts is
typically very high. Therefore, our objective is to select a
small subset of k relevant posts that have high coverage and
diversity. To elaborate on these two notions, we first need to
introduce measures of spatial and temporal distance between
two relevant posts (w.r.t. an STK filter F ) Di, Dj ∈ DF .

The spatial distance is defined as:

ds(Di, Dj) =
d(Di.loc,Dj .loc)

σmax

where d((x, y), (x′, y′)) is the Euclidean distance between
two points and σmax is a normalization factor correspond-
ing to the length of the diagonal of F.R, i.e. the maximum
possible spatial distance between any pair of posts lying in
F.R. Note that it is possible to use other functions (e.g.
Lp norms) to measure spatial distance; the changes to our
methodology are straightforward.

Similarly, the temporal distance is defined as:

dt(Di, Dj) =
|Di.t−Dj .t|

τmax

where τmax = F.tmax − F.tmin is a normalization factor
corresponding to the maximum possible temporal distance.

As before, one could also employ other functions for the
temporal distance, e.g. to assign greater importance to more
recent posts.

We are now ready to introduce our two key notions, cover-
age and diversity. We first define them for individual posts,
and then extend the definitions to sets of posts.

Definition 4 (Coverage). Given a collection D of posts
and an STK filter F , the coverage of a post D ∈ DF is:

cov(D) =
1

|DF |
|{D′ ∈ DF : ds(D,D′) ≤ ρs & dt(D,D

′) ≤ ρt}|,

(1)
where ρs, ρt ∈ [0, 1] are unit-less spatial and temporal dis-
tance thresholds, respectively. Moreover, the coverage of a
set of posts R ⊆ DF of size k is:

cov(R) =
1

k

∑
D∈R

cov(D). (2)

Since each post in the set R can potentially cover all |DF |
relevant posts, the denominators in the above equations en-
sure that coverage takes values in the [0, 1] range.

Definition 5 (Diversity). Given a collection D of posts
and an STK filter F , the diversity of a pair of posts Di, Dj ∈
DF is:

div(Di, Dj) = w · ds(Di, Dj) + (1− w) · dt(Di, Dj), (3)

where w ∈ [0, 1] is an application-specific weight parameter
between the spatial and the temporal distances. Moreover,
the diversity of a set of posts R ⊆ DF of size k is:

div(R) =
1

k · (k − 1)

∑
Di,Dj∈R,i 6=j

div(Di, Dj). (4)

As there are k · (k − 1) ordered pairs of posts in set R, the
denominator normalizes diversity in the [0, 1] range.

We can now define the Coverage & Diversity aware top-k
STK query.

Definition 6 (kCD-STK Query). Given a collection D
of posts, a Coverage and Diversity aware top-k STK query
specifies an STK filter F and seeks for a result set R∗ of k
relevant posts such that:

R∗ = arg max
R⊆DF ,|R|=k

{(1− λ) · cov(R) + λ · div(R)}, (5)

where λ ∈ [0, 1] is a parameter determining the tradeoff be-
tween coverage (λ = 0) and diversity (λ = 1).

4. METHODOLOGY
We now present our methodology for evaluating the kCD-

STK query. It is split into two phases; we first determine the
set of relevant posts, and then construct the result set by
identifying k posts with high coverage and diversity. For
each phase, we state the objective, outline the proposed
approach, and then elaborate on the implementation using
state-of-the-art index structures from the literature.

4.1 Finding Relevant Posts
For a given STK filter F , the objective of the first phase is

to obtain the posts that satisfy F , assuming OR or AND se-
mantics. Our approach is to employ existing techniques used



to retrieve documents based on spatial and textual criteria,
and extend them to act as filters and, more importantly, to
be able to handle the temporal information. Therefore, we
discuss next two distinct implementations, one based on the
RCA approach [30], and another using the I3 index [31].

RCA-based Implementation.
We follow the rationale of the RCA method for ranking

documents based on a spatio-textual score. Recall that in
this method each keyword is associated with two postings
lists, one which sorts documents in descending order of tex-
tual relevance, and another which sorts documents accord-
ing to their Z-order encoding of their locations. For our
purposes, the first postings list can be ignored. To facilitate
filtering using spatial and temporal predicates, we compute
the Z-order over the 3D spatio-temporal space. The filtering
property of the Z-order encoding, as described in Section 2.1,
still holds, and it is used to eliminate posts that lie outside
the given spatio-temporal filters.

In particular, the retrieval of relevant posts proceeds as
follows.
• Determine the Z-order range [z−, z+] that minimally

covers the spatial F.R and temporal F.T ranges spec-
ified by the filter F .
• For each keyword ψ in the filter F.Ψ, retrieve from

the corresponding postings list only those posts with
Z-order encoding in the [z−, z+] range.
• For each keyword, eliminate false positives, i.e. posts

within the [z−, z+] range that do not satisfy the spatial
F.R and temporal F.T ranges. This is a necessary step
given the inherent limitation of Z-order encoding [30].
• Merge the lists with the surviving posts per keyword.

For OR semantics, return the union, while for AND
semantics, return the intersection of the lists.

I3-based Implementation.
We employ the I3 index and the associated methodology

presented in [31] for retrieving documents based on a spatio-
textual score. As with the case of the RCA-based implemen-
tation, we need to extend the underlying index structure to
support retrieval using both spatial and temporal criteria.
Therefore, instead of having a Quadtree associated with each
keyword, we construct an Octree indexing documents in the
3D spatio-temporal space. Then, the retrieval of relevant
documents proceeds largely similar to [31].

The algorithm is best understood by considering a single
virtual (i.e. non-materizalized) Octree. We say that a key-
word is dense for a particular cell, if the number of posts
that lie within the cell and contain this keyword exceeds the
disk page capacity. With each cell, we associate the set of
posts that have a non-dense keyword, and for each dense
keyword a signature summarizing the posts with that key-
word. A cell has children cells if it has at least one dense
keyword.

To find the relevant posts for F , we perform a depth-first
traversal of the Octree. A cell is only visited if it overlaps
with the spatial F.R and temporal F.T ranges. In addition,
a cell is pruned if it can be guaranteed that the subtree
rooted at this cell contains no relevant posts. This check
differs depending on the keyword filter semantics. For OR
semantics, the cell is pruned if the associated set of posts is
empty and the union of the signatures for the non-dense key-
words among F.Ψ is empty. For AND semantics, the cell is

pruned if no associated post is contained in the intersection
of the signatures for the non-dense keywords among F.Ψ.
At the end of this traversal, the set of posts associated with
all non-pruned leaf cells constitute the set of relevant posts.

4.2 kCD-STK Query Processing
Processing a kCD-STK query is a computationally hard op-

timization problem. Indeed, if we set parameters λ = 1 and
w = 1 for instance, we seek for a set R of k posts that max-

imize the objective function
∑

i 6=j∈R

d(Di.loc,Dj .loc). This

is precisely the 2D-MaxSumDispersion problem for which
no exact, polynomial time algorithm is known (although it
remains open whether 2D-MaxSumDispersion is NP-hard,
similar MaxSumDispersion problems are [22]). Therefore,
we turn to heuristic algorithms for constructing the result
set of a kCD-STK query.

In particular, we adopt the standard greedy method for
constructing the set incrementally, where at each step the
document that has the highest marginal gain on the objec-
tive function is added. It is known that such an approach
gives a 2-approximation for the general MaxSumDispersion
problem [4]. In our context, the objective function for a set
of posts R is:

φ(R) = (1− λ) · cov(R) + λ · div(R),

and the marginal gain g(D) ≡ φ(R ∪ {D}) − φ(R) for in-
cluding D ∈ DF rR is:

g(D) =
1− λ
k
· cov(D) +

λ

k · (k − 1)

∑
Di∈R

div(D,Di). (6)

In other words, the marginal gain on the objective func-
tion of post D is the weighted sum of its coverage and its
diversity to the existing posts in the set R. In what follows,
we first describe the straightforward approach of implement-
ing the greedy algorithm, which will serve as our baseline.
Then, we introduce a generic index-aware methodology that
takes advantage of the underlying index structure in order
to speed up the greedy algorithm.

4.2.1 Baseline Greedy Algorithm
Once all relevant posts have been identified, the Baseline

Greedy Algorithm, denoted as BSL, directly implements the
greedy heuristic for the MaxSumDispersion problem.

Algorithm 1 shows the pseudocode for BSL. Initially, the
set of relevant posts is retrieved (line 1), following the method-
ology discussed in Section 4.1. Then the result set is built
incrementally. At each iteration (lines 3–7), the marginal
gain of each post is computed by applying Equation 6 (line
5). The post with the highest marginal gain is selected for
insertion in the result set (lines 6–7). The algorithm termi-
nates as soon as k posts have been selected (line 3).

When computing the marginal gains, one thing to notice
is that the coverage term remains fixed across all iterations
for a particular post D. The reason is that cov(D) depends
on the fixed set DF of relevant posts, rather than the partial
result set. Therefore, we only need to compute this first term
once for all posts.

4.2.2 Index-Aware Greedy Algorithm
The main drawback of the BSL algorithm is that it com-

putes (or updates) the marginal gain for every relevant post
up to k times. When the number of relevant posts |DF | is



Algorithm 1: Algorithm BSL

Input: document collection D, STK filter F , result set size k
Output: coverage and diversity aware result set R∗

1 DF ← FindRelevantDocs(D, F ) . Section 4.1
2 R∗ ← ∅
3 while |R∗| < k do
4 foreach D ∈ DF do
5 compute g(D) . Equation 6

6 find document D∗ that maximizes g(D∗)
7 R∗ ← R∗ ∪ {D∗}

large, this constitutes a performance bottleneck. It would
be desirable to avoid computing the marginal gain for posts
that are most likely to not be included in the result set. To
achieve this goal, we propose the Index-Aware Greedy Al-
gorithm, termed IDX, that takes advantage of the existing
index structure to speed up kCD-STK query processing. We
first overview IDX without specific assumptions on the in-
dex, and later delve into implementation details assuming
explicitly an RCA or an I3 approach. We emphasize that
our methodology is generic and can be readily applied over
other spatio-textual indices (provided they can be extended
to handle temporal information).

The basic idea of IDX is to form groups by clustering rel-
evant posts that have similar spatial and temporal infor-
mation. Thanks to the inherent spatio-temporal clustering
of the underlying index, the groups are constructed with
negligible overhead. Then, at each iteration and for each
group we compute an upper bound on its marginal gain.
Groups that are promising, i.e. have a high upper bound,
are examined more closely by looking at their members. On
the other hand, at each iteration, unpromising groups can
be dismissed, thus avoiding to compute the exact marginal
gain of their members.

With each group G, we associate the following informa-
tion.
• Its cardinality |G|.
• Its spatial extent G.R, which is a rectangle that mini-

mally bounds the locations of the group’s posts.
• Its temporal extent G.T , which is a time interval that

minimally bounds the timestamps of the group’s posts.
• A lower bound G.cov− on the coverage of any post in

the group.
• A set G.par that contains groups which are partially

covered by G. We say that a post covers another if
their spatial and temporal distances are within the spa-
tial and temporal distance thresholds respectively. We
say that a group G partially covers another G′, if there
can exist a post D in the former, and two posts in the
latter such that one is covered by D, while the other
is not.
• A value G.div+ which is an upper bound on the diver-

sity of any post in the group to all posts in R.
Based on this information, we can compute an upper bound

g(G)+ on the marginal gain of any member D in group G
as follows:

g(G)+ =
1− λ
k
·

G.cov− +
1

|DF |
∑

G′∈G.par

|G′|

+
λ

k · (k − 1)
G.div+.

(7)
We next discuss how to derive the group information. To

compute G.cov− and construct G.par, we iterate across the
groups, and for each such group G′, we compute spatial and

temporal bounds:

d−s (G,G′) =
mindist(G.R,G′.R)

σmax
and d+s (G,G′) =

maxdist(G.R,G′.R)

σmax

d−t (G,G′) =
mindist(G.T,G′.T )

τmax
and d+t (G,G′) =

maxdist(G.T,G′.T )

τmax
,

where the mindist and maxdist are the standard functions
that return the minimum and maximum possible distances
respectively between ranges (Euclidean distance for spatial
ranges, and absolute value for temporal ranges). Intuitively,
these values bound the spatial and temporal distances be-
tween any pair of posts from groups G and G′. We thus
distinguish the following cases:
• d+s (G,G′) ≤ ρs and d+t (G,G′) ≤ ρt: we increment

G.cov− by |G′|
|DF |

.

• d−s (G,G′) ≤ ρs and d−t (G,G′) ≤ ρt < d+t (G,G′): we
insert G′ into G.par.
• d−s (G,G′) ≤ ρs < d+s (G,G′) and d−t (G,G′) ≤ ρt: we

insert G′ into G.par.
Regarding G.div+, notice that its value only increases

across iterations of the greedy algorithm, as new posts are
inserted in the result set R. Therefore, at the end of an
iteration, assuming D∗ is inserted in R, we update G.div+

as:

G.div+ ← G.div+ + w · maxdist(G.R,D∗.loc)

σmax
+ (1− w) · maxdist(G.T,D∗.t)

σmax
.

(8)
We are now ready to present the IDX algorithm, whose

pseudocode is shown in Algorithm 2. As in BSL, the first step
is to retrieve the relevant posts using the methodology from
Section 4.1 (line 1). Then these are clustered into the set
of groups G (line 2). The exact partitioning depends on the
underlying index structure; we briefly discuss this later. The
next step is to compute the coverage information associated
with each group (lines 3–7). In particular, for each group G,
the spatial and temporal bounds are computed (line 6) and
the value G.cov− and set G.par is updated according to the
three cases described earlier.

Subsequently, the main loop of the algorithm begins (lines
10–36), where at the end of each iteration a new post is
added to the result set R∗ until k posts are selected. Note
that there are three primary data structures in IDX; the set
of groups G, the set of seen posts Dseen, and the heap H
which directs the examination of groups in a best-first man-
ner. Initially, G contains all groups, and Dseen is empty. In
the heap, an entry

〈
g(G)+, G

〉
for each group G is inserted,

where the upper bound on the marginal gain g(G)+ is the
key, and is computed from Equation 7 (lines 12–14). Also,
in the heap, an entry 〈g(D), D〉 is inserted for each post D
having key its current marginal gain g(D).

The inner loop (lines 17–29) examines entries from the
heap H until the top entry with the highest key (correspond-
ing to marginal gain or an upper bound thereof) belongs to
a post (line 17). At that point, this entry 〈g(D∗), D∗〉 is de-
heaped (line 31), and the corresponding post is inserted in
the result set (line 32). Because a new result has just been
found, the information regarding the diversity of all groups
(lines 33–34) and all seen posts, except D∗, (lines 35–37) is
updated.

In an iteration of the inner loop (lines 17–30), where en-
try

〈
g(G)+, G

〉
is deheaped, the following takes place. The

group is removed from the set G of groups (line 19), and
all its posts are inserted in set Dseen (line 21). Moreover,



Algorithm 2: Algorithm IDX

Input: document collection D, STK filter F , result set size k
Output: coverage and diversity aware result set R∗

1 DF ← FindRelevantDocs(D, F ) . Section 4.1
2 cluster DF into a set of groups G . index dependent
3 foreach group G ∈ G do
4 G.cov− ← 0; G.par ← ∅
5 foreach group G′ ∈ G such that G′ 6= G do

6 compute bounds d−s (G,G′), d+s (G,G′), d−t (G,G′),

d+t (G,G′)

7 update G.cov− and G.par according to the three cases

8 Dseen ← ∅ . set of seen posts
9 R∗ ← ∅

10 while |R∗| < k do
11 H ← ∅ . initialize heap
12 foreach group G ∈ G do
13 compute g(G)+ . Equation 7

14 enheap in H entry
〈
g(G)+, G

〉
15 foreach document D ∈ Dseen do
16 enheap in H entry 〈g(D), D〉
17 while H.top is a group entry do
18 deheap from H top entry

〈
g(G)+, G

〉
19 G ← G r {G}
20 foreach document D ∈ G do
21 Dseen ← Dseen ∪ {D}

. compute the coverage of D

22 cov(D)← G.cov−

23 foreach document D′ ∈ G′ ∈ G.par do
24 if ds(D,D

′) ≤ ρs and dt(D,D
′) ≤ ρt then

25 cov(D)← cov(D) + 1
|DF |

. compute the diversity of D
26 div(D)← 0

27 foreach document D′ ∈ R∗ do
28 div(D)← div(D) + div(D,D′)

. compute the marginal gain of D

29 g(D) = 1−λ
k · cov(D) + λ

k·(k−1)
div(D)

30 enheap in H entry 〈g(D), D〉
31 deheap from H top entry 〈g(D∗), D∗〉
32 R∗ ← R∗ ∪ {D∗}
33 foreach G ∈ G do
34 update G.div+ . Equation 8

35 Dseen ← Dseen rD∗

36 foreach D ∈ Dseen do
37 g(D)← g(D) + λ

k·(k−1)
div(D,D∗) . update g(D)

for each post D ∈ G, its exact coverage cov(D) (lines 22–
25), its diversity div(D) (lines 26–28), and ultimately its
marginal gain g(D) (line 29) are computed. When com-
puting the coverage of D, its group coverage information,
G.cov− and G.par, is used to speed up the process. Then
an entry 〈g(D), D〉 for this post is enheaped (line 30).

RCA-based Implementation.
The underlying index structure determines how relevant

posts are grouped together. In the inverted index-based
RCA approach, posts are spatio-temporally clustered based
on their Z-order value. Therefore, a group contains relevant
posts that have the same Z-order value.

I3-based Implementation.
In the I3 index, posts are grouped together in Octree

spatio-temporal cells. Therefore, a group contains relevant
posts that reside in the same Octree cell.

5. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of

our approach, using two large-scale, real-world datasets of
geotagged tweets and photos. We first discuss the experi-

mental setup, outlining the datasets, queries and parameters
used in the experiments, and then we present the results.

5.1 Datasets
Next we describe the two datasets used in the experi-

ments. The first dataset is a collection of geotagged tweets
that has also been used in [8] and is provided by the au-
thors1. It comprises 20M tweets between April and Decem-
ber 2012. The second dataset comprises photos from Flickr,
and is provided by Yahoo! [24]. From the original data,
we collected a subset of 20M geotagged photos with dates
between 2010 and 2014. In both datasets, the posts have a
worldwide coverage. The number of distinct keywords is ap-
proximately 1.8M for Twitter and 1.3M for Flickr, whereas
the average number of keywords per post is 5.7 and 8.4, re-
spectively. The detailed characteristics of the datasets are
shown in Table 1. The table also shows the disk space re-
quired to store the raw files as well as the constructed in-
dices, both for the I3-based and the RCA-based implemen-
tations. Note that these values refer to the extended ver-
sions of those indices that include also the time dimension.
Moreover, to evaluate the scalability of our approach, we ad-
ditionally sampled five subsets from each dataset, with sizes
ranging from 4M to 20M.

5.2 Queries and Parameters
To create a set of realistic and meaningful queries for the

above datasets, we combined search terms found in trend-
ing Twitter topics in 20122 as well as popular tags used
in Flickr3. The goal was to construct queries that reflect
exploratory search, having a few hundreds or thousands of
results distributed across space and time. Thus, we selected
10 queries, each one having in turn 3 variants, comprising,
respectively, 1, 2 or 3 keywords. The queries used are listed
in Table 2. In the experiments, we assume OR semantics
when using more than one keywords in the query, in order
to increase the number of relevant posts. Table 3 lists the
average number of relevant posts for these queries in the
Twitter and Flickr datasets (for default values of the spatial
and temporal filters R and T ).

In addition to query keywords, we also vary the size of
the spatial and temporal filters. For the former, we use 5
bounding boxes of increasing sizes over the U.S., covering
an area ranging, approximately, from 4 million km2 up to
12 million km2. For the latter, we use 5 time intervals start-
ing on 01/08/2012 and having duration from 15 up to 75
days. Moreover, we vary the parameter k, i.e. the size of
the diversified result subset, from 20 up to 100. Finally, we
experimented with different values for the thresholds ρs and
ρt. These settings are summarized in Table 4 (default values
are shown in bold).

5.3 Results
Next, we present the results of our experimental evalua-

tion. Specifically, we compare the following four methods:
(a) the baseline approach over the I3-based index (BSL-I3)
and the RCA-based index (BSL-RCA) and (b) our proposed
index aware approach over the I3-based index (IDX-I3) and
the RCA-based index (IDX-RCA). All algorithms were imple-
mented in Java. In particular, for the I3 and RCA indices we

1http://www.ntu.edu.sg/home/gaocong/datacode.htm
2https://2012.twitter.com/en/trends.html
3https://www.flickr.com/photos/tags/



Table 1: Datasets used in the experiments.

Dataset
Number of Number of Average Temporal Spatial Disk Index Index
geotagged distinct number of coverage coverage storage size size

posts keywords keywords (I3-based) (RCA-based)

Twitter 20M 1,836,679 5.7 Apr.-Dec. 2012 Worldwide 1.5GB 29GB 11GB
Flickr 20M 1,306,785 8.4 2010-2014 Worldwide 2.3GB 79GB 16GB

Table 2: Queries used in the experiments.

Query Term 1 Term 2 Term 3

Q1 obama election president
Q2 olympic games london
Q3 iphone apple ipod
Q4 nascar race car
Q5 kindle amazon ebook
Q6 nba basketball sports
Q7 economy market trading
Q8 war weapons violence
Q9 concert festival show
Q10 vacation summer trip

Table 3: Average number of relevant posts.

Dataset |Ψ| = 1 |Ψ| = 2 |Ψ| = 3

Twitter 2,891 6,461 13,395
Flickr 486 1,021 1,699

Table 4: Parameters used in the experiments.

Parameter Values

Number of geotagged posts (N) (106) 4, 8, 12, 16, 20
Number of query keywords (|Ψ|) 1, 2, 3
Spatial filter size (R) (106km2) (approx.) 4, 6, 8, 10, 12
Temporal filter size (T ) (days) 15, 30, 45, 60, 75

Size of diversified result subset (Rk) 20, 40, 60, 80, 100
Spatial coverage threshold (ρs) (%) 2, 4, 6, 8, 10
Temporal coverage threshold (ρt) (%) 2, 4, 6, 8, 10

extended the code that was kindly provided by the authors
of [31, 30]. The experiments were conducted on a server
with 48GB memory and Intel Xeon E5-2420 v2 processor,
running Ubuntu 14.04. In each experiment, we vary one of
the parameters listed in Table 4, setting the rest to their
default values. The execution time is then measured by ex-
ecuting each of the 10 queries listed in Table 2 5 times and
reporting the average.

5.3.1 Increasing the dataset size
First, we evaluate the scalability of our approach by grad-

ually increasing the dataset size. For this purpose, we have
sampled both datasets, Twitter and Flickr, creating five sub-
sets for each, with sizes varying from 4M to 20M posts. The
results for the average query execution time are shown in
Figure 2.

For all methods, execution time increases with the size of
the dataset. However, the index aware approach shows much
better scalability compared to the baseline. This observation
is particularly evident for the Twitter dataset, while less so
for the Flickr dataset. The reason for this has to do with the
different selectivity of the queries in the two datasets (see
also the discussion in Section 5.3.2). Focusing for example
on the I3-based implementation for Twitter, we can observe
the following. Although the average query latency for BSL-

I3 starts at below 0.5 seconds, it quickly increases reaching
up to more than 3 seconds, whereas at the same time IDX-I3

(a) Twitter (b) Flickr

Figure 2: Time vs. dataset size.

still remains below 0.5 seconds. This better scalability of the
index aware method results from the fact that it exploits the
underlying index structure to effectively prune large portions
of the posts that do not contribute to the final result.

Another interesting observation from the Twitter dataset
comes from examining the relative performance of the two
different implementations. First, comparing the two base-
lines, we can see that BSL-RCA performs better than BSL-I3.
Since the baseline method does not exploit the underlying
index, this can be attributed to the fact that the STK filter
is evaluated faster with the RCA-based index. However, for
the index aware method, we can see that although both IDX-

I3 and IDX-RCA clearly outperform their respective baselines,
the difference is even higher for IDX-I3, which appears even-
tually to be slightly faster than IDX-RCA. This indicates that
the index aware method is able to effectively exploit the un-
derlying index in both cases, but the gain is even higher for
the I3-based index. This can be attributed to the fact that
the I3-based index is more effective during spatio-temporal
filtering, whereas the RCA-based index, relying on the Z-
order encoding, has the additional overhead of filtering out
the false positives. This behavior appears to be consistent
also for the rest of the experiments described below.

5.3.2 Decreasing the selectivity of the conditions in
the query

Next, we examine the effect of changing the selectivity
of the query filters. This involves three subsets of experi-
ments, corresponding to each of the dimensions addressed:
(a) increasing the number of keywords, (b) increasing the
size of the spatial region, and (c) increasing the size of the
time window. Each of these conditions is examined sep-
arately, and the results are shown in Figures 3, 4 and 5,
respectively. Note that increasing the number of keywords
(under OR semantics), as well as the size of the spatial or
the temporal filter, essentially have the same main effect:
the number of relevant posts that match with the STK filter
of the query increases. In other words, this increases the size
of the original result set, from which the top-k results have
to be selected.

In all experiments, the index aware methods clearly out-
perform their respective baselines. More specifically, when
the selectivity of the filters is high, the differences are smaller,
since the baseline method achieves comparable performance,



(a) Twitter (b) Flickr

Figure 3: Time vs. number of keywords.

(a) Twitter (b) Flickr

Figure 4: Time vs. spatial region size.

(a) Twitter (b) Flickr

Figure 5: Time vs. time window size.

having to deal with relatively few relevant posts. However,
this drastically changes as soon as the filters start to be-
come less selective, allowing for more posts to match. For
example, consider the case of the Twitter dataset. Although
the average query latency for BSL-I3 is initially below 1 sec-
ond, it quickly increases up to 10 seconds or more as the
selectivity of the filters decreases. In contrast, IDX-I3 is sig-
nificantly less affected, with the average query latency in this
case remaining within 1 or 2 seconds, even when the filters
reach up to 3 keywords, 12 million km2 or 75 days. Simi-
lar observations can be made also for the Flickr dataset. In
that case, although the absolute values of query latency are
overall lower, the same differences and trends can be clearly
observed. This behavior demonstrates the effectiveness of
the pruning strategies and in particular the benefit of us-
ing the underlying index structure to prune a large number
of comparisons when the size of the original set of relevant
posts becomes higher.

5.3.3 Increasing the number of results
For the next experiment, we evaluate the effect of the pa-

rameter k. The results are shown in Figure 6. For all cases,
the index aware methods achieve significant gains over their
respective baselines. For instance, for the Twitter dataset,
the average query latency for IDX-I3 and IDX-RCA remains
below 1 second, while reaching up to 4 seconds for BSL-I3.
The differences are similar for the Flickr dataset as well,
with the baseline methods exhibiting even worse scalabil-

(a) Twitter (b) Flickr

Figure 6: Time vs. number of results.

(a) Twitter (b) Flickr

Figure 7: Time vs. coverage thresholds.

ity in this case. Interestingly, the performance of the index
aware method appears to not be significantly affected by
the increase of k. This can be attributed to the fact that,
as mentioned in Section 4.2, during the iterations that se-
lect the next result to be included in the top-k set, some
computed values can be cached and reused in subsequent
iterations. Thus, although increasing k means that more
iterations have to be performed, the additional cost that is
incurred gradually decreases.

Regarding the comparison between the I3-based and RCA-
based implementations, here we can clearly observe a simi-
lar behavior as discussed in Section 5.3.1. For the baseline
method, the RCA-based index again performs better, re-
quiring less time to apply the STK filter. However, this
difference is eventually overcome as the index aware method
is again able to more effectively exploit the I3-based index.
Thus, the final result is reversed, with IDX-I3 achieving the
best performance.

5.3.4 Varying the coverage thresholds
Finally, we examine the effect of the spatial and temporal

thresholds, ρs and ρt, which determine the radius for cov-
erage for each document. The results are shown in Figure
7. Again, query latency is significantly lower for the index
aware methods compared to the baselines. In addition, we
can see that the baseline methods do not seem to be af-
fected by this parameter, since the number of comparisons
that need to be performed is not affected by these values.
Interestingly, this can also be observed for the index aware
methods. Notice that these thresholds can be set at query
time, thus the underlying index structure is constructed in-
dependently of them. Hence, this observation shows that
the proposed approach is robust, in the sense that it does
not require to fine tune the underlying index according to
these thresholds in order to achieve a benefit through the
pruning.

Moreover, comparing the performance of the I3-based and
RCA-based implementations, the results are consistent with
the findings of the previous experiments. Again, BSL-RCA



shows an advantage over BSL-I3, but IDX-I3 achieves the
best performance, having a higher gain that overcomes also
this initial difference.

6. CONCLUSIONS
In this paper, we have introduced a novel type of spatial-

temporal-keyword query, the kCD-STK query. This query is
based on two key notions, spatio-temporal coverage and di-
versity, which are formally defined. In particular, the query
is formulated similarly to other search results diversification
problems, which allows us to derive a baseline approach for
its evaluation. Then, we focus on developing a more effi-
cient strategy for processing kCD-STK qeuries, which allows
to exploit an underlying hybrid (spatial-temporal-keyword)
index not only for the first part, i.e. the filtering of relevant
posts, but also for the second part, i.e. the coverage and di-
versity aware selection of the top-k results. To that end, we
have considered two state-of-the-art spatio-textual indices,
which we extended to include also the time dimension, and
we have shown how our proposed index aware approach can
be applied on top of those structures.

To validate and evaluate our approach, we have conducted
an experimental evaluation on large real-world datasets con-
taining geotagged tweets and photos. The results have shown
that our optimized approach manages to successfully exploit
the available index to significantly reduce the query execu-
tion time compared to the baseline algorithm. This holds for
both indices that have been considered, namely the I3-based
and the RCA-based implementations.

In the future, an interesting direction is to investigate how
the proposed concepts and approach can be applied when
dealing with streams of spatio-temporal posts.
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