
Caching Dynamic Skyline Queries?

Dimitris Sacharidis1, Panagiotis Bouros1??, and Timos Sellis1,2

1 National Technical University of Athens
9 Iroon Polytechniou, Athens 157 80, Greece

{dsachar,pbour}@dblab.ntua.gr
2 Institute for the Management of Information Systems — R.C. Athena

17 G. Mpakou, Athens 115 24, Greece
timos@imis.athena-innovation.gr

Abstract. Given a query tuple q, the dynamic skyline query retrieves
the tuples that are not dynamically dominated by any other in the data
set with respect to q. A tuple dynamically dominates another, w.r.t. q,
if it has closer to q’s values in all attributes, and has strictly closer to
q’s value in at least one. The dynamic skyline query can be treated as a
standard skyline query, subject to the transformation of all tuples’ val-
ues. In this work, we make the observation that results to past dynamic
skyline queries can help reduce the computation cost for future queries.
To this end, we propose a caching mechanism for dynamic skyline queries
and devise a cache-aware algorithm. Our extensive experimental evalua-
tion demonstrates the efficiency of this mechanism compared to standard
techniques without caching.

Keywords: skyline, dynamic skyline query, caching

1 Introduction

The skyline query has received considerable attention since its introduction in the
database community [1]. Consider a data set P where each tuple is represented as
a d-dimensional point. The skyline query returns all points in P not dominated
by another point. A point pi is said to dominate another point pj if for all
dimensions pi has equal or smaller coordinate values than pj and in at least
one dimension pi has strictly smaller value than pj . Intuitively, assuming in all
dimensions lower values are better, the skyline query retrieves the best tuples,
irrespective of how a user assigns preference to each dimension. More formally,
for any monotone preference function that assigns scores to tuples, the highest
scored — most preferable — tuple is included in the skyline.
? This work has been funded by the project PENED 2003. The project is cofinanced

75% of public expenditure through EC - European Social Fund, 25% of public ex-
penditure through Ministry of Development - General Secretariat of Research and
Technology and through private sector, under measure 8.3 of OPERATIONAL PRO-
GRAMME “COMPETITIVENESS” in the 3rd Community Support Programme.

?? The author is partially supported by the Greek State Scholarships Foundation (IKY).

Consider a table that contains entries about hotels, with attributes Name,
Price and Classification. Naturally, considering only its price, a hotel is more
preferable if it is cheap. Similarly, regarding its classification, a high-starred
hotel is more desirable. Figure 1(a) shows 15 hotels drawn as points in the two
dimensional plane, where the x dimension is Classification, and the y is Price.
The arrows in the axes indicate the direction of preference in each dimension,
e.g., the more preferable high ranked (budget) hotels have lower x (y) values.
Notice that there is no hotel that dominates p1, p2 and p15, and, hence, they
all belong in the skyline, as pointed in Figure 1(a). On the other hand, clearly,
p3 cannot be in the skyline as it is dominated by both p1 and p2. In fact, any
hotel that resides in the right-hand side with respect to the line connecting the
skyline hotels, is dominated.

p1 p2

p3

p4

p5
p6

p7
p8

p9

p10 p11

p12

p13

p14

p15

skyline

classi¯cation

p
ri
ce

(a) Skyline Query

p1

p2

p3

p4

p5
p6

q

p7
p8

p9

p10 p11

p12

p13

p14

p15

quadrant 0quadrant 1

quadrant 2quadrant 3

query
point

dynamic skyline

(b) Dynamic Skyline Query

Fig. 1. Skyline queries

A natural extension of the skyline query is its dynamic counterpart, intro-
duced in [2]. Given a query point q, not necessarily in the data set P , the dynamic
skyline query retrieves all points in P not dynamically dominated, with respect
to q, by another point. A point dynamically dominates another, w.r.t. q, if it has
closer to q’s values in all dimensions, and has strictly closer to q’s value in at
least one. Returning to the hotel example, suppose that a user looks for hotels
that match her budget and standards. For this reason, she specifies her “ideal”
hotel q and wishes to retrieve all similar, in price and classification, hotels not
dominated by others. Figure 1(b) illustrates the query point q and the dynamic
skyline with respect to it. The dynamic skyline query w.r.t. q returns the hotels
p2, p3, p5, p13 and p14, as shown in the figure. Notice that p9 is not in the skyline,
because p13 is closer to q in all dimensions, i.e., p13 matches the “ideal” hotel
better than p9 both in price and classification.

Dynamic skylines are useful in a variety of settings, where preferences are
defined relatively to an exemplar, as in the ideal hotel scenario previously de-
scribed. They also serve as the basic block for more complex queries. Seeing the
skyline computation problem from the micro-economic perspective, other types

of dominance related queries [3] also make sense. For example, hotel owners
might be interested to find out for which ideal hotels specified by users their
hotels belong in the skyline. The latter is known as the reverse skyline problem
[4]. Further, a query can specify a set of exemplars, rather than one, and the
dominance relationships are adjusted accordingly to consider the entire set. Ex-
amples of such queries include the multi-source skyline [5] and the spatial skyline
[6].

A dynamic skyline query can be reduced to a static skyline query, subject
to the transformation of all points’ coordinates. In particular, given query q, a
point p is transformed to p′ such that the i-th coordinate of p′ is computed as
p′i = |pi−qi|. Therefore, any method designed for the standard skyline query can
be trivially applied to the dynamic case. Note that all such methods are designed
to solve a single instance, given a single data set. Therefore, in the dynamic case,
where multiple instances — one for each query point — need to be solved, the
algorithm must run anew each time, examining all points for dominance. In this
paper we show that results to past dynamic skylines queries can help reduce the
cost of processing future queries. We present a caching mechanism that maintains
the most useful past results and uses them to exclude from consideration certain
points.

Figure 2 illustrates the intuition behind our caching mechanism. Assume that
qa, qb and qc are past dynamic skyline queries, as depicted in Figure 2(a). Observe
that each query point partitions the space into 4 quadrants. Let q represent the
dynamic skyline query under consideration, shown in Figure 2(b), and examine
the upper-right quadrant, which contains the past query qa. Assuming we have
cached the result for query qa, we know that p7 is part of qa’s dynamic skyline
and that it dominates points p8, p11 and p12, as seen in the upper right shaded
area in Figure 2(b). Furthermore, since p7 lies in the same quadrant (upper-
right) with respect to qa as qa lies with respect to q, we conclude that these
points are dynamically dominated by p7 w.r.t. q, as well. Indeed, p8 is farther,
in all dimensions, from both qa and q than p7. With analogous reasoning and by
examining the past query qb (qc) one can deduce that p15 (p4) cannot be in the
dynamic skyline of q since it is dominated by p14 (p3).

The contributions of this work can be summarized as follows:

1. We introduce the notion of orthant skylines and examine its relationship
with dynamic skylines.

2. We extend the well-known Bitmap algorithm to compute the orthant skylines
in parallel to the dynamic skyline, incurring small computation overhead.

3. We show how cached orthant skyline queries can help expedite the computa-
tion of future dynamic skyline queries. We propose three cache replacement
policies for deciding which queries to expunge when the cache is full.

4. We perform an extensive experimental evaluation that demonstrates the ef-
ficacy of the caching mechanism, as portrayed by the significant reduction
in query processing time in all settings.

Paper outline. First, in Section 2 we review literature on skyline related prob-
lems, focusing on the Bitmap algorithm, which is used throughout this work.

p1

p2

p3

p4

p5
p6

p7
p8

p9

p10 p11

p12

p13

p14

p15

qa
qb

qc past queries

(a) Dynamic Skyline Queries

p1

p2

p3

p4

p5
p6

q

p7
p8

p9

p10 p11

p12

p13

p14

p15

qa
qb

qc

(b) Pruning Points

Fig. 2. Caching skylines

Then, in Section 3 we present and formalize the basic notions discussed in this
paper. The extension to the Bitmap algorithm for dynamic skylines and the
caching mechanism are discussed in detail in Section 4. The most important
experimental findings are presented in Section 5. Finally, Section 6 concludes
the paper.

2 Related Work

Computing the points in the skyline, also known as finding the maxima in a
set of vectors [7], has been thoroughly studied in the area of computational
geometry where a large number of theoretical results exists. The first work to
address the skyline computation problem in the context of databases was [1].
The authors discuss various techniques: they devise an algorithm that iterates
over all points using block nested loops (BNL), propose a B-tree based approach,
and also adapt the multidimensional divide and conquer algorithm [8] to handle
external memory. An extension of the BNL algorithm that relies in presorting
the points is introduced in [9]. The work in [10] introduces progressive algorithms
that output points guaranteed to belong in the skyline without having to scan
the entire data set. The Bitmap algorithm encodes all points using a bitmap
representation and uses fast bitwise operations to extract the skyline points. We
use Bitmap as the basis of our methodology for computing dynamic skylines in
the presence of cache, and, thus, we present it in detail in Section 2.1. Another
indexed method based on B-trees is also discussed in [10], where points are sorted
according to their lowest valued coordinate.

Algorithms that use R-trees to index points have also been proposed. In [11]
the authors observe that the nearest neighbor (NN) point to the beginning of
the axes is always part of the skyline. This point segments the dataset into over-
lapping partitions according to its coordinates. Then, NN search is performed on
each partition and the algorithm proceeds iteratively. Special care needs to be
taken to remove duplicates resulting from the overlapping partitions. The branch

and bound algorithm (BBS) introduced in [2] avoids the pitfalls of the nearest
neighbor approach. BBS maintains the expanded R-tree entries into a heap in
ascending order of their minimum distance to the beginning of the axes. The
first point visited in this manner is the NN and belongs to the skyline. When an
entry is de-heaped, only its children not dominated by the skyline points found
so far are inserted into the heap. BBS is proved to examine only the nodes in the
R-tree that can potentially contain skyline points, and, hence, is I/O optimal.

The notion of dynamic skyline was first introduced in [2], where a variant
of the BBS algorithm was presented. Given a point p, the reverse skyline query
[4] retrieves the points whose dynamic skyline includes p. The authors in [4]
present algorithms that are based on finding the global skyline of p, a notion
related to the orthant skylines defined in this work. Another related notion is
the multi-source skyline query [5, 6], in which a set of query points is specified
and the result contains the points not dominated w.r.t. to the set.

When only a subset of the dimensions is considered, the skycube operator [12]
returns the points that belong in the skyline. Some dominance related queries
seen from the micro-economic perspective are presented in the data-warehouse
framework of [3]. When the domain of a dimension is partially ordered, i.e., its
values belong in a hierarchy, the skyline computation becomes more involved
and the final result may require pruning as discussed in [13]. The notion of prob-
abilistic skylines is defined [14] for the case where multiple tuples (or samples)
correspond to randomly distributed objects in the data set.

2.1 The Bitmap Algorithm

The Bitmap algorithm was introduced in [10] for determining the skyline points
efficiently when the domains of the defining dimensions are small and, most
importantly, discrete. Briefly, Bitmap works as follows: (a) it pre-processes all
points to obtain an appropriate bitmap representation, and (b) it checks each
point for dominance against all points and outputs it if not dominated. The
latter step is efficiently performed by fast bitwise AND/OR operations on the
bitmap representations obtained in the former step.

Bitmap representation. For ease of presentation, we assume that all d dimen-
sions have a domain of size n and its values belong in {0, 1, . . . , n− 1}, 0 being
the most preferable value; the extension to dimensions with different domains is
straightforward. A value u is represented by a bitmap of size n, where the u most
significant bits are set to 0 and the remaining (the n − u least significant bits)
are set to 1. A d-dimensional point is, hence, represented as d bitmaps, one for
each of its coordinates. We maintain the bitmap representation for all points in
a bitmap table. For example, assume n = 8 and consider the point p1(0, 3, 7); its
coordinates are represented as the bitmaps 11111111, 00011111 and 00000001,
respectively. Figure 3(a) shows the bitmap table for 6 points, including that
of p1. The function of the bold and italicized bits will become apparent in the
following.

D1 D2 D3

p1(0, 3, 7) 11111111 00011111 00000001
p2(6, 7, 2) 00000011 00000001 00111111
p3(1, 0, 2) 01111111 11111111 00111111
p4(3, 0, 4) 00011111 11111111 00001111
p5(2, 2, 6) 00111111 00111111 00000011
p6(6, 4, 7) 00000011 00001111 00000001

(a) Bitmap table

A1 = 101110 B1 = 101010
A2 = 001100 B2 = 000000
A3 = 011100 B3 = 011000

A = 001100 B = 111010

C = A&B = 001000

(b) Dominance check for p4

Fig. 3. Bitmap example

Dominance check. The dominance check of point p identifies the points that
dominate it. Clearly, a point belongs to the skyline if its dominance check identi-
fies no dominating point. Performing the check in the Bitmap algorithm involves
extracting vertical bitslices and performing bitwise AND/OR operations. Let
pi ∈ {0, 1, . . . , n − 1} denote the i-th coordinate of p, where 1 ≤ i ≤ d. We
extract two vertical bitslices, Ai and Bi, from the bitmap representation of the
data set. We extract a single bit for each point; thus, each bitslice has length N ,
where N denotes the size of the data set. In particular, we obtain the bitslice
Ai by juxtaposing the (pi + 1)-th bit of the bitmap representation of the i-th
coordinate for all points. Similarly, we obtain Bi by juxtaposing the preceding,
i.e., the pi-th, bit of the bitmap representation of the i-th coordinate for all
points; note that when pi=0 we explicitly set Bi to all zeros. Figure 3(b) shows
the Ai, Bi bitslices for the dominance check of p4(3, 0, 4). For the Ai bitmaps
we extract the 4th, 1st and 5th bit, shown in bold in Figure 3(a), for the first,
second and third dimension of each point. For the Bi bitmaps we extract the
3rd and 4th bit, shown in italics in Figure 3(a), for the first and third dimension
of each point; B2 is set to all zeros. Given point p, its bitslice Ai encodes which
points (i.e., those whose corresponding bit in Ai is set to 1) are equally as good
or better than p with respect to the i-th dimension. In other words if the k-th
bit of Ai is set to 1, then the k-th point has equally good or better value than
p in the i-th coordinate. On the other hand, the bitslice Bi encodes the points
that are strictly better in the i-th dimension.

Let A = A1&A2& . . . &Ad denote the bitwise AND operation of all Ai bit-
slices. A indicates the points that are equally as good or better than p in all
dimensions. Consider a point p in the 2 dimensional space shown in Figure 4.
All points, including p, that reside in the shaded area of Figure 4(a) have their
bit in A set to 1; for all other points the bit is 0. Similarly, let B = B1|B2| . . . |Bd

denote the bitwise OR operation of all Bi bitslices. Then, B indicates the points
that are strictly better than p in at least one dimension. All points that reside in
the shaded area, excluding those in the dashed line and p, shown in Figure 4(b)
have their bit in B set to 1; for all other points the bit is 0. According to the
definition of dominance, if a point has its corresponding bit set both in A and
B, then it dominates p, and, hence, p is not in the skyline. On the other hand,
if C = A&B has no bit set, then p is not dominated by any point, and thus
belongs in the skyline. All points, excluding p, that reside in the shaded area

shown in Figure 4(c) dominate p and thus have their bit in C set to 1; for all
other points the bit is 0.

Ap

(a) Bitmap A

B

p

(b) Bitmap B

p C=A&B

(c) Bitmap C

Fig. 4. Dominance check

Returning to the dominance check of point p4(3, 0, 4) for the example il-
lustrated in Figure 3(b), notice that A = 001100 and B = 111010; hence,
C = 001000. Since the third bit in C is set to 1, it follows that p3(1, 0, 2)
dominates p4(3, 0, 4). So, p4 does not belong in the skyline.

3 Preliminaries

In this section, we formally define the notions of dominance, and skyline points.
We assume a d-dimensional space, where Di denotes the domain of the i-th
dimension, i ∈ {1, . . . , d}. Each domain Di is totally ordered by < assigning
preference to the values of the domain. Consider values u, v ∈ Di; u is more
preferable than v iff u < v. The data set P contains N = |P | d-dimensional
points. Each point p ∈ P belongs in the space D = D1 ×D2 × · · · ×Dd and is
represented by its coordinates, p = (p1, p2, . . . , pd).

Definition 1 (Dominance). Let p1, p2 ∈ P and i, j ∈ {1, . . . , d}. A point p1

dominates another point p2, denoted as p1 ≺ p2, iff (i) for all dimensions, pi
1 is

more, or equally preferable than pi
1, i.e., ∀i : pi

1 ≤ pi
2, and (ii) in at least one

dimension, let j, pj
1 is strictly more preferable than pj

2, i.e., ∃j : pj
1 < pj

2.

A point not dominated by any other in the data set is called a skyline point.
Intuitively, one cannot prefer a non-skyline point over a skyline point for any
preference function that is monotonic in each dimension. In other words, the
skyline contains the top-1 point for any preference function and, conversely, for
a given skyline point there always exists a function under which this point is the
top-1.

Definition 2 (Skyline). The skyline of P , denoted as SL(P), is the set of
points in P that are not dominated by any other point of P , i.e., SL(P) = {p1 ∈
P | @p2 ∈ P : p2 ≺ p1}.

The skyline query retrieves the points that belong in the skyline. For example,
for the data set shown in Figure 1(a), the skyline query retrieves the points p1,
p2 and p15.

3.1 Dynamic Skyline

According to the definitions of dominance and skyline presented above, the most
preferable point is the beginning of the axes o = (0, . . . , 0), assuming it exists
in P , since it dominates all other points. As argued in Section 1, however, in
many cases the most preferable point could be a user specified point q. In this
case we need to express the notions of preference and dominance relative to q.
Given a point q = (q1, . . . , qd) ∈ D (not necessarily in P), the value u ∈ Di, for
some i, is more preferable than the value v ∈ Di iff |u − qi| < |v − qi|. Based
on this preference notion, we now provide the definitions of dynamic dominance
and skyline.

Definition 3 (Dynamic Dominance). Let p1, p2 ∈ P , i, j ∈ {1, . . . , d} and
q ∈ D. Given a query point q, a point p1 dynamically dominates, w.r.t. q, another
point p2, denoted as p1 ≺q p2, iff (i) for all dimensions, pi

1 is more, or equally
preferable, w.r.t. q, than pi

2, i.e., ∀i : |pi
1 − qi| ≤ |pi

2 − qi|, and (ii) in at least
one dimension, let j, pj

1 is strictly more preferable, w.r.t. q, than pj
2, i.e., ∃j :

|pj
1 − qj | < |pj

2 − qj |.

Definition 4 (Dynamic Skyline). Given a query point q ∈ D, the dynamic
skyline of P w.r.t. q, denoted as DSL(P, q), is the set of points in P that are not
dynamically dominated, w.r.t. q, by any other point of P , i.e., SL(P) = {p1 ∈
P | @p2 ∈ P : p2 ≺q p1}.

Consider the example data set and query q shown in Figure 5. The dynamic
skyline w.r.t. q contains the points p2, p3, p5, p13 and p14 drawn with black solid
circles in the figure.

The dynamic counterparts of the dominance and skyline notions, essen-
tially, correspond to the standard notions applied to the transformed data set
P ′ obtained by mapping each point p = (p1, . . . , pd) ∈ P to the point p′ =
(|p1−q1|, . . . , |pd−qd|), given the query point q. Consider Figure 5; observe that
any point p, where pj − qj < 0 for at least one dimension, has been mapped to
a point p′ in the upper right quadrant w.r.t. q. The mapping is shown with a
dashed line and the mapped point is drawn as a dashed circle.

As illustrated in Figure 5, the query point q partitions space D into the 4
quadrants (2d orthants in the d-dimensional case) defined by constraining the
space to be higher or lower than qj for each dimension j. An orthant can be
identified by a number written in binary containing d bits where the j-th bit is 0
(1) if for the j-th dimension the orthant contains the values not smaller (smaller)
than qj . Figure 5 shows the 4 orthants and their ids assuming dimension order
yx. We introduce the notion of orthant skylines, which is defined as the dynamic
skyline when considering only the points in P inside an orthant.

Definition 5 (Orthant Skyline). Given a query point q ∈ D, the o-th orthant
skyline of P w.r.t. q, where o ∈ {0, . . . , 2d−1}, denoted as OSL(P, q, o), is the set
of points in P that belong to the o-th orthant and are not dynamically dominated,
w.r.t. q, by any other point of that orthant.

p1

p2

p3

p4

p5
p6

q

p7
p8

p9

p10 p11

p12

p13

p14

p15

original point

mapped point

dynamic skyline point

quadrant skyline point

quadrant 0quadrant 1

quadrant 2quadrant 3

Fig. 5. Mapping points

Return to the example of Figure 5. The upper right quadrant (with id 0)
skyline contains points p5, p9 and p10, which are drawn with filled circles (black
or grey). Note that an orthant skyline point can be dominated by the skyline
point of another orthant and, hence, the former cannot belong in the dynamic
skyline. For example, p9 is dominated by the mapping of point p13 and, hence,
is not part of the dynamic skyline. Similarly, p10 is dominated by the mappings
of points p2 and p14, which happen to coincide. It is straightforward to see that
the following lemma regarding the union of all orthant skylines w.r.t. q, termed
global skyline in [4], holds.

Lemma 1. The union of all orthant skylines w.r.t. q is a superset of the dynamic
skyline w.r.t. q.

4 Caching Dynamic Skylines

We first present the dynamic Bitmap algorithm, termed DBM, for obtaining the
orthant skylines as well as the dynamic skyline in Section 4.1. Next, in Sec-
tion 4.2, we demonstrate that caching queries and their orthant skylines can
help reduce the execution time for future dynamic skyline queries. Finally we
discuss cache replacement policies in Section 4.3.

4.1 Computing the Orthant Skylines

The DBM algorithm computes the orthant skylines and the dynamic skyline with
respect to a query point q. Because the number of orthants is exponential to the
dimensionality, it is crucial that our method finds the orthant skylines with little
overhead compared to calculating only the dynamic skyline.

Initially, we construct the bitmap table for all points. In particular, we rep-
resent each coordinate of point p ∈ P by converting the value |pi − qi| (and not
pi) into the |Di| bits, as described in Section 2.1. We maintain a global mask M
of length N to indicate the points that need to be considered. Initially all bits
are set to 1. In addition, DBM creates the orthant masks of length N , denoted

Mj for j ∈ {0, . . . , 2d − 1}, to indicate which points belong to an orthant. Note
that in the following we slightly abuse notation by referring to p’s bit in M as
M [p]. If p resides in the o-th orthant w.r.t. q, then Mo[p] is set to 1. The orthant
masks can be created in parallel to the bitmap table construction, as points are
examined, by identifying the orthant a point resides in. Recall from Section 3.1
that the orthant id written in binary contains d bits, one for each dimension.
Assume that point p is considered; the sign of pi− qi designates the value of the
i-th bit of p’s orthant w.r.t. q, i.e., the bit is 0 if pi − qi ≥ 0 and 1 if pi − qi < 0.

Figure 6 illustrates the DBM algorithm that examines each point in turn
(Line 2). Given query point q, let p be the current point considered and let o
denote the orthant p resides in w.r.t. q (Line 3). If p’s bit in its orthant mask is
set to 0, then we skip this point (Lines 4–5). Of course, in the case we examine
here, this cannot happen, as the Mo mask is initialized to 1 for all its points;
however, in Section 4.2, when the query cache is considered, this may no longer
hold.

Next, DBM computes the C bitmap (Line 7) as discussed in Section 2.1 and
performs two dominance checks, one for the orthant and one for the dynamic
skyline. We distinguish three cases.

(I) C&Mo 6= 0 denotes that p is dominated by some other point in its orthant
(Line 8).

(II) C 6= 0 and C&Mo = 0 denotes that p is not dominated by some other
point in its orthant, but it is dominated by some point in another orthant
(Line 11).

(III) C = 0 and C&Mo = 0 denotes that p is not dominated by neither some
other point in its orthant, nor by some point in another orthant.

In case (I), by Lemma 1, point p cannot belong to its orthant and the dynamic
skyline. Hence, its bit in M and Mo is set to 0 (Lines 9–10). In case (II) p cannot
be in the dynamic skyline but is part of it’s orthant skyline. DBM sets its bit to
0 only in M (Line 12); its Mo bit remains set to 1. Finally, in case (III) DBM

retains p’s bit in M and Mo to 1. After all points have been examined, the M
mask identifies the dynamic skyline points, whereas the {Mj} masks identify the
orthant skyline points (Lines 13–14).

4.2 Dynamic Skylines via Caching

In this section we show how caching of past queries and orthant skylines can help
expedite dynamic skyline queries. We start by describing the cached Dynamic
Bitmap algorithm, termed cDBM; we then discuss cache replacement strategies in
Section 4.3. We assume that the cache Q stores for each past query qi, the query
itself and all its orthant skylines OSL(P, qi, j) for j ∈ {0, . . . , 2d − 1}. In par-
ticular, the orthant skyline OSL(P, qi, j) is represented as the N -length bitmap
Oi

j in which p’s bit is set to 1 if p is included in the j-th orthant skyline w.r.t
qi. Therefore, Q = {〈qi, {Oi

j}〉}, i.e., the cache needs to store 2d bitmaps {Oi
j}

for each past query qi; later, we provide a method to compress these bitmaps.

Algorithm DBM

Input: data set P , query q, bitmap table T , masks M , {Mj}
Output: orthant skyline bitmaps {Oj}, dynamic skyline bitmap R
begin1

foreach p ∈ P do2
Let o be the orthant p resides in w.r.t. q3
if Mo[p] = 0 then // pruned by cache4

continue5
else6

GetBitmapC(T, p)7
if C&Mo 6= 0 then // case (I)8

Mo[p]← 0 // not in the orthant9
M [p]← 0 // and not in the dynamic skyline10

else if C 6= 0 then // case (II)11
M [p]← 0 // not in the dynamic skyline12

R←M13
Oj ←Mj for all j14
return 〈R, {Oj}〉15

end16

Fig. 6. The Dynamic Bitmap algorithm (DBM)

The intuition for using past orthant skylines lies in the fact that they can
immediately and safely prune potentially large parts of the data set. Indeed, an
orthant skyline contains precomputed information about the dominance checks
in the particular orthant, as the next lemma suggests.

Lemma 2. Consider queries qi, q ∈ D and a point p ∈ P , such that qi belongs
in the o-th orthant with respect to q, and p belongs in the o-th orthant w.r.t. qi,
and, thus, w.r.t. q as well. If p is not part of the o-th orthant skyline w.r.t. qi,
then, p is not part of the o-th orthant skyline w.r.t. q, and, hence, neither is part
of the dynamic skyline w.r.t. q.

Proof. Without loss of generality, assume o = 0. Since p is not part of the o-th
orthant skyline w.r.t. qi, it is dominated by (at least) one point, let pa, i.e.,
pa ≺qi p. Therefore, for o = 0 we have that pj

a − qj
i ≤ pj − qj

i for all j, and
pk

a − qk
i < pk − qk

i for at least one k, where j, k ∈ {0, . . . , 2d− 1}. Adding qj
i − qj

and qk
i −qk to the previous inequalities, and since all quantities are non-negative,

we obtain pa ≺q p. ut

Figure 2(b) demonstrates Lemma 2 for the current query q and the past query
qa, which lies in the upper-right quadrant with respect to q. The skyline of the
upper-right quadrant w.r.t. qa contains a single point, p7, which dynamically
dominates p8, p11 and p12 w.r.t. qa. It is obvious that p7 also dominates p8,
p11 and p12, w.r.t. q, and hence, these, points cannot belong to the upper-right
quadrant or dynamic skyline of q.

The cDBM algorithm for calculating the dynamic and orthant skylines is
illustrated in Figure 8. For each query, cDBM first computes the masks (Line
4) and then calls the DBM algorithm (Line 5). Finally, the orthant skylines are
inserted into the cache (Line 6).

The most important step of the cDBM algorithm is the ComputeMasks pro-
cedure, shown in Figure 7. Given query q, this procedure creates the masks M

and {Mj} applying Lemma 2 to determine which points need not be considered.
Initially, the cache Q is partitioned into sets Qj for j ∈ {0, . . . , 2d − 1}, such
that Qj contains the queries that reside in the j-th orthant w.r.t. q (Line 2).
Then, each point p is examined in turn (Line 3). The bitmap representation of
p with respect to q is computed and the bitmap table T is updated (Line 8), as
discussed in Section 4.1. Let o denote the orthant p lies w.r.t. q (Line 4). Then,
p’s bit in the o-th orthant mask is set to 1, whereas in all other orthant masks it
is set to 0 (Lines 6–7); of course, p’s bit in M is set to 1 (Line 5). The algorithm
continues by examining the past queries that reside in the o-th orthant, i.e.,
those in Qo. Let qi be such a query (Line 9) and let oi be the orthant that p
lies in with respect to qi (Line 10). If p lies in the same orthant with respect to
qi as qi lies w.r.t. q, i.e., oi = o (Line 11), then Lemma 2 applies (Lines 12–16).
Therefore, if p was not in o-th orthant skyline w.r.t qi (Line 13), then it can be
excluded from consideration in the orthant (Line 14) and the dynamic skyline
(Line 15) w.r.t. q. If this was the case, then no other past query needs to be
examined (Line 16).
Compressing Cached Queries. The caching mechanism discussed above has
a large space overhead, as it requires storing 2d bitmaps for each query in the
cache. We address this issue making the following observation: a point can belong
to only one orthant and, thus, can be part of only one orthant skyline per query.
Given query qi and its orthant skyline bitmaps Oi

j , for all j ∈ {0, . . . , 2d − 1},
we construct a single orthant skyline bitmap Oi by disjuncting all Oi

js. Then,
p’s bit in Oi is set to 1, if point p belongs in the skyline of its orthant w.r.t. q.
Note that the ComputeMasks procedure need not change; in Line 13 of Figure 7,
the Oi mask can be used instead of the o-th orthant mask Oi

o.

Procedure ComputeMasks

Input: data set P , query cache Q, query q
Output: bitmap table T , masks M , {Mj}
begin1

partition Q to the {Qj} sets w.r.t. q2
foreach p ∈ P do3

Let o be the orthant p resides in w.r.t. q4
M [p]← 1 // initialize mask to 15
Mo[p]← 1 // initialize o-th orthant mask to 16
Mj [p]← 0, for all j 6= o // initialize all other orthant masks to 07
update T with BitmapEncode(p, q)8

foreach 〈qi, {Oi
j}〉 ∈ Qo do9

Let oi be the orthant p resides in w.r.t. qi10
if oi = o then11

Let Oi
o be the o-th orthant skyline of qi from {Oi

j}12

if Oi
o[p] = 0 then // if p not in its orthant skyline w.r.t. qi13
M [p]← 0 // it cannot be in the dynamic skyline w.r.t. q14
Mo[p]← 0 // neither in the j-th orthant skyline w.r.t. q15
break16

return 〈T, M, {Mj}〉17

end18

Fig. 7. Computing masks given the query cache

Algorithm cDBM

Input: data set P
begin1

Q = ∅2
foreach incoming q do3

// initialize masks and construct bitmap table
〈T, M, {Mj}〉 ← ComputeMasks(P , Q, q)4
// calculate dynamic and orthant skylines
〈R, {Oj}〉 ← DBM(P , q, T , M, {Mj})5
update Q with 〈q, {Oj}〉 // run a cache replacement policy6

end7

Fig. 8. The cached Dynamic Bitmap algorithm (cDBM)

4.3 Cache Replacement Policies

In this section we discuss replacement policies for our caching mechanism. The
objective of these policies is the identification of the least useful query point
among those in the cache that must be discarded together with its orthant
mask. The first two policies we consider are the common Least Recently Used
(LRU) and Least Frequently Used (LFU) policies, which keep track of the usage
for each query in the cache. On the other hand, the Least Pruning Power (LPP)
policy measures the pruning ability of each query and discards the least strong.

LRU and LFU policies. In Section 4.2 we used all queries in the cache to discover
which points to exclude from consideration. However, given a query q, some of
the queries in the cache are redundant, i.e., they identify points that can be
pruned even if we don’t consider these cached queries. This is exemplified in
Figure 9(a), where q denotes the current query under consideration, and qa, qb,
qc and qd are past queries in the cache that reside in the upper-right quadrant
w.r.t. q. For each of these queries, their upper-right quadrant skyline can be used
to prune some of the points that are contained in the dashed box ranging from
the query to the upper right point in Figure 9(a). Observe that since qc’s box
is entirely contained in qa, the points the former can possibly prune can also be
pruned by the latter; the same holds for qd and qb. It is easy to show that, given
a query q, if a cached query qc is dominated by another cached query qa, then
qc can be safely disregarded when computing the masks for query q.

The previous observation suggests the following change to the ComputeMasks

procedure in Figure 7. In Line 2, ComputeMasks partitions the cached queries
according to the orthant they belong with respect to the query point q. Instead,
we calculate the orthant skylines w.r.t. q of all queries in Q so that the set Qj

now contains the queries in Q that belong in the j-orthant skyline (and not all
queries in the j-th orthant).

Consider the case when query point q is considered and that we compute
the Qj sets. In the Least Recently Used (LRU) policy, each time a cached query
belongs in the orthant skyline, i.e., it will be used to prune points, we annotate
it with a timestamp to indicate that it was used for query q. Note that the
timestamp can be a simple counter that increases with each query considered.
When the cache has reached its capacity we choose to evict the cached query
that was least recently used, i.e., has the smallest timestamp. To efficiently

identify the cached query to be evicted, we maintain a priority queue with key
the timestamp of each query. Therefore, updating the timestamp of an already
stored query, inserting a new and evicting the least recently used one require
time logarithmic to the size of the cache.

In the Least Frequently Used (LFU) policy, we maintain a usage counter
for each query in the cache. Each time a cached query belongs in the orthant
skyline w.r.t. the query point, i.e., it will be used to prune points, we increment
its usage counter. We choose to always include in the cache the current query
under consideration, and if the cache is full we evict the least frequently used
query, i.e., that with the smallest usage counter. As before, a priority queue can
be used to expedite the identification of the query to be evicted.

q

qa

qb qc

qd

redundant
past queries

query point

(a) Redundant cached queries

qa

qb

2:3

176
74:88

222

5:7

20
3:4

21

45:52

1170

26:31

1395

15:20

510

23:34

460

(b) Pruning power

Fig. 9. Cache Replacement Policies

LPP policy. Intuitively, a useful cached query is one which has great pruning
power, i.e., it can discard a large number of points for a lot of queries. Depending
on the position of a cached query qa relative to a query q, the pruning power
of qa can vary significantly. Let dpj

a denote the number of points dominated by
cached query qa’s j-th orthant skyline. Consider for example the two cached
queries illustrated in Figure 9(b). If a query lies in the upper-left quadrant with
respect to qa, then qa’s skyline for the lower-right quadrant can prune 74 points,
as indicated by the first of the three numbers per query and quadrant shown in
Figure 9(b), i.e., dp3

a = 74. On the other hand, if a query lies in the lower-right
quadrant w.r.t. qa, then qa’s upper-left quadrant skyline can only prune 2 points,
i.e., dp1

a = 2.
The pruning power of a query’s orthant also depends on the probability of a

query residing in the antisymmetric orthant. In the example of Figure 9(b), it is
rather unlikely for a query to belong in the upper-left quadrant w.r.t. qa, hence
qa’s highly dominant quadrant will rarely be used. It is reasonable to assume that
queries follow a similar distribution to the data set; therefore the probability of
a query residing in any area is analogous to the number of data points this area
includes. Given a cached query qa, let npj

a denote the number of points residing

in the j-th orthant w.r.t. qa. In Figure 9(b), npj
a is shown as the second number

in the triad of numbers for all queries and quadrants.
Given a query qa, its pruning power for the j-th orthant, denoted as ppj

a,
is given by ppj

a = npj̄
a · dpj

a, where j̄ identifies j’s antisymmetric orthant. In
Figure 9(b), ppj

a is shown as the third number typed in larger font for each query
and quadrant. In the case of query qa, for example, the upper-left quadrant
skyline dominates 2 out of 3 points, and the lower-right quadrant contains a
total of 88 points; hence, the pruning power of the qa upper-left quadrant is
2 · 88 = 176. The pruning power ppa of a query qa is the sum of its pruning
power for all orthants, i.e., ppa =

∑
j ppj

a. Intuitively, a low pruning power
implies that the query is expected to prune only a few points. LPP always evicts
from cache the query with the least pruning power. As before, a priority queue
can be used.

Note that a query’s pruning power for all orthants can be computed with
little overhead. The number of points in an orthant npj

a can be counted in the
ComputeMasks procedure while examining where each point resides with respect
to the query. Also, the number of points dominated by an orthant skyline dpj

a can
be calculated as the number of points in the orthant minus the orthant’s skyline
size; the latter can be found by simply using a counter in the DBM algorithm.

5 Experimental Evaluation

We present an extensive experimental evaluation of the cDBM algorithm paired
with the three cache replacement policies discussed in Section 4.3. In particular,
we compare LRU, LFU, LPP with the Bitmap algorithm adapted to dynamic skyline
query processing, denoted as NO-CACHE since it corresponds to the case where
no cache is used. All algorithms are implemented in C++, compiled with gcc
and executed on a 3 Ghz Intel Core 2 Duo CPU.

We use the generator from [15] to create data sets of three types of distribu-
tion:

– Independent: The attribute values are drawn from a uniformly random in-
dependent distribution.

– Correlated: Tuples whose attribute values are low, i.e., preferable, in one
dimension have most likely low values in the other dimensions, as well.

– Anti-Correlated: Tuples whose values are low in one dimension have most
likely high, i.e., not preferable, values in the other dimensions.

The dimensionality of the data set varies from d = 2 up to 6, where each
dimension’s domain contains a fixed number of discrete values, ranging from
|D| = 10 up to 50. The size of the data set, N , is between 10 thousand and up
to 100 thousand tuples. We test all cache replacement policies for different cache
sizes that extend from |Q| = 10 to 50 queries. We perform |Q|+20 dynamic sky-
lines queries and we measure the average performance of all policies for the last
20 queries, so that the query cache is full in all cases. More specifically, we mea-
sure the average running time for each method and we count the average number

of points pruned by the cache. In each experiment we vary a single parameter
while we set the remaining ones to their default values. Table 1 summarizes the
parameters involved and their ranges; the default values are shown in bold.

Parameter Values

N 10000, 20000, 50000, 100000

d 2, 3, 4, 5, 6

|D| 10, 20, 50

|Q| 10, 20, 30, 40, 50

Table 1. Experimental parameters

5.1 Experimental Results

In the first set of experiments we vary the cache size from |Q| = 10 to 50 while
the data set is fixed to containing N = 50000 tuples with d = 4 attributes of
cardinality |D| = 20. In this setting, the dataset is 1000 KB, whereas the cache
size increases from 62.5 KB (6% of data size) for |Q| = 10, to 187.5 KB (19% of
data size) for the default setting (|Q| = 30), and up to 312.5 KB (31% of data
size) for the largest setting |Q| = 50. We measure the average running time and
the average number of points pruned for 20 dynamic skyline queries when the
cache is full.

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

ec
)

Cache size (|Q|)

7508

10115
12236

14154 15421

2698 2627
4531

6833 6315

NO-CACHE
LRU
LFU
LPP

(a) Independent

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

ec
)

Cache size (|Q|)

11513

14083

18863 19892 19166

5813 5942
8220 7644 7190

NO-CACHE
LRU
LFU
LPP

(b) Correlated

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(s

ec
)

Cache size (|Q|)

7859

13353

15798
18043

20219

3251
6094 5898 5590 5338

NO-CACHE
LRU
LFU
LPP

(c) Anti-Correlated

Fig. 10. Varying the query cache size

Figure 10 presents the results of all cache replacement policies for the three
data sets. The average number of pruned points are shown next to the time
measurements for the LPP and LFU policies. We also draw the running time
when the queries are processed without cache, denoted as NO-CACHE, which is a
straight line over |Q|. The expected behavior when the cache size increases is the
number of pruned points to also increase, resulting in shorter running times. This
is clearly the case for the LPP policy which outperforms the usage-based policies.

LRU and LFU, especially in the Anti-Correlated data set (Figure 10(c)), fail to
take advantage of the larger cache. The reason for this behavior can be attributed
to the fact that caching more queries recently (LRU) or frequently used (LFU)
does not guarantee that future queries will benefit from them. In other words, the
queries already seen are not representative of the queries to follow. On the other
hand, LPP keeps in cache queries with great pruning power that can prove useful
for any future query. For the maximum setting |Q| = 50, LPP immediately prunes
15421, 19166 and 20219 out of the 50000 points and decreases the processing time
by 31%, 38% and 40% for the Independent, Correlated and Anti-Correlated data
sets, respectively.

Figure 11 shows the effect of the distribution parameters on the caching
mechanism. In this setting we draw the relative improvement in running time for
the three cache replacement policies over the case of no cache, for the Correlated
data set; similar results hold for the other distribution types. In Figure 11(a)
we vary the data set size while keeping all parameters, including cache size
Q, to their default values shown in Table 1. This implies that relative to the
data size, the cache decreases as N grows. Still, Figure 11(a) shows that the
policies can prune a rather significant part of the dataset (31% – 41% for LPP as
shown by the labels in the figure), which is translated to an analogous running
time improvement. Note that as the data set becomes denser, LFU and LRU’s
performance also increases.

In Figure 11(b) we vary the dimensionality of the data set, while the remain-
ing parameters have their default values. The LPP policy is highly affected by the
curse of dimensionality, i.e., as the space becomes sparser (since N is fixed) its
pruning power rapidly decreases, i.e., from 78% down to 17%. The usage-based
policies are also affected but to a lesser degree.

Finally, in Figure 11(c), we vary the domain cardinality for each dimension,
when N = 50000, d = 4 and |Q| = 50. Larger |D| values result in sparser
data sets. However, unlike Figure 11(b), the cache replacement policies are not
significantly affected. LPP in all cases improves running time by 38%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

10K 20K 50K 100K

R
un

ni
ng

 ti
m

e
im

pr
ov

em
en

t (
%

)

Data set size (N)

41%

31%

38%

35%

17%

12%

16%
19%

LPP
LFU
LRU

(a) Varying N

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4 5 6

R
un

ni
ng

 ti
m

e
im

pr
ov

em
en

t (
%

)

Dimensionality (d)

39093

27286

18863

10103
8198

9053
9293

8220

4989 4723

LPP
LRU
LFU

(b) Varying d

 0

 10

 20

 30

 40

 50

10 20 50

R
un

ni
ng

 ti
m

e
im

pr
ov

em
en

t (
%

)

Dimension cardinality (|D|)

19145 18863 18386

6839

8220

8471

LPP
LRU
LFU

(c) Varying |D|

Fig. 11. Effect of distribution parameters

6 Conclusions and Future Work

In this paper we study the problem of dynamic skyline queries from a fresh per-
spective. We consider the case where we keep past queries and their results in
a cache so as to expedite future query processing. For this end, we introduce
the notion of orthant skylines and extend a well-known skyline algorithm to
handle them. Then, we prove that results of orthant skyline queries can poten-
tially exclude a large part of the data set from the costly dominance checks. We
propose three cache replacement policies so that the cache always contains the
most useful queries and their results. Through extensive experimental results
on synthetically generated data set, we demonstrate the efficiency of the pro-
posed caching mechanism: using less than 20% of the data size for the cache,
we can reduce the processing time by 40%. In the future, we plan to apply the
caching framework to other skyline processing algorithms, focusing on indexed
approaches. Furthermore, we will investigate methods to increase the pruning
power of the cached queries while at the same time reducing the space overhead.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE. (2001)
421–430

2. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30(1) (2005) 41–82

3. Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: Dada: a data cube for dominant
relationship analysis. In: SIGMOD Conference. (2006) 659–670

4. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: VLDB.
(2007) 291–302

5. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road
networks. In: ICDE. (2007) 796–805

6. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB. (2006) 751–
762

7. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
Journal of the ACM 22(4) (1975) 469–476

8. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer (1985)

9. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE.
(2003) 717–816

10. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
VLDB. (2001) 301–310

11. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: VLDB. (2002) 275–286

12. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: VLDB. (2005) 241–252

13. Chan, C.Y., Eng, P.K., Tan, K.L.: Stratified computation of skylines with partially-
ordered domains. In: SIGMOD Conference. (2005) 203–214

14. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:
VLDB. (2007) 15–26

15. Random dataset generator for SKYLINE operator evaluation:
http://randdataset.projects.postgresql.org/

