
Finding The Most Preferred Path
Dimitris Sacharidis

Institute of Software Technology and

Interactive Systems

Technische Universität Wien, Austria

dimitris@ec.tuwien.ac.at

Panagiotis Bouros

Department of Computer Science

Aarhus University, Denmark

pbour@cs.au.dk

Theodoros Chondrogiannis

Department of Computer Science

Free University of Bozen-Bolzano,

Italy

tchond@inf.unibz.it

ABSTRACT
Consider a road network, and let the preferred subnet consist of

the roads a driver is more acquainted to and hence tends to follow.

In this paper, we study the problem of finding the most preferred

path between two network nodes; we consider two variants of this

problem. We first target the Most Preferred Unrestricted Path (MPUP)
that has the lowest traveling time in the non-preferred subnet; this

problem was introduced in the literature as identifying the safest

path though safe zones. As MPUP imposes no constraints on the total

traveling time, we then introduce the Most Preferred Near Shortest
Path (MPNSP) that has the lowest traveling time in the non-preferred

subnet among all paths which are not much slower than the short-

est path. We focus on the efficient evaluation of both problems by

proposing solutions with simple pre-processing steps. An extensive

evaluation demonstrates the efficiency of our techniques compared

to the existing method for MPUP and to the state-of-the-art on com-

puting multi-criteria shortest paths for MPNSP.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;

KEYWORDS
Route Planning, Road Networks, Query Services, Shortest Path,

Near-Shortest Path, Multi-criteria Shortest Path

1 INTRODUCTION
The proliferation of navigation devices, such as smartphones with

GPS receivers, has renewed the interest in algorithms for obtaining

optimal routing (driving or walking) directions. Conventional rout-

ing operates under the assumption that traveling time or distance

is the most important optimization objective. Hence, a plethora of

methods have been proposed that answer shortest path queries in

almost constant time, even for continental sized networks; [5, 41]

offer a complete survey and an experimental evaluation. In practice

however, there exist a number of hard-to-formalize factors that

affect people’s routing decisions and so, reaching the destination as

fast as possible is not necessarily the optimal way of moving. In an

effort to deliver personalized routing, a number of research work

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5490-5/17/11. . . $15.00

https://doi.org/10.1145/3139958.3140029

has focused on extracting moving habits and patterns or popular

paths from historical trajectory data, e.g., [12, 13, 17, 30, 32, 42].

In this work, we investigate the computation of the most pre-

ferred way of moving between two locations under a setting that

has received very little attention in the past. Given a road network,

there exist parts of the network that a person is more familiar with

or is more interested in moving through in practice; we call this

the preferred (sub-)network. Essentially, the objective of optimal

routing is no longer to reach the destination as fast as possible but

to travel as much as possible inside the preferred network.

Motivating scenarios. Every person has some routes or paths on

the road network for commuting regularly to work, taking children

to school, going to themarket or visiting friends. In need of reaching

a part of the city for the first time, it is fair to assume that a person

would prefer to drive along familiar roads, whenever possible. Such

behavior comes very natural as drivers tend not to stray from

known paths, and are usually reluctant to explore alternative ways,

e.g., out of fear of getting lost. As another scenario, consider a

visitor to a city focusing on particular neighborhoods due to their

interesting venues and sights or simply because they are safe. It is

reasonable to assume that during sightseeing or even when trying

to reach a particular city location, this person would like to travel

as mush as possible through these neighborhoods. Finally, a person

riding a bike for his everyday commuting would find great value

in driving as much as possible through parts of the city where

dedicated bike lanes are available.

Contributions. We study two variants of the most preferred rout-

ing. First, we try to minimize solely the time spent outside the

preferred network formulating the Most Preferred Unrestricted Path
(MPUP). Essentially, computing MPUP resembles a shortest path prob-

lem where the cost of moving inside the components of the pre-

ferred graph is zero. This problem was introduced in [3, 4] as the

safest path via safe zones for Euclidean spaces but also studied

for road networks; to the best of our knowledge, this is the most

relevant work to ours. The authors proposed the HyperEdges algo-

rithm which employs a dense hypergraph with every component of

the preferred network serving as a node. However, the algorithm

struggles as it traverses not only this hypergraph, but also performs

two single-source all-targets shortest path searches on the road

network. Further, the expensive offline pre-processing step of con-

structing the hypergraph, renders this solution inefficient in the

presence of updates. To deal with the weakness of HyperEdges,

we design a novel approach based on simple pre-processing that

compresses the road network and on a single online shortest path

search on this compressed network to compute MPUP. Our experi-
ments demonstrate the advantage of our method with respect to

both the offline pre-processing and the online computation of MPUP.

https://doi.org/10.1145/3139958.3140029

Under the aforementioned setting, a recommended path may

have arbitrary total time as the cost of traveling inside the preferred

network is ignored. We next study a more practical scenario where

one still prefers to move as little as possible outside the preferred

network but at the same time, can only afford a specific increase of

the total travel time. For this purpose, we introduce the problem

of computing the Most Preferred Near Shortest Path (MPNSP); an
early study on the problem was conducted in [8]. Note that our

MPNSP differs from the safest path via preferred zones (SPPZ) also

proposed in [3, 4], but not studied for road networks. Essentially,

SPPZ looks for a path that minimizes a linear combination of the

time spent inside and outside the preferred network; however, the

recommended path may still be arbitrary long and potentially of

little value for the user. Amore distinguishing feature of MPNSP over
SPPZ is that the former looks for the best among sub-optimal (i.e.,
near shortest) paths and thus standard shortest path algorithms are

not applicable, while the latter essentially looks for optimal paths

after adapting the weights along edges and thus can be accelerated

using standard shortest path techniques.

As the quality of a path in the MPNSP problem is measured by two

criteria, it is more closely related to finding the set of pareto-optimal

paths or path skyline. In Section 4.1, we describe a baseline solution

to MPNSP, which employs the state-of-the-art path skyline algorithm

[27] optimized by pareto-prep [36]. However, as we discuss in Sec-

tion 4 and verify in Section 5, such a path skyline based approach

cannot take advantage of the special characteristics of MPNSP. To
this end, we propose a novel algorithm termed ALGO-U which

makes some important observations regarding the nature of the

problem. This allows ALGO-U to compute and progressively refine

an upper bound of the solution and hence, dramatically reducing

the search space as shown by our experimental analysis.

Outline. The remainder of this paper is organized as follows. Sec-

tion 2 introduces notation and defines two variants of the most

preferred path. Then, Section 3 addresses the efficient computation

of MPUPwhile Section 4 targets MPNSP. Section 5 presents our exper-

imental evaluation of our methodology for both problems. Finally,

Section 6 discusses related work and Section 7 concludes this work.

2 PRELIMINARIES
Section 2.1 presents the necessary background and notation while

Section 2.2 formally introduces the problems at hand.

2.1 Notation
First, we define the graph representation of a road network.

1

Definition 2.1 (Network). The network is a undirected weighted

graph G(N ,E) where N is a set of nodes that represent the road

intersections and E ⊂ N ×N is a set of edges that represent the road

segments. Each edge (i, j) is associated with a weight wi, j ∈ R
+

that captures its traveling time.

A path p on the network is a finite sequence of edges which

visits a network node at most once. The total time Tp of path p is

the sum of weights of its edges. The shortest path from a source

node s to a target node t is a path that has the minimum total time

1
For simplicity, we represent a road network as a undirected graph but our ideas can

also be applied in case of a directed graph.

cbas

d e

ht i j

g

4

6

3

1

2

2 3

2

3 1

1

2

f

1

2

1

2

preferred zone z2

preferred zone z1

Figure 1: An example of a network G; preferred edges are
shown in bold.

among all possible paths from s to t . This minimum total time from

s to t is called the distance d(s, t).
We next define the preferred network, which is a subgraph of G .

Definition 2.2 (Preferred Network). The preferred networkGP (NP ,

EP) is a subgraph of G where NP ⊆ N , and EP ⊆ NP × NP ⊆ E.

We refer to the edges in GP as preferred edges. The preferred

network can be viewed as a set of connected components, which we

call preferred zones. A node in the preferred graph whose incident

edges are all preferred is called a preferred node. Not all nodes in the

preferred graph are preferred; a node in GP that is not preferred

is called a border node. A border node has an incident edge in G
which is not contained inGP . In analogy, we refer to the edges not

in EP as unpreferred, and the subgraph of G that contains all such

edges as the unpreferred network.
All paths considered in this work are on the complete network

G. For our purposes, we need to associate a path with the cost of

traversing unpreferred edges. Given a path p, its unpreferred time
Up is the sum of weights of its unpreferred edges.

Example 2.3. Figure 1 shows a network G of 12 nodes, where

the preferred edges are shown in bold. The numbers along each

edge represent their weights. The preferred network consists of

two zones z1 and z2 shown shaded in the figure.

Figure 2 shows six paths on G connecting source s to target t .
Each path is plotted as a point in the 2-dimensional total time Tp
— unpreferred time Up plane. For example, path p2 = (s,d, e,h, t)
has total time 10, preferred time 1 (as it travels along the preferred

esge (e,h)), and thus unpreferred time 9. Hence p2 is a point at

coordinates 10, 9 in theTp—Up plane. Paths p1 and p2 have the least
total time among all possible s-t paths, and thus are the shortest

paths: Tp1 = Tp2 = d(s, t) = 10. □

2.2 Problem Definitions
We now formally define the two variants of identifying the most

preferred path. The problem of the Most Preferred Unrestricted Path
(MPUP) was first introduced in [3, 4] as finding the safest path

through safe zones. Here we restate the problem using the ter-

minology of Section 2.1.

Problem 1 (MPUP). Find a path from source node s to target t that
has the least unpreferred time.

p1 = (s, d, t)

p2 = (s, d, e, h, t)

p3 = (s, a, b, f , e, h, t)

p4 = (s, a, b, f , i, h, t)

p5 = (s, a, b, c, д, i, h, t)

p6 = (s, a, b, c, д, j, h, t)

p1

10 12

6

8

10

14 16

p2

p3

p4

p5

p6

shortest paths

most preferred
near-shortest

path

most preferred
unrestricted

path
path

skyline

most preferred
shortest path

un
pr

ef
er

re
d

tim
e

total time
Figure 2: Paths depicted as points under two criteria: total
time and unpreferred time.

Intuitively, MPUP directs a driver to travel as mush as possible

inside the preferred network or as little as possible inside the unpre-

ferred network. Equivalently, Problem 1 can be seen as a shortest

path problem on the complete network G by setting the weights of

all preferred edges to zero.

Problem 1 allows for paths that have arbitrary total traveling

time while the time spend inside the preferred zones is not taken

into account. In view of this, Problem 2 investigates a more practical

setting where the total time of the returned path is restricted with

respect to the source-to-target distance.

Before introducing this problem, we present the notion of a near-

shortest path. Given a parameter ϵ ∈ [0, 1], a path p from a node s
to t is called ϵ-near shortest if its total time is not greater than (1+ϵ)
times the distance of s to t , i.e.,Tp ≤ (1+ ϵ) ·d(s, t). In other words,

a near shortest path is a relaxation allowing for a small controlled

deviation from the optimal traveling time.
2
We define the problem

of identifying the Most Preferred Near Shortest Path (MPNSP).

Problem 2 (MPNSP). Find a ϵ-near shortest path from source
node s to target t that has the least unpreferred time.

Example 2.4. Returning to our example, observe from Figure 2

that path p6 has the least unpreferred time Up6 = 5 among all s-t
paths. Therefore, under no restrictions to total time, p6 is the MPUP.

As discussed the distance between source and target is d(s, t) =
10. Now, suppose we are only interested in paths that are at most

ϵ = 30% longer than the shortest path. In our case, this translates

to paths with total time not more than 13. In the Tp—Up plane

of Figure 2, this restriction means that we should only consider

paths that lie left of the dashed vertical line at T = 13. Among

the near shortest paths p1,p2,p3,p4, observe that p4 has the least
unpreferred time 7 and is this the MPNSP.

It is worth noting that shortest paths p1,p2, MPUP p6 and MPNSP
p4 capture different optimality criteria over total and unpreferred

time. The first two optimize total time so that the drive is as short as

possible; p6 optimizes the unpreferred time so that the driver drives

as much as possible in the familiar network; while p4 optimizes

the unpreferred time subject to a total time constraint, striking a

reasonable balance between driving in the familiar network and

getting to the destination fast. □

2
Although near shortest paths are defined with respect to a relative deviation, e.g., to

travel at most 10% longer, it also allows for absolute deviations, e.g., when we want to

travel at most 5 minutes longer.

3 COMPUTING MPUP
We first target the efficient evaluation of Problem 1. Section 3.1

briefly revisits the solution proposed in [3, 4] while Section 3.2

details finding the path with the least unpreferred time.

3.1 The HyperEdges Algorithm
In [3, 4], the authors primarily focused on an Euclidean setting

for MPUP employing the geometric properties of hyperbolas; how-

ever, an adaptation of the proposed solution for spatial road net-

works was also discussed. Essentially, computing MPUP involves

two phases.

Offline phase. An undirected weighted hypergraph G0 is con-

structed offline such that each preferred zone serves as a node. A

hyperedge connecting two nodes in G0 captures the best way of

driving between the corresponding preferred zones. A naïve and

thus impractical approach would create a hyperedge for every pair

of preferred zones resulting in an extremely dense hypergraph.

Instead, the authors of [3, 4] designed a labeling technique which

connects two preferred zones only if the shortest path between

them on network G (i.e., between a pair of border nodes) does not

cross a third preferred zone. In particular, a single-source all-targets

shortest path search is initiated on G for each preferred zone, start-

ing from all its border nodes. Every network node encountered

during this search is labeled with the id of the last zone crossed.

The search terminates when all network nodes are labeled and then,

the neighboring zones of the examined zone are determined.

Online phase. Given an MPUP query, the hypergraph G0 is first

expanded to include two new preferred zones: the source node s and
the target t . For this purpose, a single-source shortest path search

on network G is initiated from source node s and another from

target t , towards the border nodes of the preferred zones. Then,

to determine the most preferred unrestricted path, a shortest path

search is performed on the extended hypergraph G0 between the

preferred zones of s , t . Finally, as a special case arises when the path

with the least unpreferred time does not cross any preferred zone, a

second shortest path search from s to t is required on network G.3

Example 3.1. Figure 3a illustrates the approach of [3, 4] using our
running example. In the offline phase, the hypergraph connecting

the preferred zones is constructed. In our case, there exist only two

preferred zones, so the offline hypergraph contains two nodes z1
and z2 (representing the two zones) and a single edge connecting

them. Using their labeling technique, one can find that this edge

has weight 1; this essentially corresponds to the shortest path (c,д)
in the complete network between a border node of z1 and one of

z2.
In the online phase, when the source and target nodes are known,

they must also be connected via shortest paths (in the complete

network) to zones z1 and z2. Observe from Figure 1 that (s,a) (resp.
(s,d, e)) is the shortest path connecting the source to zone z1 (resp.
z2) with a total time of 2 (resp. 7). Hence the weights in the hyper-

graph of Figure 3a. Using similar reasoning, target t is connected
to z2 via the shortest path (t ,h) of total time 2. The shortest path

3
This last shortest path search can be in fact incorporated to the single-source search

which connects the preferred zone of source s to hypergraph G0 .

Z1

Z2

s t1

2

7 2

(a) Hyperedges

Z1

Z2

s

t

d f1

2

4

6 3

2

1

2

(b) Compressed Network

Figure 3: Approaches for finding the MPUP.

(t ,h, f ,b) from t to zone z1 passes via zone z2 and thus an edge is

not created.

Finding the MPUP then translates to finding a shortest path on

the hypergraph shown in Figure 3a. This is path (s, z1, z2, t) with a

length of 5, which expands to path p6 in the complete graph with

unpreferred time 5. □

3.2 The Compressed Network Approach
Despite constructing hypergraph G0, the HyperEdges algorithm

still needs to traverse networkG . Overall, the method performs two

single-source all-targets shortest path searches onG and a shortest

path search on G0. In fact, contrary to traditionally sparse road

network graphs, the hypergraph is expected to be dense which

may further impact the efficiency of the online phase. In addition,

the HyperEdges algorithm involves an expensive pre-processing

step to determine the set of hyperedges that connect the preferred

zones. Although this step occurs offline, the resulting hypergraph

G0 needs to be maintained whenever new preferred zones are de-

fined and when existing are dropped or altered; handling these

updates requires a number of single-source all-targets shortest path

searches on the network.

In view of these shortcomings, we devise a novel solution to MPUP
with a simple and inexpensive pre-processing step which employs

online a single shortest path search. As the traveling time inside a

preferred zone is ignored by Problem 1, the key insight of our ap-

proach is to completely exclude from the search the preferred edges

of networkG. In particular, we first construct offline a compressed
networkG ′ by reducing every preferred zone to a single zone node;
this new zone node has incident edges to every unpreferred node

previously connected to a border node of the reduced zone.
4
Given

an MPUP query, the path with the least unpreferred time on the

original networkG can be now computed by a shortest path search

from source s to target t on the compressed network G ′.

Example 3.2. In the example network of Figure 1, there exist

two preferred zones. Thus to construct the compressed network

G ′, depicted in Figure 3b, we create two nodes z1, z2 representing
the two zones. All unpreferred nodes, s,d, f , t , are also present in

the compressed network. Preferred edges are not represented inG ′.
On the other hand, edges between unpreferred nodes are preserved

in the compressed network. Moreover, every edge in the complete

network that connects an unpreferred node to a zone’s border is

replaced in the compressed network by an edge between that node

4
A similar idea is employed for graph reachability where every (strongly) connected

component of the (directed) graph is reduced to a single super-node.

and the zone node. Because node f has two edges (f , e), (f , i) to
zone z2 with weights 2, 1, respectively, we create an edge (f , z2) in
G ′1 with minimum weight 1.

The shortest s-t path in G ′ is (s, z1, z2, t) with a length of 5, and

corresponds to path p6 in the complete graph with unpreferred

time 5. □

3.3 Discussion
Due to performing a single shortest path search, we expect our com-

pressed network solution to always outperform the HyperEdges

algorithm in evaluating MPUP queries. We also expect a significantly

faster pre-processing phase while maintaining the compressed net-

workG ′ will be by far more efficient compared to hypegraphG0 as

in practice, we only need to add or remove network edges instead

of initiating single-source all-targets shortest path searches.

Both approaches can benefit from a pre-processing technique

(e.g., the contraction hierarchies from [18]) that speeds up shortest

path search either on the original or the compressed network. We

elaborate on this idea in our experimental analysis in Section 5.

4 COMPUTING MPNSP
We next turn our focus to Problem 2. Section 4.1 discusses a base-

line solution that builds upon path computation on multi-criteria

networks while Section 4.2 details our methodology for finding the

ϵ-near shortest path with the least unpreferred time.

4.1 A Path Skyline Based Approach
A straightforward approach is to treat MPNSP as a path-computation

problem on a multi-criteria network. In this context, the goal is

to find all paths which are optimal according to any possible pref-

erence function combining the criteria. These paths constitute a

pareto-optimal set, termed the path skyline, borrowing the termi-

nology from the skyline operator literature [7]. Assume paths p, p′

from source s to target t ; path p dominates p′ if it is at least as good
as p′ on all criteria, and strictly better on at least one. The set of all

not dominated paths constitutes the path skyline.

Returning to the example of Figure 2, observe that pathp1 is dom-

inated by p2. The path skyline consists of paths {p2,p3,p4,p5,p6},
shown as filled points along the solid line in the figure. Naturally,

the two most preferred paths (unrestricted and near shortest) are in

the path skyline. Now, suppose we retrieve the path skyline. Then,

as discussed, MPNSP query introduces a threshold (1 + ϵ) · d(s, t)
on the total time axis, depicted by the dashed vertical line. Skyline

paths p5, p6 to the right of this line do not qualify as ϵ-near short-
est paths; their total time is too high compared to d(s, t). Among

the skyline paths to the left of the threshold line, p4 has the least
unpreferred time and hence can be returned as the MPNSP.

The ARSC Algorithm. To compute the path skyline, we use the

state-of-the-art Advanced Route Skyline Computation (ARSC) algo-
rithm proposed in [27]. Label-correcting ARSC traverses network

G in an A* manner until all paths in the skyline are found. When

expanding a path p from source s to node n, the algorithm applies

two pruning rules to eliminate unpromising paths. The first rule

defines a best-case extension of p; if a path contained in the skyline

dominates this hypothetical best-case extension of p then path p

is unpromising and hence, pruned. The second pruning rule com-

pares the already computed paths to node n with the currently

examined path p; all paths that are dominated are eliminated. Es-

sentially, this rule extends the principle of optimality in shortest

path computation to multiple criteria.

Bound Computation with ParetoPrep. To perform an A* traver-

sal of the network and to apply the first pruning rule, ARSC heavily

relies on lower bounds for the total and the unpreferred time. For

this purpose, the authors in [27] compute offline a Lipschitz refer-

ence embedding; lower bounds are then calculated online based on

the triangular inequality property. However, studies have shown

that the approximation quality of these bounds is insufficient; in

fact, computing for each criterion the optimal query-specific bounds

through an online single-source shortest path search from target t
to all networks nodes, leads to a significant speed-up of the path sky-

line computation [39]. In this work, we compute the required lower

bounds using the ParetoPrep approach proposed in [36]. ParetoPrep

computes the optimal lower bounds for the total and unpreferred

time by traversing network G only once, handling both criteria at

the same time.

4.2 The ALGO-U Algorithm
The ARSC algorithm first extracts the entire path skyline and then

identifies the MPNSP among those paths. In this section, we aim

for a direct approach that cleverly guides the search towards the

MPNSP path. Briefly, the main idea of ALGO-U is to first perform a

reverse search, starting from the target and reaching the source, that

optimizes for total time, and then a forward search that optimizes for

the preferred time. Information stored at the nodes visited during

the reverse search is used to guide the forward search.

Before presenting ALGO-U, we introduce some notation and

additional definitions.

Labels and Orders. A label λ associated with a path p represents

its two costs. It has an entry λ.T for the total time of p, and an entry

λ.U for the unpreferred time of p. We write λ(p) to explicitly refer

to p’s label.
There are two possible lexicographic orders of labels. TU-order,

denoted as <TU , orders (increasingly) by total time and in case of

ties (increasingly) by unpreferred time. That is a label λ is before

another λ′ if the former has less total time, or equal total time but

less unpreferred time. On the other hand, UT-order, denoted as

<UT , orders by unpreferred time and in case of ties by total time.

These orders are useful when we need to distinguish among

paths having equal total time (or equal unpreferred time). Fix a

source s and target t , and let d(s, t) be the distance between them.

There can exist different shortest paths from s to t having exactly
the same total time d(s, t). In defining the ALGO-U algorithm later,

we are interested in the least unpreferred time achieved the shortest

paths. Observe, that the s-to-t path ranked first by the TU-order

exhibits this optimal unpreferred time among the shortest paths.

We refer to this path as a most preferred shortest path. Returning to

the example of Figure 2, while both p1 and p2 are shortest paths,
path p2 is a most preferred shortest path, having lower unpreferred

time than p1 and coming before it in the TU-order.

In analogy, we define a shortest most preferred (unrestricted) path
as a path (among all source to target paths) with the best label

according to the UT-order.

Finally, we say that a label λ dominates another λ′, denoted as

λ ≺ λ′ if λ precedes λ′ according to both TU-order and UT-order,

i.e., λ <TU λ′ and λ <UT λ′.

Pruning Paths. The next lemmas allow us to eliminate paths from

consideration during the forward search. They require certain to-

tal time and unpreferred time computations, which as we see are

computed during the reverse search.

The first lemma prunes paths starting from source s that when
extended to reach target t result in paths which exceed the total

time threshold of (1 + ϵ) · d(s, t).

Lemma 4.1. Assume a pathp from s to noden, and letd(s, t) denote
the distance from s to t , and d(n, t) the distance from n to t . Then, if
condition Tp + d(n, t) > (1 + ϵ) · d(s, t) holds, no path extending p to
t can be an MPNSP solution.

The next lemma eliminates dominated paths and is also the key

pruning rule of the ARSC algorithm.

Lemma 4.2. Assume two pathsp,p′ from s to node i . If λ(p) ≺ λ(p′)
no path extending p′ to t can be an MPNSP solution.

The following lemmas consider the two possible optimal exten-

sions of a path ending at node n. The first, called the TU extension,
is via a most preferred shortest path pTU (n) from n to t , optimizing

total time primarily and unpreferred time in case of ties, or equiv-

alently having the minimum TU label. Let TU (n).T and TU (n).U
denote the total time and unpreferred time of this path.

The second, called the UT extension, is via a shortest most pre-

ferred (unrestricted) path pUT (n) from n to t , optimizing unpre-

ferred time primarily and total time in case of ties, or equivalently

having the minimum UT label. Let UT (n).T and UT (n).U denote

the total time and unpreferred time of that path.

The next lemma computes an upper boundU ∗ to the unpreferred
time of the MPNSP solution. It considers the TU and UT extensions

discussed previously. If any of them results in a valid path (near

shortest), then its unpreferred time upper boundsU ∗.

Lemma 4.3. Assume a path p from s to node n. Then, the following
holds for the unpreferred timeU ∗ of the MPNSP solution:

U ∗ ≤ min

{
Up +TU (n).U , if Tp +TU (n).T ≤ (1 + ϵ) · d(s, t)
Up +UT (n).U , if Tp +UT (n).T ≤ (1 + ϵ) · d(s, t)

Given such an upper boundU ∗, the next lemma prunes any path

reaching node n from source s that when UT extended to target

t (i.e., with the optimal extension in terms of unpreferred time)

results in a suboptimal path, i.e., with unpreferred time greater

than the upper bound.

Lemma 4.4. Assume a path p from s to node n, and let U ∗ be an
upper bound of the MPNSP solution. Then, if conditionUp+UT (n).U >
U ∗ holds, no path extending p to t can be an MPNSP solution.

The last lemma provides a stronger criterion than Lemma 4.2. If

the UT extension of a path ending at node n is a near shortest path,

then any other path reaching n with worst label in the UT order

can only be extended to a path with higher unpreferred time.

Algorithm 1: Algorithm ALGO-U
Input: MPNSP(s, t, ϵ); networkG
Output: path p(s, . . . , t) onG with lowestUp and Tp ≤ α · d (s, t)

Variables: priority queue Q with entries (n, p, λ, λ̂) in ascending ≤UT order of λ̂;
set Λ[n] of labels in Q associated with node n;
upper boundU on unfamiliar time of the solution

1 {UT (n), TU (n)} ← execute ReverseSearch(s, t, ϵ);
2 U ∗ ← TU (s).U ;

3 insert (s, (s), ⟨0, 0⟩, ⟨TU (s).T , UT (s).U ⟩) in Q;
4 insert ⟨0, 0⟩ in Λ(s) ;
5 while Q is not empty do
6 (n, p, ⟨Tp , Up ⟩, λ̂) ← pop Q;

7 if n = t then
8 U ∗ ← Up ; p∗ ← p ; ▷ found solution

9 break

10 if Tp +UT (n).T ≤ (1 + ϵ) · TU (s).T then
11 mark n as closed ▷ Lemma 4.5

12 foreach (n, n′) ∈ G such that n′ is not closed do
13 p′ ← p ∪ (n, n′) ; Tp′ ← Tp +wn,n′ ;Up′ ← Up ;

14 if (n, n′) ∈ GU thenUp′ ← Up +wn,n′ ;
15 λ′ ← ⟨Tp′, Up′ ⟩ ; ▷ create new label

16 λ̂′ ← λ′ + ⟨TU (n′).T , UT (n′).U ⟩ ; ▷ compute predicted label

17 if Tp′ +TU (n
′).T > (1 + ϵ) · TU (s).T or ▷ Lemma 4.1

18 Up′ +UT (n
′).U > U or ▷ Lemma 4.4

19 ∃λ ∈ Λ(n′) : λ ≺ λ′ then continue; ▷ Lemma 4.2

20 else
21 insert (n′, p′, λ′, λ̂′) in Q;
22 insert λ′ in Λ(n′) ;
23 if Tp′ +UT (n

′).T ≤ (1 + ϵ) · TU (s).T then ▷ update U ∗ by

Lemma 4.3

24 U ∗ ← min{U ∗, Up′ +UT (n
′).U } ;

25 else
26 U ∗ ← min{U ∗, Up′ +TU (n

′).U } ;

27 foreach λ ∈ Λ[n′] do ▷ remove unpromising labels

28 if λ .U +UT (n′).U > U ∗ or λ′ ≺ λ then
29 remove λ from Λ(n′) ;
30 remove entry for λ from Q

31 return p∗

Lemma 4.5. Assume two paths p, p′ from s to node n. If the UT
extension ofp is a near shortest path, i.e.,Tp+UT (n).T ≤ (1+ϵ)·d(s, t),
and λ(p′) ≥UT λ(p), then no path extending p′ to t can be an MPNSP
solution.

Algorithm Description. In order to apply the previous pruning

rules, we need the distance of every node to target (Lemmas 4.1,

4.3, 4.5), and the UT and TU extensions of every node to target (4.3,

4.4, 4.5). Since the distances are equal to the total time of the TU

extensions, it turns out we only need to compute the extensions.

In the reverse search, ALGO-U computes the UT and TU exten-

sion of every node to target. This entails storing for each node n,
four values: the total time UT (n).T and unpreferred time UT (n).T
of the UT-optimal (shortest most preferred) path from t to n, and
the total time TU (n).T and unpreferred time TU (n).T of the TU-

optimal (most preferred shortest) path from t to n. This step can be

executed using any standard single-source shortest path algorithm

with a small twist: path optimality is defined according to the UT

or TU lexicographic order (instead of total or unpreferred time).

Algorithm 1 shows the pseudocode of ALGO-U. The first step is

the reverse search procedure (line 1) that computes valuesUT (n).T ,
UT (n).U , TU (n).T , TU (n).U for every node n. Note also that an

cbas

d e

ht i j

g

4

6

3

1

2

2 3

2

3 1

1

2

f

1

2

1

2

6 5
6 5

TU
UT

.T .U

10 9
16 5

TU
UT

.T .U
10 6
14 3

TU
UT

.T .U
7 6
11 3

TU
UT

.T .U
7 4
9 3

TU
UT

.T .U

6 3
8 2

TU
UT

.T .U

6 3
8 2

TU
UT

.T .U
5 2
5 2

TU
UT

.T .U
2 2
2 2

TU
UT

.T .U

3 2
3 2

TU
UT

.T .U

5 4
6 3

TU
UT

.T .U

Figure 4: The annotated network resulting from the reverse
search of ALGO-U.

upper bound to the MPNSP solution’s unpreferred time can be imme-

diately set as the unpreferred time of the most preferred shortest

path from s to t (line 2), and that distance d(s, t) is equal toTU (s).T .
Then, the forward search commences. This uses a priority queue

Q containing entries of the form (n,p, λ, λ̂) representing a path p
from s to node n having label λ. Note that it is not necessary to

store the entire path along each label; as is common, it suffices to

just store the predecessor of n in the path. Predicted label λ̂ is a

lower bound of the total and unpreferred time required to reach

the target t . ALGO-U is a label setting algorithm akin to A
∗
, and

at each step dequeues from Q the entry with the first, in UT order,

predicted label. However unlike A
∗
, ALGO-U maintains multiple

labels per node; these are stored in list Λ(n) for node n.
Initially, ALGO-U creates an entry for source s and inserts into

the queue (line 3). Moreover it inserts a label for s in its label list

Λ(s) (line 4). Then, the algorithm proceeds in iteration extracting

at each an entry from the queue (lines 5–31) until the queue is

depleted or the dequeued entry (line 6) corresponds to the target

(lines 7–9). At that point the MPNSP solution is found, as no other

path can reach the target with lower unpreferred time. Otherwise,

let n be the current node. The algorithm checks if the conditions of

Lemma 4.5 apply for node n; if yes it marks node n as closed so as

to discard all other paths, not yet discovered, leading to it.

Subsequently, ALGO-U examines each non-closed neighbor n′

of node n (lines 12–30). First, it constructs a new path p′ extending
the current path with edge (n,n′) and prepares its entry (lines 13–

16). The predicted label for p′ is its label incremented by the least

possible total time TU (n′).T and the least possible preferred time

UT (n′).U required to reach the target (line 16). The next step is to

check whether path p′ should be pruned according to Lemmas 4.1,

4.2, and 4.4 (lines 17–19).

If path p′ is not pruned (lines 20–30), then its entry and label

are inserted in the queue and the label list of n′, respectively (lines

21–22). Subsequently, the upper boundU ∗ on the preferred time of

the solution is updated (lines 23–26), by considering the UT (line

24) and TU extensions of p′ (line 26). The final step in an iteration

is to remove entries and labels corresponding to other paths either

dominated or due to a tighterU ∗ (lines 27–30).

Example 4.6. We describe ALGO-U on our running example

network, also depicted in Figure 4. The first step of ALGO-U is

to perform a reverse search from the target t and compute for

each node n four values, the total and unpreferred time of the most

preferred shortest path from t , and the total and unpreferred time of

the shortest most preferred path, i.e., TU (n).T , TU (n).U ,UT (n).T ,
UT (n).U . These values are depicted in the tables near each node in

Figure 4. For example for node f , the most preferred shortest path

from t is (t ,h, e, f) with a total time of 5 and unpreferred time 4;

these are the entries in the first row of the table for f . The second
row suggests that there exists a slightly longer path (t ,h, i, f) of
total time 6, which has however lower unpreferred time 3.

Upon execution of the reverse search, ALGO-U establishes that

the s-t distance is 10 and thus the total time threshold is set to 13

(ϵ = 30%). Also it sets the upper bound U ∗ of MPNSP’s unpreferred
time to 9 which comes from the most preferred shortest path. The

first entry enheaped is for the source: (s, ⟨0, 0⟩, ⟨10, 5⟩), meaning

that the best total and preferred time to reach t via s is 10 and

5, respectively. When this entry is deheaped ALGO-U considers

s’s neighbors a and d . For the former, an entry (a, ⟨2, 2⟩, ⟨12, 5⟩) is
created since the unpreferred edge (s,a) has weight 2, and the least
possible total time to reach s from a isTU (a).T = 10 while the least

unpreferred time is UT (a).U = 3. This entry cannot be pruned and

thus is enheaped. AlsoU ∗ is updated to 8, because the current path
(s,a) can be TU extended to a s-t path that has 2+TU (a).T = 12 total

time, thus is near shortest, and unpreferred time 2 +TU (a).U = 8.

Similarly for neighbor d , an entry (d, ⟨4, 4⟩, ⟨10, 9⟩) is enheaped.
The next entry to deheap is the one that has the smallest pre-

dicted label in UT order, and that is the entry for node a that has

a single neighbor b. Thus an entry (b, ⟨5, 2⟩, ⟨12, 5⟩) is enheaped,
which is subsequently deheaped. Node b is connected to c and f .
The entry for c is (c, ⟨7, 2⟩, ⟨14, 5⟩) is pruned by Lemma 4.1 as ex-

tending this path towards t results in a total time of at least 14

exceeding the threshold. On the other hand entry (f , ⟨7, 4⟩, ⟨12, 7⟩)
is enheaped.

The heap contains entries for nodes d and f with the latter hav-

ing a lower predicted unpreferred time to reach t . Therefore ALGO-
U examines f ’s neighbors i , e . For the first, an entry (i, ⟨8, 5⟩, ⟨13, 7⟩)

is enheaped. Moreover, the upper boundU ∗ is decreased to 7, be-

cause there exists an extension of the current path from i to s that
has acceptable total time 8 +TU (i).T = 13 and unpreferred time

5 + TU (i).U = 7. The entry for node e is (e, ⟨9, 6⟩, ⟨12, 8⟩) but is
pruned by Lemma 4.4 as its best possible unpreferred time 8 exceeds

the upper bound.

Continuing its execution, ALGO-U deheaps the entry for node i ,
enheaps entry (h, ⟨11, 5⟩, ⟨13, 7⟩), but prunes entries (д, ⟨9, 6⟩, ⟨15, 8⟩),
(j, ⟨9, 5⟩, ⟨15, 7⟩) as they cannot be extended to near shortest paths.

Subsequently, the entry for h is deheaped. Node h is connected to e
whose entry (e, ⟨12, 5⟩, ⟨15, 7⟩) is again pruned by Lemma 4.1, and

to the target with entry (t , ⟨13, 7⟩, ⟨13, 7⟩). The heap now contains

entries for nodes d and t , where the latter has lower best possible
unpreferred. Finally, upon deheaping t ’s entry, ALGO-U terminates

having reached the target. □

5 EXPERIMENTAL ANALYSIS
This section reports our experimental evaluation. Section 5.1 details

the setup of our analysis. Sections 5.2 and 5.3 compare for MPUP
our compressed network approach denoted by CN against the

HyperEdges algorithm denoted byHE. Finally, Section 5.4 compares

for MPNSP the ALGO-U algorithm against the path skyline baseline

approach denoted by P-SKY. All algorithms were implemented

in C++ and the tests run on a Quad-Core Intel(R) Xeon(R) CPU

E5-2667 v3 @ 3.20GHz with 96GBs of RAM running Ubuntu Linux.

5.1 Setup
Our analysis involves the real-world road networks of two cities;

Berlin with 37,126 nodes and 102,260 edges, and New York with

264,346 nodes and 730,100 edges. To conduct our experiments, we

generated a number of preferred networks; the idea is the following.

Normally, i.e., if we exclude professionals like taxi drivers, people

drive around specific locations or parts of a city. For instance, they

move around the location of their house, their work place, their

children’s school etc. In other words, a driver is familiar with the

road segments on specific neighborhoods. To capture this behavior,

we first partition the road networks to a predefined number of 1,024

neighborhoods and then, randomly select the center of |Z | among

them to populate our preferred zones. In particular, we add to each

zone the network nodes who shortest path from the zone center

is at most equal to a radius r . This generation procedure shares

some commonalities with [3, 4]; however, the centers of our zones

are based on the clustering of the road network instead of using a

predefined set of nodes where police stations are located.

To assess the performance of the tested methods, we measure

their response time on 1,000 MPUP and 1,000 MPNSP queries between
randomly selected source and target nodes, varying the number of

preferred zones |Z | inside range {20, 30, 100, 200, 500} and radius

r inside {500, 1,000, 1,500, 2,000, 2,500} in meters. For the MPNSP
queries we also vary parameter ϵ inside range {0.1, 0.2, 0.3, 0.4, 0.5};
ϵ = 0.3 means that we allow the total time of a path to be at most

30% higher than the shortest path’s. On each experiment, we vary

one of |Z |, r , ϵ while fixing the others to their default value; 100 for
|Z |, 1,500 for r and 0.3 for ϵ . Finally, for the HE, CN algorithms we

also measure the cost of their offline pre-processing phase.

As discussed in Section 3.3, the performance of both CN and

HE can be enhanced by techniques like the contraction hierarchies

proposed in [18], which accelerate the shortest path search. We

denote by CN+CH and HE+CH the versions of our compressed net-

work approach and the HyperEdges algorithm that use contraction

hierarchies. We experimented with all for methods for MPUP, but
in order to keep our figures clear we only plot the measurements

for CN+CH and HE+CH. Nevertheless, we observed as expected, a

significant drop of the query evaluation time of CN and HE, in the

expense of a slightly longer pre-processing phase. Note that the al-

gorithms for MPNSP cannot be accelerated using similar techniques,

as they do not look for optimal paths.

5.2 Pre-processing for MPUP
Figures 5 and 6 report the pre-processing time of HE+CH and

CN+CH varying the number of safe zones and the radius of pre-

ferred zones. First in Figure 5, we observe that the pre-processing

cost of HE+CH is clearly higher compared to CN+CH. The two
approaches have comparable pre-processing time only for small

number of preferred zones. However, when |Z | > 50, CN+CH’s
pre-processing is 1 to 2 orders of magnitude more expensive. In

fact, the pre-processing time of our CN+CH is almost constant as it

is dominated by the cost of building the contraction hierarchies on

20 50 100 200 500

0

30

60

90

120

|Z |

P
r
e
-
p
r
o
c
e
s
s
i
n
g
t
i
m
e
(
s
e
c
)

HE+CH CN+CH

(a) Berlin

20 50 100 200 500

0

40

80

120

160

|Z |

P
r
e
p
r
o
c
e
s
s
i
n
g
t
i
m
e
(
s
e
c
)

(b) New York

Figure 5: Pre-processing time varying # zones (r = 1,500 m).

500 1000 1500 2000 2500

0

3

6

9

12

r

P
r
e
p
r
o
c
e
s
s
i
n
g
t
i
m
e
(
s
e
c
)

HE+CH CN+CH

(a) Berlin

500 1000 1500 2000 2500

0

10

20

30

40

r

P
r
e
-
p
r
o
c
e
s
s
i
n
g
t
i
m
e
(
s
e
c
)

(b) New York

Figure 6: Pre-processing time varying radius (|Z | = 100).

the original road network and also independent of |Z |. In contrast,

we observe that the time of HE+CH is increasing with the number

of preferred zones as a larger number of shortest path searches is

required to connect the larger number of hypegraph nodes.

Second, in Figure 6 we observe that the pre-processing time

of CN+CH is clearly lower than the time of HE+CH. Similar to

Figure 5, the pre-processing cost of CN+CH is almost constant

and unaffected by radius r . On the other hand, HE+CH is affected

by the increase of r . Large preferred zones tend to contain more

border nodes which increases the cost of the shortest path searches

needed to define the hyperedges. Nevertheless, the increase of the

pre-procesing time is not as abrupt as in Figure 5 as the number of

hypergraph nodes remains fixed and equal to |Z | = 100.

5.3 Computing MPUP
Figure 7 shows the response time of HE+CH and CN+CH varying

the number of preferred zones. We observe that CN+CH outper-

formsHE+CH for both road networks and all setups by 3 to 4 orders

of magnitude. Another observation is that while the response time

of HE+CH increases with |Z |, the response time of CN+CH de-

creases. For HE+CH, as the number of preferred zones increases,

the cost of connecting the source and the target query nodes to the

hypergraph rises. On the other hand, the size of the compressed

network becomes increasingly smaller benefiting CN+CH.
Figure 8 shows the response time of HE+CH and CN+CH for

100 preferred zones varying the radius of preferred zones from 500

to 2500 meters. Similar to Figure 7, CN+CH outperforms HE+CH
for both road networks and all setups by three to four orders of

magnitude. Furthermore, we observe a similar behavior regarding

the performance of CN+CH. In this case, large preferred zones

20 50 100 200 500

10
−2

10
−1

10
0

10
1

10
2

10
3

|Z |

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

HE+CH CN+CH

(a) Berlin

20 50 100 200 500

10
−2

10
−1

10
0

10
1

10
2

10
3

|Z |

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

(b) New York

Figure 7: Query response time varying # zones (r = 1,500m).

500 1000 1500 2000 2500

10
−2

10
−1

10
0

10
1

10
2

10
3

r

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

HE+CH CN+CH

(a) Berlin

500 1000 1500 2000 2500

10
−2

10
−1

10
0

10
1

10
2

10
3

r

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

(b) New York

Figure 8: Query response time varying radius (|Z | = 100).

lead to a smaller compressed network; hence, the response time of

CN+CH improves with an increasing radius, i.e., larger preferred

zones. Lastly, we observe that the performance of HE+CH is not

affected significantly by the size of the radius as it is by the number

of preferred zones.

A general observation is thatCN+CH clearly outperformsHE+CH.
In practice, CN+CH reduces the MPUP query to a single shortest

path query that is processed with CH, a state-of-the-art method. In

contrast, HE+CH requires a large number of shortest path queries

to connect the source and the target, and traverse the hypergraph.

5.4 Computing MPNSP
Figure 9 shows the response time of P-SKY and ALGO-U varying

the number of preferred zones from 20 to 500 with a fixed radius

of 1500 meters and ϵ = 0.3. First, for the road network of Berlin

we observe that ALGO-U outperforms P-SKY. The performance

of P-SKY degrades quite abruptly with an increasing number of

preferred zones. The response time of ALGO-U is also increasing,

however, at a significantly lower rate; e.g., when the number of

safe zones is 500, ALGO-U is approximately six times faster than P-
SKY. Next, for the much larger New York network, we observe that

the performance of both algorithms degrades much more abruptly

than in Berlin. For 50 to 200 safe zones the response time of both

algorithms is quite low with ALGO-U being slightly faster. For 500

safe zones their response time increases considerably, but ALGO-U
is three times faster having about one second response time.

Figure 10 shows the response time of P-SKY and ALGO-U for 100

preferred zones and ϵ = 0.3 varying the radius of preferred zones

from 500 to 2500 meters. We observe that ALGO-U outperforms P-
SKY for both road networks and all radii, the margin being greater

20 50 100 200 500

0

200

400

600

800

|Z |

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

P-SKY ALGO-U

(a) Berlin

20 50 100 200 500

0

1,000

2,000

3,000

|Z |

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

(b) New York

Figure 9: Query response time varying # zones (r = 1,500m).

500 1000 1500 2000 2500

0

50

100

150

200

250

r

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

P-SKY ALGO-U

(a) Berlin

500 1000 1500 2000 2500

0

100

200

300

400

500

r

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

(b) New York

Figure 10: Query response time varying radius (|Z | = 100).

10 20 30 40 50

0

50

100

150

200

ϵ

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

P-SKY ALGO-U

(a) Berlin

10 20 30 40 50

0

100

200

300

ϵ

R
e
s
p
o
n
s
e
t
i
m
e
(
m
s
)

(b) New York

Figure 11: Query response time varying ϵ . (r = 1,500m, |Z | =
100)

for Berlin. Finally, Figure 11 shows the response time of P-SKY and

ALGO-U for 100 preferred zones with a fixed radius of 1500 meters

varying parameter ϵ . For both road networks and all values of ϵ ,
ALGO-U clearly outperforms P-SKY. Additionally, we observe that
the performance of P-SKY is unaffected by the the parameter. With

regard to the performance of ALGO-U, we observe that ϵ has a

small effect on its performance.

Overall, in all settings tested ALGO-U outperforms P-SKY, while
in particularly hard settings (many zones, large radius, large ϵ) the
margin widens.

6 RELATEDWORK
Computing the shortest path (SP) between two graph nodes is a

fundamental problem that has attracted a lot of attention both by

the research community and the industry. Traditionally, SP was

addressed by Bellman-Ford and Dijkstra algorithms which traverse

the graph building upon the notion of relaxation and subpath opti-

mality. The ALT algorithms [19, 20, 33] perform a bidirectional A*

search and exploit a lower bound of the distance between two nodes

to direct the search. There exist also a number of materialization

techniques [2, 24, 25] or encoding/labeling schemes [14, 16] that

can be used to enhance the computation. In particular for routing

on road networks, a plethora of pre-processing based methods have

been proposed to answer SP queries in almost constant time, even

for continental sized networks [1, 15, 18, 37, 43]. A recent survey

and a experimental evaluation for road networks can be found in [5]

and [41], respectively. The focus of our work is not to enhance the

SP computation however, our methods employ aspects of the above

literature such as the A* traversal using distance lower bounds and

the contraction hierarchies of [18].

Our work is also related to variants of SP namely the near-shortest
path and the multi-criteria SP. In the former, the goal is to iden-

tify the paths whose length is within a factor of (1 + ϵ) of the
shortest-path length, for a user-specified ϵ ≥ 0. [9] was among the

first works that addressed near-SP, adopting ideas from dynamic

programming. Later, [10] proposed an number of extensions to

enhance this solution, including a backward search from the target.

In multi-criteria SP problems, the quality of a path is measured

by multiple metrics, and the goal is to find all paths for which no

better exists. Algorithms are categorized into three classes. The

methods of the first class (e.g., [11]) apply a user preference func-

tion to reduce the original multi-criteria problem to a conventional

SP problem. The second class contains the interactive methods

(e.g., [21]) that interact with a decision maker to come up with

the answer path. Finally, the third class includes label-setting and

label-correcting methods (e.g., [22, 27, 35, 38, 39]) which compute

a set of pareto-optimal paths, a.k.a. the path skyline. Our MPNSP
problem is defined on the basis of near-SP while aspects of the

above literature are considered or extended in our baseline P-SKY
method of Section 3.1 and ALGO-U.

Conventional routing operates under the assumption that trav-

eling time or distance is the most important optimization objective.

In practice however, there exist a number of hard-to-formalize fac-

tors that affect people routing decisions. For this purpose, research

efforts have focused on delivering personalized or context-aware

routing, e.g., [12, 13, 17, 30, 32, 42] by extracting moving habits and

patterns or popular paths from historical trajectory data. Recently,

[31, 34] investigated attractiveness of the scenery in routing. How-

ever, the setup of the routing problems addressed by these works

differs from the setting of the most preferred path we study. The

notion of preferred zones that people are more acquainted to drive

through is not defined or the objective is to maximize a collective

attractiveness score instead of minimizing the time spend outside

the preferred network.

Another line of related work involves safest path computation

where the goal is to avoid obstacles or unsafe areas. This setup finds

application among others in military applications, e.g., [6, 23, 29], or

robotic path planning, e.g., [26, 28, 40]. However, the settings differ

from ours as (i) the driver (or the moving object) is not allowed to

move inside these unsafe zones, or (ii) the problems are defined in

the Euclidean space, not on road networks. Hence, the proposed

solutions are not applicable to our Problems 1 and 2.

To the best of our knowledge, computing the Safest Path via
Safe Zones (SPSZ) and the Safest Path via Preferred Zones (SPPZ)
proposed in [3, 4] are the most relevant problems to our work. As

discussed in Sections 2 and 3, MPUP restates of SPSZ in our setting;

Section 5 showed that our compressed network based solution al-

ways outperforms the HyperEdges algorithm proposed in [4]. The

MPUP/SPSZ problem ignores the travel time inside the preferred/safe

zones; on the other hand, SPPZ tries to minimize the total travel

time captured by a linear combination of the time spent inside

and outside these zones. This setting however is different from

our MPNSP; our focus is to minimize only the time outside the pre-

ferred/safe zones but under a total time user-defined constraint. We

believe that such a problem setting is more practical where a driver

can only afford a specific increase of the total travel time.

7 CONCLUSIONS
In this work we introduced the problem of finding the most pre-

ferred path over road networks, modeling the scenario where a

person prefers to travel as much as possible along a specific subset

of the network, and study two instances. The first simply looks for

the path that minimizes the time spent in the unpreferred network.

The second looks for a path that minimizes the unpreferred time,

but restricts the total traveling time to not exceed much that of the

shortest path. We propose algorithms that are significantly more

efficient than existing state-of-the-art methods, up to four orders of

magnitude for the first instance, and up to six times for the second.

ACKNOWLEDGEMENTS
This work was partially supported by Innovation Fund Denmark

as part of the Future Cropping project (J. nr. 5107-00002B), and by

CRC-2016 as part of the EMMA project.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Wer-

neck. 2011. AHub-Based Labeling Algorithm for Shortest Paths in RoadNetworks.

In Experimental Algorithms - 10th International Symposium (SEA). 230–241.
[2] Rakesh Agrawal and H. V. Jagadish. 1989. Materialization and Incremental Update

of Path Information. In ICDE. 374–383.
[3] Saad Aljubayrin, Jianzhong Qi, Christian S. Jensen, Rui Zhang, Zhen He, and

Yuan Li. 2017. Finding lowest-cost paths in settings with safe and preferred zones.

VLDB J. 26, 3 (2017), 373–397.
[4] Saad Aljubayrin, Jianzhong Qi, Christian S. Jensen, Rui Zhang, Zhen He, and

Zeyi Wen. 2015. The safest path via safe zones. In ICDE. 531–542.
[5] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. 2016.

Route Planning in Transportation Networks. In Algorithm Engineering - Selected
Results and Surveys. Vol. 9220. 19–80.

[6] Scott A. Bortoff. 2000. Path planning for UAVs. In American Control Conference.
364–368.

[7] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

Operator. In ICDE. 421–430.
[8] Panagiotis Bouros. 2011. Evaluating Queries over Route Collections. Ph.D. Disser-

tation. NTUA, Greece.

[9] Thomas H. Byers and Michael S. Waterman. 1984. Determining all optimal

and near-optimal solutions when solving shortest path problems by dynamic

programming. Operations Research 32 (1984), 1381–1384.

[10] W. Matthew Carlyle and R. Kevin Wood. 2005. Near-shortest and K-shortest

simple paths. Networks 46, 2 (2005), 98–109.
[11] Robert L. Carraway, Thomas L. Morin, and Herbert Moskowitz. 1990. General-

ized dynamic programming for multicriteria optimization. European Journal of
Operational Research 44, 1 (January 1990), 95–104.

[12] Vaida Ceikute and Christian S. Jensen. 2015. Vehicle Routing with User-Generated

Trajectory Data. In MDM. 14–23.

[13] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. 2011. Discovering popular

routes from trajectories. In ICDE. 900–911.

[14] Jiefeng Cheng and Jeffrey Xu Yu. 2009. On-line exact shortest distance query

processing. In EDBT. 481–492.
[15] Theodoros Chondrogiannis and Johann Gamper. 2016. ParDiSP: A Partition-

Based Framework for Distance and Shortest Path Queries on Road Networks. In

MDM. 242–251.

[16] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability

and distance queries via 2-hop labels. In SODA. 937–946.
[17] Daniel Delling, Andrew V. Goldberg, Moisés Goldszmidt, John Krumm, Kunal

Talwar, and Renato F.Werneck. 2015. Navigationmade personal: inferring driving

preferences from GPS traces. In SIGSPATIAL GIS. 31:1–31:9.
[18] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Net-

works. In WEA. 319–333.
[19] Andrew V. Goldberg and Chris Harrelson. 2005. Computing the shortest path: A

search meets graph theory. In SODA. 156–165.
[20] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. 2006. Reach for A*:

Efficient point-to-point shortest path algorithms. In Proceedings of the 8th WS on
Algorithm Engineering and Experiments (ALENEX). SIAM, Philadelphia. 129–143.

[21] Janusz Granat and Francesca Guerriero. 2003. The interactive analysis of the

multicriteria shortest path problem by the reference point method. European
Journal of Operational Research 151, 1 (November 2003), 103–118.

[22] F. Guerriero and R. Musmanno. 2001. Label correcting methods to solve multicri-

teria shortest path problems. Journal of Optimization Theory and Applications
111, 3 (2001), 589–613.

[23] R. V. Helgason, J. L. Kennington, and K. H. Lewis. 1997. Shortest path algorithms
on grid graphs with applications to strike planning. Technical Report. DTIC

Document.

[24] Ning Jing, Yun-WuHuang, and Elke A. Rundensteiner. 1998. Hierarchical Encoded

Path Views for Path Query Processing: An Optimal Model and Its Performance

Evaluation. TKDE 10, 3 (1998), 409–432.

[25] Sungwon Jung and Sakti Pramanik. 2002. An Efficient Path Computation Model

for Hierarchically Structured Topographical Road Maps. TKDE 14, 5 (2002),

1029–1046.

[26] Rahul Kala, Anupam Shukla, and Ritu Tiwari. 2010. Fusion of probabilistic A*

algorithm and fuzzy inference system for robotic path planning. Artif. Intell. Rev.
33, 4 (2010), 307–327.

[27] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route skyline

queries: A multi-preference path planning approach. In ICDE. 261–272.
[28] Alain Lambert and Dominique Gruyer. 2003. Safe path planning in an uncertain-

configuration space. In ICRA. 4185–4190.
[29] Louise Leenen, Alexander Terlunen, and Herman Le Roux. 2012. A constraint pro-

gramming solution for the military unit path finding problem. Mobile Intelligent
Autonomous Systems 9, 1 (2012), 225–240.

[30] Julia Letchner, John Krumm, and Eric Horvitz. 2006. Trip Router with Individual-

ized Preferences (TRIP): Incorporating Personalization into Route Planning. In

Proceedings, The Twenty-First National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence. 1795–1800.

[31] Ying Lu and Cyrus Shahabi. 2015. An arc orienteering algorithm to find the most

scenic path on a large-scale road network. In SIGSPATIAL GIS. 46:1–46:10.
[32] Kayur Patel, Mike Y. Chen, Ian E. Smith, and James A. Landay. 2006. Personalizing

routes. In Proceedings of the 19th Annual ACM Symposium on User Interface
Software and Technology. 187–190.

[33] I Pohl. 1971. Bi-directional Search. Machine Intelligence 6 (1971), 127–140.
[34] Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello. 2014. The shortest

path to happiness: recommending beautiful, quiet, and happy routes in the city.

In HT. 116–125.
[35] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. 2015. Linear path

skylines in multicriteria networks. In ICDE. 459–470.
[36] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. 2015. ParetoPrep:

Efficient Lower Bounds for Path Skylines and Fast Path Computation. In SSTD.
40–58.

[37] Christian Sommer. 2014. Shortest-path queries in static networks. ACM Comput.
Surv. 46, 4 (2014), 45:1–45:31.

[38] Yuan Tian, Ken C. K. Lee, and Wang-Chien Lee. 2009. Finding skyline paths in

road networks. In SIGSPATIAL GIS. 444–447.
[39] Chi Tung Tung and Kim Lin Chew. 1992. A multicriteria Pareto-optimal path

algorithm. European Journal of Operational Research 62, 2 (1992), 203 – 209.

[40] Jur P. van den Berg and Mark H. Overmars. 2006. Planning the Shortest Safe

Path Amidst Unpredictably Moving Obstacles. In WAFR. 103–118.
[41] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu, and

Shuigeng Zhou. 2012. Shortest Path and Distance Queries on Road Networks:

An Experimental Evaluation. PVLDB 5, 5 (2012), 406–417.

[42] Bin Yang, Chenjuan Guo, Yu Ma, and Christian S. Jensen. 2015. Toward personal-

ized, context-aware routing. VLDB J. 24, 2 (2015), 297–318.
[43] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng

Zhou. 2013. Shortest path and distance queries on road networks: towards

bridging theory and practice. In SIGMOD. 857–868.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Problem Definitions

	3 Computing MPUP
	3.1 The HyperEdges Algorithm
	3.2 The Compressed Network Approach
	3.3 Discussion

	4 Computing MPNSP
	4.1 A Path Skyline Based Approach
	4.2 The ALGO-U Algorithm

	5 Experimental Analysis
	5.1 Setup
	5.2 Pre-processing for MPUP
	5.3 Computing MPUP
	5.4 Computing MPNSP

	6 Related Work
	7 Conclusions
	References

