
Noname manuscript No.
(will be inserted by the editor)

Approximate Regional Sequence Matching for Genomic
Databases

Thanasis Vergoulis · Theodore Dalamagas · Dimitris Sacharidis ·
Timos Sellis

the date of receipt and acceptance should be inserted later

Abstract Recent advances in computational biology

have raised sequence matching requirements that re-

sult in new types of sequence database problems. In this

work, we introduce an important class of such problems,

the Approximate Regional Sequence Matching (ARSM)

problem. Given a data and a pattern sequence, an ARSM

result is an approximate occurrence of a region of the

pattern in the data sequence under two conditions. First,

the region must contain a predetermined area of the

pattern sequence, termed core. Second, the allowable

deviation between the region of the pattern and its oc-

currence in the data sequence depends on the length

of the region. We propose the PS-ARSM method that

processes holistically the regions of a pattern, taking

advantage of their overlaps to efficiently identify the

ARSM results. Its performance is evaluated with re-

spect to existing techniques adapted to the ARSM prob-

lem.

1 Introduction

Sequence matching problems (e.g., exact/approximate,

local/global alignment) have been extensively studied,

T. Vergoulis
NTUA & IMIS, Athena RC
E-mail: vergoulis@dblab.ece.ntua.gr

T. Dalamagas
IMIS, Athena RC
E-mail: dalamag@imis.athena-innovation.gr

D. Sacharidis
IMIS, Athena RC
E-mail: dsachar@imis.athena-innovation.gr

T. Sellis
NTUA & IMIS, Athena RC
E-mail: timos@dblab.ece.ntua.gr

and several algorithms, reviewed in [27,9], have been

proposed. These problems are very popular as they nat-

urally appear at the heart of many diverse applications.

For example, in biological databases, which contain long

sequences of symbols (such as nucleotides, amino acids,

etc.), sequence matching algorithms help identify ho-

mologous (i.e., of similar functionality) biological enti-

ties (such as genes, proteins, etc.).

Often, advances in particular research fields intro-

duce complex matching criteria that give rise to novel

sequence matching problems. Consider the following case

from biology. It has been observed that a chemical as-

sociation, known as binding, of a non-coding RNA se-

quence (e.g., micro-RNA, short interfering RNA, etc.),

termed the pattern, with a larger one (e.g., a gene),

termed the data, usually occurs around a key location

of the pattern, called the core (e.g., the nucleotides near

the start of the micro-RNA [7]). Since laboratory exper-

iments are costly and time-consuming, computational

methods to predict bindings based on the previous ob-

servation have been proposed (e.g., [18]). In particular,

researchers employ a conventional sequence matching

algorithm to test whether any super-sequence of the

core, termed region, matches approximately (i.e., a few

individual symbols may mismatch) with a subsequence

of the data. This process is repeated for each region,

and the maximum number of mismatches allowed is set

empirically based on the region’s length. The larger a

region is and the better it matches with the data, the

more likely a binding is.

Motivated by this real-life case, this paper general-

izes the above matching criteria and introduces the Ap-

proximate Regional Sequence Matching (ARSM) prob-

lem. Assume a data sequence S, a pattern sequence P ,

and a core (i.e., a subsequence) of P . Briefly, an ARSM

result is a subsequence of S that approximately matches

2 Thanasis Vergoulis et al.

!

"

#$!%

&'()*+

,- . .

/0+123456()7('89

1:&'

/3(/0+12

0**:;07*'6<'=30+3:46>:&6&'53:4(6:>6*'45+26.?6,6/3(/0+12

0**:807*'6<'=30+3:46>:&6&'53:4(6:>6*'45+26,-?6@6/3(/0+12'(

4:+6#$!%

&'()*+

4:+6#$!%

&'()*+

" "

Fig. 1: An example of an ARSM problem.

some subsequence of P under the following conditions:

(a) the P subsequence is a region, i.e., it encloses the

core, and (b) the allowable deviation, in terms of the

number of mismatching symbols, between the subse-

quence of S and the P region grows with the latter’s

length.

Figure 1 presents an ARSM instance. The top part

of the figure depicts the data sequence S, while the

bottom shows three copies of the pattern sequence P

aligned in different locations under S. The dark shaded

part in each P copy corresponds to the core region.

On the other hand, the light shaded part depicts a P

subsequence (different in each copy) that matches with

the corresponding light shaded subsequence of S. In

each P subsequence, the number underneath it denotes

its length, while a cross indicates a mismatching symbol

with respect to S. Furthermore, the allowed number of

mismatching symbols is 1 (resp. 2) for regions of length

8 (resp. 10).

Observe that the S subsequence that matches with

the second subsequence of P is not an ARSM result

because this P subsequence has length 8 and contains

more mismatches than allowed. Moreover, neither the

S subsequence corresponding to the third subsequence
of P is an ARSM result, since the P subsequence does

not enclose the core, i.e., it is not a region. On the

other hand, the S subsequence corresponding to the

first P subsequence is an ARSM result as it satisfies

both conditions.

The distinctive characteristic of ARSM, compared

to other approximate sequence matching problems, is

that multiple sequences, the regions, are examined for

matches under varying allowable deviation values. Note

that it is possible to extend existing methods to solve

the ARSM problem. The näıve approach is to apply a

state-of-the-art approximate sequence matching (ASM)

algorithm (e.g., [21]) for every possible region. Clearly,

this brute-force method is inefficient as it makes no ef-

fort to share computation among regions that are over-

lapping.

A better alternative is to apply a multiple ASM

(MASM) algorithm (e.g., [20,8]) that is able to process

multiple patterns at a time and exploit their overlaps.

Since MASM algorithms are designed to operate on a

set of patterns of equal length (see also Section 5), a

MASM-based approach must first group regions accord-

ing to their length, and execute MASM once per group.

However, this method cannot take advantage of the

overlaps in regions across groups. Besides, for genomic

databases, i.e., with small alphabet size (4 symbols),

short patterns (a few tens of symbols), and large al-

lowable deviations (around 20% of the pattern length),

MASM algorithms are known to suffer [8].

Note that local alignment algorithms (e.g., [30]),

which search for matches of all possible pattern sub-

sequences (and thus of the regions as well), cannot be

adapted to the ARSM problem for three reasons. First,

they require that the allowable deviation is fixed and in-

dependent of the subsequence length. Second, the popu-

lar state-of-the-art heuristic algorithms (such as BLAST

[1]) do not identify all matches. Third, and more impor-

tantly, even if exact algorithms are used, some ARSM

answers may still be missed (see Section 5 for an expla-

nation).

To overcome the previous limitations, we propose

the PS-ARSM method, which takes advantage of the pre-

fix and suffix overlaps among the regions. Briefly, our

method first determines the data subsequences where

the smallest region (the core) matches under the largest

possible allowable deviation. Then, based on a set of

sound and complete expansion rules, the algorithm pro-

gressively expands the data subsequences to derive all

ARSM results. Furthermore, we analyze the execution

time of PS-ARSM and propose cost optimizations. The

efficiency of PS-ARSM, compared to ASM and MASM

based approaches, is validated experimentally on ge-

nomic databases.

Outline. Section 2 formally defines the ARSM prob-

lem and discusses its characteristics. Section 3 describes

the PS-ARSM method, and Section 4 presents a detailed

experimental evaluation of our approach. Section 5 dis-

cusses related work. Finally, Section 6 concludes this

paper.

2 The ARSM Problem

Section 2.1 formally introduces the ARSM problem,

and Section 2.2 studies its key characteristics that form

the basis of our ARSM method (described in Section 3).

2.1 Problem Definition

Consider an alphabet Σ. In the remainder of this pa-

per, each sequence S ∈ Σ∗. |S| denotes the length of

sequence S. S[i] corresponds to the i-th symbol in S,

Approximate Regional Sequence Matching for Genomic Databases 3

!" AACCGAATTAGACC

 ||I|||R|

 GA_TTACA#"

$%%&'()*$+,-

'../&&,0.,

1#23245256

4 3 45 47

,8)+-

+&$09.&)%+

Fig. 2: An approximate occurrence of GATTACA in

AACCGAATTACACC.

while S[i,j] to the subsequence of S that starts at the

i-th and ends at the j-th symbol. We use the notation

S[i,j] @ S to indicate that S[i,j] is a subsequence of S.

Given two sequences, we call transcript an ordered

set τ of edit operations to transform one sequence to

the other. Typically, the following edit operations are

allowed for a sequence S:

– Insert (I) a symbol into S,

– Delete (D) a symbol of S,

– Replace (R) a symbol of S with another,

– Match (M), i.e., preserve, a symbol of S.

The cost c(τ) of a transcript is the number of I, D, and

R operations it contains.

Consider two sequences S and P , called data se-

quence and pattern sequence, respectively. One can al-

ways find a transcript that transforms P into any sub-

sequence S[i,j] of the data sequence. We say that the

pattern P occurs in the data S at location [i, j] with

transcript cost ε, if there is a transcript τ that trans-

forms P into S[i,j] having cost c(τ) = ε. We use the

notation (P, i, j, ε) to indicate this occurrence.

Figure 2 shows an occurrence (P, 5, 12, 2) of pat-

tern P = GATTACA in S = AACCGAATTAGACC at location

[5, 12] with transcript cost ε = 2. Indeed, according to

the transcript τ = MMIMMMRM, P can be transformed

into S[5,12] by inserting (I) symbol A between P[2] and

P[3], and replacing (R) P[6] = C with G; all other symbols

remain unchanged (M).

Note that there can be more than one transcripts

to transform P in S[i,j] with the same cost ε. For in-

stance, in the example of Figure 2, the transcript τ ′ =

MIMMMMRM has the same cost with the depicted one.

A pattern can occur at a particular location in the

data with various transcript costs. An occurrence (P, i, j, ε)

is called minimal if it has the lowest possible cost, i.e.,

there exists no other occurrence (P, i, j, ε′) such that

ε′ < ε. For example, the occurrence (P, 5, 12, 2) in Fig-

ure 2 is minimal.

Given a pattern sequence P and a location [a, b] in P

termed core (1 ≤ a ≤ b ≤ |P |), a subsequence R = P[i,j]

of P is called region if i ≤ a and j ≥ b. Two special

regions are the core region P[a,b] and the pattern region

P[1,|P |]. We next introduce the ARSM problem.

Definition 1 (ARSM Problem) Given a data se-

quence S, a pattern P , its core [a, b], and a monoton-

ically increasing threshold function K : N → N, the

ARSM problem is to retrieve the minimal occurrences

(R, i, j, ε) of each region R of P , such that: (1) ε ≤
K(|R|), and (2) no other minimal occurrence (R′, i, j, ε′),

where R @ R′, has ε′ ≤ K(|R′|). ut

The first constraint specifies that the allowed cost

for a region occurrence depends on the size of the region

and is given by the threshold function. Larger regions

are allowed to have larger cost. The second constraint

implies that if two different regions R, R′ occur at the

same location [i, j] of the data sequence S, then only

the occurrence of the largest region is returned. We call

all those retrieved minimal occurrences ARSM results.

Figure 3 illustrates an instance of the ARSM prob-

lem in which the data sequence S has 19 symbols and

the pattern P has 10. The core is the location [5, 8] of

the pattern. In this instance, there exist 15 possible re-

gions labelled R1 through R15. Figure 3 also depicts

the values of the threshold function K for all possible

region lengths (4 up to 10).

2.2 ARSM Characteristics

Section 2.2.1 presents some key observations regarding

occurrences of overlapping regions. Recall that regions

are highly overlapping (see Figure 3), since each one is a

subsequence of the pattern and a supersequence of the

core. Then, Section 2.2.2 exploits these observations to

introduce a set of expansion rules that construct the

set of minimal occurrences of a region from those of a

smaller one.

2.2.1 Overlapping Occurrences

Consider a data sequence S and a pattern P . Assuming

that P occurs at location [i, j] of S, the next two lemmas

show how this occurrence is related to an occurrence of

P at locations [i, j + 1] and [i − 1, j]. Intuitively, an

edit operation I can be appended to the transcript to

accommodate for the extra symbol of the data sequence

at location j + 1 or i− 1.

Lemma 1 If (P, i, j, ε) is an occurrence of P in data

sequence S and τ is one of its transcripts, then (P, i, j+

1, ε+ 1) is also an occurrence of P in S and τI is one

of its transcripts.

Proof The transcript τI contains the same edit oper-

ations as τ , and an additional I operation. Therefore,

c(τI) = c(τ) + 1 = ε+ 1. As τ transforms P into S[i,j],

4 Thanasis Vergoulis et al.

!"!"#"#"$"$"%"!"$"!"$"#"!"#"#"$"%"!"%"

!"$"!"$"%"#"#"$"%"#

&"'

("'

)*+,-

. / 0 1 2 3 4 5 6 .7 .. ./ .0 .1 .2 .3 .4 .5 .6

. / 0 1 2 3 4 5 6 .7

8!9":"' 8295:

;<1="'

;<2="'

;<3="'

;<4="'

;<5="'

;<6="'

;<.7="'

7

.

.

.

.

/

/

>."'
>/"'

>1"'
>0"'

>.0"'

>.1"'

>.2"'

%"#"#"$
%"#"#"$"%

$"%"#"#"$
%"#"#"$"%"#

$"!"$"%"#"#"$"%"#

!"$"!"$"%"#"#"$"%

!"$"!"$"%"#"#"$"%"#

???

>+@ABCD
E

FB,+
>2"' $"%"#"#"$"%

Fig. 3: ARSM example

the last I in τI inserts S[j+1] at the end of P . There-

fore, τI, having transcript cost ε+ 1, transforms P into

S[i,j+1], i.e., (P, i, j + 1, ε+ 1) is an occurrence of P in

S and τI is one of its transcripts.

Lemma 2 If (P, i, j, ε) is an occurrence of P in data

sequence S and τ is one of its transcripts, then (P, i−
1, j, ε+1) is also an occurrence of P in S and Iτ is one

of its transcripts.

Proof Similar to that of Lemma 1.

Next, consider two pattern sequences, P and Pγ,

where the latter is obtained by appending symbol γ ∈ Σ
at the end of the former. This represents the case where

regions share the same prefix and differ by one symbol,

e.g., regions R2 and R4 in Figure 3. Assuming P occurs

at location [i, j] in S, the next lemma shows how this

occurrence is related to occurrences of Pγ at locations

[i, j] and [i, j+1]. Intuitively, an edit operation (D, R, or

M) can be appended to the transcript to accommodate

for the extra symbol γ of the pattern sequence.

Lemma 3 If (P, i, j, ε) is an occurrence of P in data

sequence S and τ is one of its transcripts, then:

1. (Pγ, i, j, ε+ 1) is an occurrence of Pγ in S and τD

is one of its transcripts,

2. (Pγ, i, j + 1, ε) is an occurrence of Pγ in S and τM

is one of its transcripts, if S[j+1] = γ,

3. (Pγ, i, j + 1, ε+ 1) is an occurrence of Pγ in S and

τR is one of its transcripts, if S[j+1] 6= γ.

Proof We prove case 1; cases 2 and 3 can be proven

similarly. The transcript τD contains the same edit op-

erations as τ , and an additional D operation. Therefore,

c(τD) = c(τ) + 1 = ε+ 1. As τ transforms P into S[i,j]

and the last D in τD just deletes γ from Pγ, then τD

transforms Pγ into S[i,j]. Therefore, (Pγ, i, j, ε + 1) is

an occurrence of Pγ in S and τD is one of its transcripts.

Finally, consider two pattern sequences, P and θP ,

where the latter is obtained by appending symbol θ ∈ Σ
at the beginning of the former. This represents the case

where regions share the same suffix and differ by one

symbol, e.g., regions R1 and R3 in Figure 3. Assuming

P occurs at location [i, j] in S, the next lemma shows

how this occurrence is related to occurrences of θP at

locations [i, j] and [i − 1, j]. As before, an edit oper-

ation (D, R, or M) can be appended to the transcript

to accommodate for the extra symbol θ of the pattern

sequence.

Lemma 4 If (P, i, j, ε) is an occurrence of P in data

sequence S and τ is one of its transcripts, then:

1. (θP, i, j, ε + 1) is an occurrence of θP in S and Dτ

is one of its transcripts,

2. (θP, i − 1, j, ε) is an occurrence of θP in S and Mτ

is one of its transcripts, if S[i−1] = θ,

3. (θP, i− 1, j, ε+ 1) is an occurrence of θP in S and

Rτ is one of its transcripts, if S[i−1] 6= θ.

Proof Similar to that of Lemma 3.

2.2.2 Prefix and Suffix Expansions

Based on the lemmas of the previous section, we next

show that it is possible to construct the set of minimal

occurrences of a region from those of a smaller one.

Assume a data sequence S, a pattern P , and a cost

threshold k. Let O be the set of minimal occurrences

of P in S with transcript cost not more than k. In

the following, we describe a set of expansion rules that,

when applied to O, produce the minimal occurrences

of patterns Pγ and θP , where γ, θ ∈ Σ. We describe

two sets of expansion rules: prefix and suffix expansion

rules.

First, we present the prefix expansion rules. Con-

sider the case of pattern Pγ, which has P as prefix.

Definition 2 (Prefix Expansion) The prefix expan-

sion of O with symbol γ ∈ Σ, denoted as Oγ , is a set

of occurrences of pattern Pγ in S, with cost not more

than k, derived according to the following expansion

rules.

For each (P, i, j, ε) ∈ O:

1. If ε+1 ≤ k, insert intoOγ the occurrences (Pγ, i, j+

x, ε+ x+ 1) for all 0 ≤ x ≤ k − ε− 1.

2. If ε ≤ k and S[j+1] = γ, insert into Oγ the occur-

rences (Pγ, i, j + x+ 1, ε+ x) for all 0 ≤ x ≤ k − ε.
3. If ε + 1 ≤ k and S[j+1] 6= γ, insert into Oγ the

occurrences (Pγ, i, j + x + 1, ε + x + 1) for all 0 ≤
x ≤ k − ε− 1.

During occurrence insertion, if another in Oγ occurs

at the same location, keep the one with the smallest

transcript cost. ut

Approximate Regional Sequence Matching for Genomic Databases 5

Intuitively, these rules apply cases 1, 2, or 3 of Lemma 3,

respectively, to occurrence (P, i, j, ε), and, then, apply

Lemma 1 repeatedly (once per x value so as not to ex-

ceed the error threshold k) to each derived occurrence

of Pγ.

As an example, consider the data sequence S of Fig-

ure 3 and let P = GCCA, γ = T. (P, 13, 16, 0) is one mini-

mal occurrence of P in S with cost not more than k = 1.

Expansion rule 1 on occurrence (P, 13, 16, 0) produces

(Pγ, 13, 16, 1), while rule 2 produces (Pγ, 13, 17, 0) and

(Pγ, 13, 18, 1). Note that expansion rule 3 does not ap-

ply, since S[17] = γ = T.

The next theorem shows that the prefix expansion

rules are sound, i.e., they produce occurrences of Pγ

that are minimal, and complete, i.e., they produce all

minimal occurrences of Pγ.

Theorem 1 If O is the set of all minimal occurrences

of P in S with transcript cost not more than k, then

its prefix expansion Oγ is the set of all minimal occur-

rences of Pγ in S with transcript cost not more than

k.

Proof Let O′ be the set of all minimal occurrences of

Pγ in S with transcript cost not more than k. We first

show that O′ ⊆ Oγ by contradiction.

Suppose there is a minimal occurrence (Pγ, i, j, ε)

of Pγ with ε ≤ k which does not appear in Oγ . Let τ

be any of the edit transcripts of this occurrence. There

are four cases based on the last operation in τ . Let

τ ′ denote the transcript obtained by omitting this last

operation.

Assume the last operation is D, i.e., τ = τ ′D. It is

easy to see that c(τ ′) = ε − 1 and that (P, i, j, ε − 1)

is an occurrence of P . We show that this occurrence is

minimal.

Suppose otherwise. Then, there exists a transcript

τ∗ that corresponds to an occurrence (P, i, j, c(τ∗)),

where c(τ∗) < c(τ ′) = ε − 1. According to case 1 of

Lemma 3, (Pγ, i, j, c(τ∗) + 1) is an occurrence of Pγ

with transcript τ∗D and cost c(τ∗)+1 < ε. However, this

is not possible, as the minimal occurrence of Pγ at lo-

cation [i, j] has cost ε, as assumed. Hence, (P, i, j, ε−1)

is a minimal occurrence of P .

Consequently, according to the first rule (for x =

0), (P, i, j, ε− 1) is expanded to occurrence (Pγ, i, j, ε).

However, the latter was assumed to not appear in Oγ ,

which is a contradiction.

Using similar reasoning, one can show that this con-

tradiction appears for the cases when the last operation

is R and M, using cases 3 and 2 of Lemma 3, respectively.

We have to show a contradiction for the last case,

when the last operation in transcript τ is I. Let y be the

largest integer such that the last y operations in τ are

all insertions. Further, let τ1 be the transcript obtained

from τ by omitting those last y operations. Observe that

(Pγ, i, j−y, c(τ1)) has to be a minimal occurrence of Pγ

at location [i, j − y] with transcript cost c(τ1) = ε− y;

otherwise, one can construct an occurrence of Pγ at

location [i, j] with cost lower than the minimum ε.

Depending on the last operation in τ1 (which can-

not be I), one can construct a minimal occurrence of

P from (Pγ, i, j − y, c(τ1)) in a manner similar to the

three cases examined before. Then, applying the corre-

sponding expansion rule setting x = y, we obtain that

(Pγ, i, j, ε) appears in Oγ , i.e., a contradiction. There-

fore, O′ ⊆ Oγ .

Finally, we show that O′ ⊇ Oγ . Suppose otherwise,

i.e., there exists an occurrence (Pγ, i, j, ε) of Oγ that

it is not in O′. Since this occurrence is not minimal,

there must exist another, say (Pγ, i, j, ε′) ∈ O′, with

ε′ < ε. We have already shown that O′ ⊆ Oγ , which

implies that (Pγ, i, j, ε′) is also in Oγ . As a result, both

(Pγ, i, j, ε) and (Pγ, i, j, ε′) are in Oγ . This is a contra-

diction because the expansion rules dictate that only

the occurrence with the smallest cost among those oc-

curring at the same location is allowed in Oγ .

Finally, consider the case of pattern θP , which has

P as suffix.

Definition 3 (Suffix Expansion) The suffix expan-

sion of O with symbol θ ∈ Σ, denoted as θO, contains

a set of occurrences of pattern θP in S with cost not

more than k, and is derived according to the following

expansion rules.

For each (P, i, j, ε) ∈ O:

1. If ε+ 1 ≤ k, insert into θO the occurrences (θP, i−
x, j, ε+ x+ 1) for all 0 ≤ x ≤ k − ε− 1.

2. If ε ≤ k and S[i−1] = θ, insert into θO the occur-

rences (θP, i− x− 1, j, ε+ x) for all 0 ≤ x ≤ k − ε.
3. If ε + 1 ≤ k and S[i−1] 6= θ, insert into θO the

occurrences (θP, i − x − 1, j, ε + x + 1) for all 0 ≤
x ≤ k − ε− 1.

During occurrence insertion, if another in θO occurs

at the same location, keep the one with the smallest

transcript cost. ut

Intuitively, these rules apply cases 1, 2, or 3 of Lemma 4,

respectively, to occurrence (P, i, j, ε), and, then, apply

Lemma 2 repeatedly (once per x value so as not to ex-

ceed the error threshold k) to each derived occurrence

of θP . The next theorem shows the soundness and com-

pleteness of the suffix expansion rules.

Theorem 2 If O is the set of all minimal occurrences

of P in S with transcript cost not more than k, then its

suffix expansion θO is the set of all minimal occurrences

of θP in S with transcript cost not more than k.

6 Thanasis Vergoulis et al.

Proof Similar to that of Theorem 1.

Note that consecutive applications of the prefix and

suffix expansion rules can produce the minimal occur-

rences of a pattern from the minimal occurrences of one

of its subsequences, as shown in the next theorem.

Theorem 3 Given two patterns P , P ′ such that P @
P ′, and the set O of all minimal occurrences of P in

S with transcript cost not more than k, it is possible to

construct the set of all minimal occurrences of P ′ in S

with transcript cost not more than k′, for any k′ ≤ k.

Proof Observe that for any pattern the set of its occur-

rences with cost not more than k is a superset of the

set of its occurrences with cost not more than k′, where

k′ ≤ k. Therefore, we only need to prove that the set

of minimal occurrences of P ′ with transcript cost not

more than k can be obtained from O.

Since P @ P ′, there exists a sequence of patterns

P1, . . . , Pn, such that P1 = P , Pn = P ′, and either

Pi+1 = Piγ or Pi+1 = θPi holds, where γ, θ ∈ Σ. Due

to Theorems 1 and 2, an application of the appropriate

(prefix if Pi+1 = Piγ, suffix otherwise) expansion rules

to the set of minimal occurrences of Pi constructs the

set of all minimal occurrences of Pi+1. After successive

applications, the required set can be constructed.

3 The PS-ARSM Method

The Prefix-Suffix ARSM (PS-ARSM) method exploits

the overlaps among regions and applies the expansion

rules of Section 2.2.2 to efficiently produce all ARSM

results. The key idea is to initially determine the min-

imal occurrences for the smallest possible region, the

core, and then progressively expand them to construct

the minimal occurrences for all regions. Special care

is required so that the produced occurrences obey the

two requirements set in Definition 1. Note that since all

occurrences produced by our method are minimal, we

drop the characterization minimal in the remainder of

this paper.

We first introduce some important concepts in Sec-

tion 3.1. Then, we describe the PS-ARSM algorithm in

Section 3.2, and detail its implementation in Section 3.3.

Finally, we present a cost analysis of PS-ARSM and pro-

pose an optimization in Section 3.4. For ease of refer-

ence, we include the most common symbols and their

definitions in Table 1.

3.1 Region Lattice

PS-ARSM operates on the region lattice induced by the

subsequence relation @. Figure 4 presents the region

Table 1: Common notation.

Symbol Definition

Σ Alphabet
S Data sequence
P Pattern
R A region of P
C Core of P
a Start position of C in P

b End position of C in P

K() Threshold function
c A suffix chain in the region lattice

sc num Number of suffix chains
sc length Length of the suffix chains

lattice for the example of Figure 3. The top left region

R1 corresponds to the core, while the bottom right R15

to the pattern. A horizontal (resp. vertical) arrow from

a region to another one implies that the former is a

suffix (resp. prefix) of the latter.

A head is a region such that none of its suffixes,

except itself, are regions. A tail is a region such that it

is not the suffix of any other region. In Figure 4, there

exist three heads, R1, R2 and R4, and three tails, R12,

R14 and R15. The heads and tails of a lattice are totally

ordered based on the @ relation. The first head is the

core, while the last tail is the pattern.

A suffix chain is a totally ordered set of regions that

contains a tail and all its suffixes. The suffix chains

of a lattice are ordered according to the rank of their

tail. There exist three suffix chains in Figure 4, labelled

c1, c2, c3, each corresponding to a row of the lattice.

Observe that the smallest region in a suffix chain is

a head and the largest is a tail; e.g., in chain c1 =

{R1, R3, R6, R9, R12}, R1 and R12 are its head and
tail, respectively.

3.2 Algorithm Description

PS-ARSM consists of three execution phases. We next

describe these phases in detail.

Phase 1. In this phase, PS-ARSM determines the occur-

rences of the core with transcript cost not more that

K(|P |). Note that the cost threshold K(|P |) is selected

!""# #!""# $#!""# #$#!""# $#$#!""#

%&

%&'

!""#!

!""#!"

#!""#!

#!""#!"

$#!""#!

$#!""#!"

#$#!""#!

#$#!""#!"

$#$#!""#!

$#$#!""#!"

%(

%)

%*

%'

%+

%,

%-

%.

%&/

%&&

%&(

%&)

%&*

01223456783956&

01223456783956(

01223456783956)

Fig. 4: The region lattice for the ARSM example.

Approximate Regional Sequence Matching for Genomic Databases 7

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!"#$%$&$'(

!"#$#)$#%$'(

!"#$#*$#%$'(

!"#$'$*$'(

!"#$)$*$'(

!"#$#$+$'(

* !"#$'$+$#(

* !"#$)$+$#(

!"#$'$,$'(

!"#$)$,$'(

!"#$*$,$'(

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!"'$#)$#,$'(

!"'$#*$#%$#(

!"'$#*$#-$'(

!"'$*$%$'(

!"'$#*$#,$'(

!"'$)$%$'(

!"'$'$%$'(

!"'$)$,$'(

!"'$'$,$'(

!"'$)$+$'(

!"'$'$+$'(*

*

*

*

*

*

*

!"'$#)$#%$#(

!"'$#)$#-$'(

*

*

*

*

*

*

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

!"*$#*$#%$'(

!"*$#*$#-$'(

!"*$#)$#%$'(

!"*$#)$#-$'(

*

*

*

*

!"#$#+$#,$'(

!"#$#*$#,$#(*

!"#$#)$#,$#(*

!"#$#'$#,$'(

!"#$#*$#+$'(

!"#$#)$#+$'(

!"#$*$+$'(

!"'$#'$#%$'(*

!"'$#+$#%$'(*

.
/
01
2/
.
.
3
00
1
4
.
1
5

/
.
.
3
00
1
4
.
1
5
2/
62
"
'

/
.
.
3
00
1
4
.
1
5
2/
62
"
*

Fig. 5: Core occurrences, head occurrences and seeds

for suffix chains c1, c2, and c3.

so that no ARSM result, produced by expansions of the

core occurrences, is missed, as explained in the follow-

ing.

Recall that an occurrence of a region R can only

be an ARSM result if its cost is not more than K(|R|)
(first requirement in Definition 1). Since the pattern P

is the largest region and K is monotonically increasing,

K(|P |) is the highest cost any ARSM result is allowed to

have. From Theorem 3, it follows that any ARSM result

must be among the expansions of the core occurrences

with the loosest possible cost threshold, i.e., K(|P |).
For the ARSM example shown in Figure 3 and the

corresponding lattice in Figure 4, the first phase of

PS-ARSM computes the core occurrences, i.e., those of re-

gion R1 = TCCA, with cost at most K(|P |) = K(10) = 2.

All these occurrences are depicted at the top of Figure 5

as oval boxes aligned with respect to the data sequence

S. For instance, (R1, 2, 4, 2) corresponds to an occur-

rence of the core R1 at location [2, 4] in S.

Phase 2. In this phase, PS-ARSM first applies the prefix

expansion rules on the core occurrences to produce the

occurrences of all heads. E.g., in the lattice of Figure 4,

PS-ARSM prefix-expands the core occurrences to con-

struct the occurrences of region R2 = TCCAT, shown at

the middle of Figure 5. The resulting head occurrences

are then expanded to obtain those of R4 = TCCATC,

shown at the bottom of Figure 5.

Next, PS-ARSM filters the head occurrences of each

suffix chain to provide the appropriate input to phase 3.

Consider a chain c, and let Rc1 and Rcn be its head and

tail, respectively. Briefly, the goal of phase 3 is to pro-

duce the occurrences of any region in c by expanding its

head occurrences. Note that all produced occurrences

have cost at most K(|P |), as they are expansions of

the core occurrences. However, observe that K(|Rcn|),
which is not more than K(|P |), is the highest cost any

occurrence of a region in c is allowed to have (see Def-

inition 1). Therefore, from Theorem 3, it follows that

only head occurrences with cost not more than K(|Rcn|)
should be suffix-expanded in phase 3. We refer to these

occurrences of Rc1 as the seeds of the suffix chain c. For

example, the head occurrences in Figure 5 that are also

seeds are marked with an asterisk; e.g., (R2, 2, 5, 2) is

a seed of suffix chain c2. Thus, phase 2 filters out non-

seeds from head occurrences to provide the phase 3 in-

put.

Phase 3. In this phase, PS-ARSM produces the ARSM

results. The algorithm operates holistically on all chains,

but for clarity we only describe the procedure for a sin-

gle chain c. For each region along the chain, starting

from the head Rc1 and ending at the tail Rcn, PS-ARSM

performs the following tasks.

SupposeRci is the current region. PS-ARSM first suffix-

expands the occurrences of the previous region Rci−1 in

the chain to produce the occurrences of Rci . These ex-

panded occurrences are called candidates, and the can-

didates of Rc1 are the seeds. Then, PS-ARSM enforces

the two requirements of Definition 1. For the first, it

excludes candidates with cost more than K(|Rci |); the

remaining are to be inserted in the result set. However,

during insertion, PS-ARSM removes any occurrence (ei-

ther a candidate, or one already in the result set) that

violates the second requirement. It is important to note

that all candidates for Rci (i.e., not only those inserted

in the result set) are required to obtain the candidates

for the next region Rci+1 in the chain.

Figure 6 illustrates the third phase for all the suffix

chains of the lattice shown in Figure 4. Consider suffix

chain c2. Its head is Rc21 = R2 and the tail is Rc2n = R14.

The seeds of this chain, i.e., the occurrences of R2 with

cost at most K(|R14|) = K(9) = 2, have been deter-

mined in the second phase. Assume that the currently

examined region is R5. Its four candidates (see the sec-

ond part of Figure 6) are produced by the suffix ex-

pansion of R2 candidates (at the middle of the first

part of Figure 6). Then PS-ARSM considers only those

candidates with cost 1 (since K(|R5|) = K(6) = 1) for

insertion in the result set. In our example, this is an

empty set.

Pseudocode. Figure 7 presents the PS-ARSM pseudo-

code. The algorithm takes as input the data sequence

S, the pattern P , the core [a, b] and the threshold func-

tion K, and outputs the ARSM results. In the first

phase, PS-ARSM applies an ASM algorithm to compute

8 Thanasis Vergoulis et al.

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

!"#$%&$%'$#(

!"#$%)$%*$%(

!"#$)$*$#(

!"#$%)$%'$#(

!"#$&$*$#(

!"#$#$*$#(

!"#$&$'$#(

!"#$#$'$#(

!"#$&$+$#(

!"#$#$+$#(

!"#$%&$%*$%(*

*

!")$%)$%*$#(

!")$%)$%,$#(

!")$%&$%*$#(

!")$%&$%,$#(

!"%$%)$%'$%(

!"#$%#$%*$#(

!"#$%+$%*$#(

!"%$&$+$%(

!"%$#$+$%(

!"#$%)$%,$#(

!"#$%&$%,$#(

!"%$%&$%'$%(
-%

-#

-&

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

!"+$%)$%*$#(

-%

-#

-&

!"+$%&$%*$#(

!"+$%#$%*$#(

!"+$%%$%*$#(

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-%

-#

-&

!",$%&$%*$#(

!",$%.$%*$#(

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-%

-#

-&

!"%%$/$%*$#(

G G C C A A T G A G A C G C C A T G T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-%

-#

-&

!"%)$,$%*$#(*

Fig. 6: Seeds, candidates and temporal results.

the core occurrences (line 1); details are discussed in

Section 3.3.2.

In the second phase (lines 2–6), PS-ARSM constructs

the head occurrences. The occurrences of the first head

are those of the core (line 2). The occurrences of each

other head are obtained from those of the previous head

(line 4). The pExp method implements the prefix expan-

sion rules. Then, PS-ARSM identifies the seeds for the

corresponding suffix chain, by invoking the getSeeds

method (line 5). Both methods are discussed in Sec-

tion 3.3.3.

In the third phase (lines 7–14), PS-ARSM computes

the ARSM results. For clarity, pseudocode presents the

required steps independently for each suffix chain cj .

However, these steps are performed holistically for the

seeds of all suffix chains (see Section 3.3.4 for details).

Back to pseudocode, PS-ARSM first constructs the can-

didates, i.e., the occurrences of each region in the chain.

Note that the candidates of the head are the seeds of

the chain (line 8). The candidates for each other re-

gion are obtained from those of the previous region

PS-ARSM()

Input: S, P , [a, b], K
Output: results

begin

Phase 1

01. core occs← ASMfull(S, P[a,b], K(|P |))
Phase 2

02. head occsc1 ← core occs

03. foreach suffix chain cj
04. if (j>1) then head occscj ← pExp(head occscj−1

, R
cj
1)

05. seedscj ← getSeeds(head occscj , K(|cj .tail|))
06. end
Phase 3

07. foreach suffix chain cj
08. cands1 ← seedscj
09. foreach region R

cj
i of cj

10. if (i>1) then candsi ← sExp(candsi−1, R
cj
i)

11. tmp← sieve(candsi, K(|Rcj
i |))

12. insert(results, tmp)
13. end

14. end

end.

Fig. 7: The PS-ARSM algorithm.

(line 10). In particular, the sExp method (presented

in Section 3.3.4) implements the suffix expansion rules.

Then, among the candidates of region R
cj
i , those with

cost not more than K(|Rcji |) are identified by the sieve

method (line 11 and Section 3.3.4). Finally, the remain-

ing occurrences are inserted in the result set, enforcing

the second requirement of Definition 1 (line 12).

Correctness. PS-ARSM applies Theorem 3, i.e., it im-

plements prefix and suffix rules, which are sound and

complete as we proved. The previous guarantees that

PS-ARSM will return all the ARSM results.

3.3 Implementation

Section 3.3.1 presents the main data structures used by

PS-ARSM. Then, Sections 3.3.2, 3.3.3 and 3.3.4 detail

Phases 1, 2, and 3, respectively.

3.3.1 Maintaining head occurrences and candidates

An important observation of PS-ARSM is that prefix

(resp. suffix) expanding a set of occurrences that end

(resp. start) at the same position in the data sequence,

requires the same computations. To understand this,

refer to Figure 5, and consider the core occurrences

(R1, 1, 5, 2) and (R1, 2, 5, 1), which both end at posi-

tion 5. We describe the operations necessary to prefix

expand these occurrences and obtain the head occur-

rences of region R2. First, observe that R2 = R1 T, and

that the next symbol in the data sequence, i.e., at po-

sition 6, is A. Then, applying Lemma 3 for P = R1,

i ∈ {1, 2} j = 5, ε ∈ {2, 1}, and since S[j+1]=A 6=T=γ,

Approximate Regional Sequence Matching for Genomic Databases 9

we obtain that each core occurrence results in two head

occurrences: (R2, 1, 5, 3), (R2, 1, 6, 3) from the first, and

(R2, 2, 5, 2), (R2, 2, 6, 2) from the second. Observe that

these can be succinctly represented as the two head oc-

currences (R2, i, 5+0, ε+1) and (R2, i, 5+1, ε+1), for

i ∈ {1, 2}, ε ∈ {2, 1}. It is important to notice here that

the information we have underlined in the previous rep-

resentation (i.e., +0, +1 for the end position, and +1,

+1 for the cost) completely describes how the head oc-

currences are constructed from the core occurrences.

Based on this observation, PS-ARSM employs data

structures that serve two goals: (1) they compactly rep-

resent occurrences, and (2) they facilitate prefix and

suffix expansions by avoiding redundant computations.

Hash table head occs. The hash table head occs is

used to compute and store the head occurrences during

the second phase of PS-ARSM. Initially, it contains the

core occurrences, i.e., the head occurrences of the first

suffix chain. Then, its entries are updated sc num − 1

times, where sc num is the number of suffix chains in

the region lattice. After the (i−1)-th update, head occs

contains the head occurrences for the i-th suffix chain.

In what follows, we describe the head occs contents

for suffix chain ci; the update procedure is explained in

Section 3.3.3. head occs consists of key-value entries. A

key corresponds to the end position of a core occurrence

in the data sequence. The value for key j, denoted as

head occs[j], is a composite value with information

about the head occurrences of ci produced by the prefix-

expansion of core occurrences ending at position j. In

particular, this composite value consists of:

– core occs: the list of core occurrences ending at

position j, ordered by their transcript cost.

– add cost: an array where the x-th entry denotes

the additional transcript cost required for the ex-

pansion of any core occurrence in core occs to a

head occurrence of ci ending at position j + x.

Note that the length of the add cost array is sc num+

K(|P |), as this value is the farthest a core occurrence

can be expanded to the right while its transcript cost

remains not more than K(|P |).
Observe that head occs indirectly describes the head

occurrences of suffix chain ci. That is, it stores the

core occurrences (core occs), and how to expand them

(add cost) so as to produce the head occurrences. We

illustrate the above using an example. Assume the lat-

tice of Figure 4 and consider head occs after the first

update, i.e., containing the head occurrences of suf-

fix chain c2. Figure 8 depicts the contents of entry

head occs[5]. core occs contains all the core occur-

rences ending at position 5 in the data sequence S. Note

that an add cost array is represented as two rows: the

key

value

core_occs add_cost

(R1,2,5,1),(R1,3,5,1),

(R1,1,5,2),(R1,4,5,2)
5

[1 1 * * *]

.........

...

0 21 3 4

(R2,2,5+0,1+1)

Fig. 8: An excerpt of the head occs hash table, con-

taining the head occurrences of suffix chain c2.

lower shows the contents, while the upper presents the

indices of this zero-based array. The depicted add cost

informs us that head occurrences of c2 (produced by

any core occurrence in core occs) ending at positions

5+0 = 5 and 5+1 = 6, have additional cost of 1. More-

over, any head occurrence ending at subsequent posi-

tions, e.g., 5 + 2 = 7, has an additional cost larger than

K(|P |), denoted as ∗ in Figure 8. Therefore, the head oc-

currences in head occs[5] are (R2, 2, 5, 2), (R2, 2, 6, 2),

(R2, 3, 5, 2) and (R2, 3, 6, 2), which are all head occur-

rences of c2 that are expansions of core occurrences end-

ing at position 5.

Hash table cands. The hash table cands is used to

compute and store the candidates during the third phase

of PS-ARSM. Initially, it contains the seeds of all the suf-

fix chains, i.e., the candidates for all the heads. Then, its

entries are updated sc length−1 times, where sc length

is the length of any suffix chain in the region lattice. Af-

ter the (i+ 1)-th update, cands contains the candidates

for the i-th regions of all suffix chains.

In what follows, we describe the contents of cands

for the i-th regions of all suffix chains; the update pro-

cedure is explained in Section 3.3.4. cands consists of

key-value pairs. A key corresponds to the start posi-

tion of a seed in the data sequence. The value for key

j, denoted as cands[j], is a composite value with in-

formation about the candidates produced by the suffix-

expansion of seeds starting at position j. In particular,

this composite value consists of:

– seeds: the list of seeds starting at position j, or-

dered by their transcript cost.

– add cost: an array where the x-th entry denotes the

additional transcript cost required for the expansion

of any seed in seeds to a candidate starting at po-

sition j − x.

Note that the length of the add cost array is sc length+

K(|P |), as this value is the farthest a seed can be ex-

panded to the left while its transcript cost remains not

more than K(|P |).
Similar to head occs, cands indirectly describes the

candidates. That is, it stores the seeds (seeds), and

how to expand them (add cost) so as to produce the

10 Thanasis Vergoulis et al.

key

value

seeds add_cost

(R2,12,17,2)12
[1 0 1 * * * *]

.........

...

0 21 3 4 5 6

(R5,12-1,17,2+0)

Fig. 9: An excerpt of the cands hash table, containing

the candidates for R3, R5, and R7.

candidates. We illustrate the above using the exam-

ple lattice of Figure 4. Assume cands after the first

update, containing the candidates for regions R3, R5,

and R7. Figure 9 depicts the entry cands[12]. Observe

that seed (R2, 12, 17, 2) produces the single candidate

(R5, 11, 17, 2), as explained in the figure, since all other

occurrences exceed the cost threshold.

3.3.2 Phase 1: Producing the core occurrences

The goal of phase 1 is to produce all core occurrences

with cost at most K(|P |). Note that an off-the-shelf

ASM algorithm (like those discussed in Section 5) can-

not produce all core occurrences. This happens because,

by design, all ASM algorithms ignore some of the over-

lapping occurrences. For instance, if two occurrences

have the same end position but different transcript costs,

only the one with the lowest cost is reported. To il-

lustrate this assume the classic dynamic programming

algorithm described in [9]. Consider the core occur-

rence (R1, 12, 16, 2) in Figure 5. It would not be among

the results, because (R1, 13, 16, 1) and (R1, 14, 16, 1)

end at the same position but have better transcript

cost. However, (R1, 12, 16, 2) should not be discarded,

as it produces (via expansions in the last two phases)

(R14, 8, 17, 2), which is an ARSM result.

In order to produce all core occurrences, we follow

three steps: (1) we execute a conventional ASM algo-

rithm to discover the endpoints of the occurrences, (2)

we construct disjoint windows around these endpoints,

so that any occurrence is completely located within a

window, and (3) in each window, we execute a varia-

tion of the dynamic programming algorithm (described

below) to efficiently produce all occurrences.

Note that any ASM algorithm, including index-based

solutions, can be used in step 1. Subsequently, in step 2,

we construct the window [i− |C| − K(|P |) + 1, i] for

each endpoint i found at the previous step. This is be-

cause it is impossible for an occurrence to start before

the (i−|C|−K(|P |)+1)-th position. To avoid redundant

computations, we merge any overlapping windows.

Finally, in step 3, we execute a variation of the dy-

namic programming algorithm in [31] that is specifically

case 1
case 2

 0 1 2 3 4

[2 1 0 1 2]

 0 1 2 3 4

[1 0 1 2 *]

 0 1 2 3 4

[1 0 1 2 *]

 0 1 2 3 4

[* * * * *]

 0 1 2 3 4

[1 0 1 2 *]

 0 1 2 3 4

[2 2 * * *]

 0 1 2 3 4

[2 1 0 1 2]

 0 1 2 3 4

[1 0 1 2 *]

add_cost for c add_cost for c

case 1

case 3

initial state

γ = T

S[h.key+1] = A

S[h.key+2] = T
Lemma 1

γ = T

Lemma 3

Lemma 3

i i+1

S[h.key+3] = G

γ = T

case 1

case 3

 0 1 2 3 4

[2 1 0 1 2]

 0 1 2 3 4

[1 0 1 2 *]S[h.key+4] = A

γ = T

case 1

case 3

Lemma 3

Lemma 3

 0 1 2 3 4

[2 1 0 1 2]

 0 1 2 3 4

[1 0 1 2 *]

Fig. 10: Method pExp updates the add cost array of

head occs entry h.

adapted to return all occurrences. Recall that in con-

ventional algorithms, each dynamic programming cell

DP [i, j] contains the cost and the start position of the

best occurrence of the pattern prefix P[1,i] ending at po-

sition j in the data sequence S. On the other hand, in

our variant, we keep in each cell DP [i, j] an array which

contains the costs of the best occurrences of P[1,i] end-

ing at position j for each possible start position in S.

Finally, since conventional algorithms cannot retrieve

occurrences whose transcripts start with Insert opera-

tions, we must take special care so as not to miss them.

3.3.3 Phase 2: Producing the seeds

The second phase of PS-ARSM produces the seeds of

all suffix chains, by progressively prefix-expanding head

occurrences. First, head occs is initialized with the core

occurrences found in Phase 1. Then, PS-ARSM proceeds

in sc num−1 iterations. In each iteration, PS-ARSM exe-

cutes two tasks: (1) it invokes pExp to update head occs

so as to contain the head occurrences of the next suffix

chain, and (2) it invokes getSeeds to identify the seeds

and initialize the cands hash table, which is required

for Phase 3.

We now describe the pExp method. Assume that

head occs contains the head occurrences of suffix chain

ci. Then, pExp updates head occs (by modifying the

add cost arrays) so that it contains the head occur-

rences of ci+1. In particular, pExp visits a hash entry

Approximate Regional Sequence Matching for Genomic Databases 11

of head occs and applies the prefix expansion rules

for each possible end position of an occurrence. Fix a

head occs entry h with key h.key, and let γ be the last

symbol in the head (first region) of suffix chain ci+1. Let

add cost(ci) (resp. add cost(ci+1)) denote the array

for suffix chain ci (resp. ci+1). Initially add cost(ci+1)

is filled with ∗ values. Then, pExp scans add cost(ci)

and applies the following procedure for each entry un-

til a ∗ value is encountered. Consider the j-th entry in

add cost(ci). Recall that this represents head occur-

rences of ci that end at position h.key + j. First, the

update procedure applies Lemma 3 (cases 1, 2 if sym-

bols γ and S[h.key+j] match, or cases 1, 3 otherwise)

to compute the additional costs of head occurrences of

ci+1 that end at positions h.key+j and h.key+j+1. If

the corresponding entries in add cost(ci+1) have higher

additional costs, they are updated. Finally, pExp applies

Lemma 1 for each entry of add cost(ci+1). As before,

it only updates an entry when the computed additional

cost is smaller than the entry’s existing value.

Figure 10 illustrates an application of pExp, assum-

ing the maximum allowed cost is 2. The left column

shows the add cost array for suffix chain ci, while the

right column shows how add cost array for the next

suffix chain ci+1 is updated. The first row shows that

add cost(ci+1) has initially all ∗ values. Then, pExp ex-

amines entry add cost(ci)[0], and applies cases 1 and

3 of Lemma 3 (S[h.key+1] = A 6= T = γ). This implies

that entries 0 and 1 of add cost(ci+1) have cost 1 more

than that in add cost(ci)[0]. Note that Lemma 1 does

not update any add cost(ci+1) entry as it would get

additional cost larger that the maximum allowed.

Next, pExp examines entry add cost(ci)[1] (see third

row of Figure 10). This time, cases 1 and 2 of Lemma 3

apply. Therefore, entry 1 of add cost(ci+1) is updated

with additional cost 0 + 1 = 1 (case 1), as it is lower

than its current value. On the other hand, entry 2 of

add cost(ci+1) has additional cost 0 + 0 = 0 (case

2). Lemma 1 fills each remaining entry with additional

costs 1 more compared to the previous entry.

Cases 1 and 3 of Lemma 3 apply for add cost(ci)[2].

However, since they produce occurrences with costs worse

than those produced in the previous step, add cost(ci+1)

is not updated (see fourth row of Figure 10). The pExp

method continues with the next entries and terminates

when it reaches ∗ in the final entry.

Finally, we describe the getSeeds method. Its goal

is to identify the seeds among the head occurrences of

the current suffix chain. Using the information in the

core occs and add cost fields, getSeeds selects those

head occurrences with cost not more than the allowable

for the current suffix chain. The selected occurrences

are the seeds, and are inserted in the cands hash table.

3.3.4 Phase 3: Producing the ARSM results

The third phase of PS-ARSM produces the actual ARSM

results, by progressively suffix-expanding the seeds of

all suffix chains. Note that Phase 2 has initialized hash

table cands with all seeds. Then, PS-ARSM proceeds

in sc length iterations. In each iteration, PS-ARSM exe-

cutes two tasks: (1) it invokes sExp (except in the first

iteration) to update cands so as to contain the candi-

dates of the next region of all suffix chains, and (2) it

invokes sieve and insert to produce the actual ARSM

results.

The sExp method is similar to pExp, except the fol-

lowing differences: (1) it operates on hash table cands,

(2) it applies Lemmas 4 and 2, and (3) it examines the

data sequence backwards. In the interest of space, we

do not detail its operations.

The sieve method identifies ARSM results among

the current candidates in the hash table cands. Finally,

insert adds these occurrences to the set of ARSM re-

sults, taking care so that the second requirement of Def-

inition 1 is not violated.

3.4 Cost Analysis and Optimization

Cost of Phase 1. The first phase involves three steps.

In the first two, a conventional ASM algorithm is used

to mark windows of the data sequence S that contain

core occurrences with cost not more than K(|P |). As-

sume that the dynamic programming algorithm with

cut-off heuristic [31] is applied. Then, according to [3],

the average processing time of the first two steps is at

most

(
K(|P |)

1−e/
√
|Σ|

+O(1)

)
· |S| · TDP = O (K(|P |) · |S|),

where TDP is the required time to compute each dy-

namic programming cell (constant for a given system

configuration).

In the third step of Phase 1, our dynamic program-

ming variation (see Section 3.3.2) is executed for each

window marked in the previous steps. In our analysis,

we assume the worst case scenario, where the entire

data sequence is marked as a single window. Following

again the analysis in [3], this step requires O(K(|P |)2 ·
|S|) time on average, because each dynamic program-

ming cell contains 2 · K(|P |) + 1 values.

Putting everything together, Phase 1 has a total

processing time of O(K(|P |)2 · |S|).
Cost of Phases 2 and 3. To determine the cost of

the last two phases, observe that each core occurrence,

which is computed in the first phase, will undergo the

same number of (prefix and suffix) expansions. In par-

ticular, the number of prefix expansions is one less than

the number of suffix chains, i.e., |P | − β. On the other

12 Thanasis Vergoulis et al.

hand, the number of suffix expansions is one less that

the length of a suffix chain, i.e., α− 1. In total, a core

occurrence will undergo |P | − β+α− 1 = |P | − |C| ex-

pansions. Furthermore, the total number of core occur-

rences produced in Phase 1 is given by |S|·f(|C|,K(|P |)),
where f(|C|,K(|P |)) is the probability of a random se-

quence of length |C| matching in a given position of

the data sequence with transcript cost not more than

K(|P |).
Putting everything together, and assuming that each

expansion requires TEX time (constant for a given sys-

tem configuration), the processing time of Phases 2 and

3 is |S| · f(|C|,K(|P |)) · (|P | − |C|) · TEX = O(|S| ·
f(|C|,K(|P |)) · (|P | − |C|)).

Note that computing a closed formula for the func-

tion f() is a difficult task [3]. However, it is possible

to derive the following upper bound for f(|C|,K(|P |))
based on the analysis in the appendix of [3]:

|C|∑
i=|C|−K(|P |)

1

|Σ||C|−K(|P |)

(|C|
|C| − K(|P |)

)(i

|C| − K(|P |)

)

+

|C|+K(|P |)∑
i=|C|+1

1

|Σ|i−K(|P |)

(|C|
i−K(|P |)

)(i

i−K(|P |)

)
.

Optimization. In some ARSM instances (e.g., when

the ratio K(|P |)/|R| is large), it is possible that the

number of core occurrences is so high that the total

execution time of PS-ARSM is dominated by Phases 2

and 3. For such instances, it is often preferable to di-

vide the problem into two ARSM sub-problems, where

each has much fewer core occurrences than the original,

and solve them independently. This can be achieved by

splitting the lattice in two, and appropriately defining

the pattern sequence and the core for each sub-problem

— the threshold function K is common. Figure 11 shows

the two ways (vertical and horizontal partition) to view

an ARSM problem as two independent sub-problems.

The core and pattern regions for each sub-problem are

also illustrated. Note that at the end, the occurrences

from one sub-problem must be checked against those of

the other, so as to remove occurrences that violate the

second requirement of Definition 1.

The only question that remains is when and how to

perform this sub-problem division. Based on the anal-

ysis of the previous paragraphs we estimate the total

execution time of three scenarios: (a) solving the origi-

nal problem, (b) solving the two sub-problems produced

by a vertical split of the lattice, and (c) solving the two

sub-problems produced by a horizontal split of the lat-

tice. The scenario having the smallest estimated cost is

the one selected.

!"#$%&'()*+(%$

,-#%.-/$'()*+(%$

0

0

1'234

1526064

01'234

01'789526064

01'78234

01'234 0152:606;395<7893;54

0

01526064

01526064

=)&-#"
=)+'$$"#/ 1'2:606;395<78934

%/%$%'()('$$%&"

Fig. 11: Example of vertical and horizontal lattice split.

4 Experimental evaluation

We run a comprehensive set of experiments to assess the

performance of our PS-ARSM method on both synthetic

and real datasets. Section 4.1 describes the experimen-

tal setup and Section 4.2 presents our findings.

4.1 Setup

Algorithms. The evaluation involves three exact algo-

rithms, i.e., they correctly retrieve all ARSM results.

– PS-ARSM, our proposed solution for ARSM. The dy-

namic programming with the cut-off heuristic algo-

rithm [31] is used in Phase 1.

– N-ARSM, the näıve approach that executes an ASM

dynamic programming algorithm for every single re-

gion. The cut-off heuristic [31] is used to improve the

dynamic programming efficiency.

– M-ARSM, which executes MASM [8] for each group

of regions that have the same length. Experiments

have shown this to be the most efficient MASM-

based algorithm (see also Section 5).

We implement all algorithms in C++, and run the

experiments on a dedicated Linux PC Intel Core 2 Duo

CPU, E8400, at 3.00GHz. In our system, TDP = 3.14 ·
10−5msec and TEX = 2.11 · 10−5msec.

Parameters. We measure performance in terms of the

total time required to produce the ARSM results, while

we vary the following set of parameters: the pattern se-

quence length |P | (measured in number of symbols); the

data sequence length |S|; the ratio of the core to pattern

Table 2: Experimental parameters.

Parameter Range of values Default

|P | 10, 20, 30, 40, 50 30
|S| 1M, 5M, 10M, 50M, 100M 10M
|C|/|P | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.5
cPos left, middle, right middle
α 0.1, 0.15, 0.2, 0.25, 0.3 0.2
|Σ| 4, 20, 94 4

Approximate Regional Sequence Matching for Genomic Databases 13

!

!"

!""

!" !# $" $# %" %# &" &# #"

'
()

*
+,
-
*
.
/

0122*34+-*56*4.*+7*4829

:;<=>?
?;<=>?
@>;<=>?

(a) Synthetic dataset, D1

!

!"

!""

!" !# $" $# %" %# &" &# #"

'
()

*
+,
-
*
.
/

0122*34+-*56*4.*+7*4829

:;<=>?
?;<=>?
@>;<=>?

(b) 3’UTR dataset, D2

!

!"

!""

!" !# $" $# %" %# &" &# #"

'
()

*
+,
-
*
.
/

0122*34+-*56*4.*+7*4829

:;<=>?
?;<=>?
@>;<=>?

(c) CDS dataset, D3

Fig. 12: Varying the pattern sequence length |P |.

length |core|/|P |; the position of the core cPos; the ra-

tio of the allowable transcript cost for each region over

its length α = K(|R|)/|R| (we consider linear threshold

functions); the size of the alphabet |Σ|. Table 2 contains

all parameters and their range of examined values. In

each experiment, we vary a single parameter and set

the remaining to the default values shown on the table.

Datasets. We use synthetic and real datasets. For the

synthetic (D1), we use random sequences that follow

the uniform Bernoulli model, i.e., each symbol has 1/|Σ|
probability to occur and is selected independently of

others. We generate 20 pairs of data and pattern se-

quences, and, for each pair, we execute the algorithms

5 times. Therefore, every reported time value is the av-

erage of 100 executions.

We also consider real datasets, obtained from the

Ensembl database1. The 3’UTR dataset (D2) is a 44

million nucleotide sequence for the 3’ untranslated re-

gion of the human gene transcripts. The CDS dataset

(D3) is a 74 million nucleotide sequence for the coding

region of the human gene transcripts. Note that these

are genomic datasets and can only be used in experi-

ments with alphabet size Σ = 4. We extract 20 random

subsequences from these datasets to serve as the pat-

terns, and for each of them we execute the algorithms

5 times. As a result, every reported time value is the

average of 100 executions.

4.2 Results

Runtime analysis of PS-ARSM. We investigate the

runtime performance of PS-ARSM for the default exper-

imental setting. Note that, for these parameter values,

PS-ARSM chooses to split the region lattice horizontally.

Table 3 presents the memory occupied by the two

hash tables of PS-ARSM. The two runs shown correspond

to the two executions of PS-ARSM, one for each half of

1 http://www.ensembl.org/biomart/martview/

Table 3: Memory consumption of PS-ARSM hash tables.

Dataset head occs size cands size

D1 run 1 7.69MB (128,577 entries) 0.17MB (2,006 entries)

D1 run 2 1.61MB (27,001 entries) 0.03MB (255 entries)

D2 run 1 7.82MB (126,852 entries) 0.37MB (3,221 entries)

D2 run 2 2.11MB (33,802 entries) 0.18MB (944 entries)

D3 run 1 9.51MB (155,912 entries) 0.33MB (3,898 entries)

D3 run 2 2.52MB (41,282 entries) 0.07MB (698 entries)

Table 4: Running time breakdown for PS-ARSM phases.

Dataset Phase 1 (%) Phase 2 (%) Phase 3 (%)

D1 97.26 2.57 0.17
D2 96.70 2.88 0.42
D3 96.58 3.20 0.22

the original lattice. Note that the size of cands is sig-

nificantly smaller than that of head occs. The reason

is that much fewer occurrences survive after Phase 2.

For example, as the table suggests for the first run on

D1, there exist 128,577 distinct positions where occur-

rences end in Phase 2, but only 2,006 positions where

occurrences start in Phase 3.

Table 4 presents the relative time spent in each

phase of PS-ARSM; the values are based on the total ex-

ecution time for both runs. Phase 1 is by far the most

expensive as it consumes around 97% of the total run-

ning time. Among the other two phases, Phase 3 re-

quires more time as it expands much fewer occurrences

than Phase 2 (see Table 3).

Varying the pattern sequence length. Figure 12

presents the execution times (in logarithmic scale) of

all algorithms as the length of the pattern sequence

|P | varies. The findings are similar for all datasets. As

the |P | grows, the number of regions and their average

length increases. This explains why the execution time

of M-ARSM and N-ARSM grows.

On the other hand, the execution time of PS-ARSM

remains less than 10 seconds, unaffected by |P |. Note

14 Thanasis Vergoulis et al.

!"#

#

#!

#!!

#!!!

$ #! $! #!!

%
&'

(
)*
+
(
,
-

./0/)+(12(3,()4(3506)*&3)'&44&73+-

89:;<=
=9:;<=
><9:;<=

(a) Synthetic dataset, D1

!"#

#

#!

#!!

#!!!

$ #! %%

&
'(

)
*+
,
)
-
.

/010*,)23)4-)*5)4617*+'4*('55'84,.

9:;<=>
>:;<=>
?=:;<=>

(b) 3’UTR dataset, D2

!"#

#

#!

#!!

#!!!

$ #! $! %&

'
()

*
+,
-
*
.
/

0121+-*34*5.*+6*5728+,(5+)(66(95-/

:;<=>?
?;<=>?
@>;<=>?

(c) CDS dataset, D3

Fig. 13: Varying the data sequence length |S|.

1

10

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
e
c
)

ratio of core to pattern length

N-ARSM
M-ARSM

PS-ARSM

(a) Synthetic dataset, D1

1

10

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
e
c
)

ratio of core to pattern length

N-ARSM
M-ARSM

PS-ARSM

(b) 3’UTR dataset, D2

1

10

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
 (

s
e
c
)

ratio of core to pattern length

N-ARSM
M-ARSM

PS-ARSM

(c) CDS dataset, D3

Fig. 14: Varying the ratio of core to pattern length |C|/|P |.

that as |P | grows while the remaining parameters re-

main fixed, both the length of the core |C| and the

cost threshold K(|P |) also grow. In particular, the dif-

ference |C| − K(|P |) = 0.5 · |P | − 0.2 · |P | = 0.3 · |P |
(for the default values of Table 2) grows linearly with

the pattern length. This difference plays a critical role

in the number of core occurrences produced during the

first phase of PS-ARSM. As the analysis of Section 3.4

shows, the number of core occurrences decreases rapidly

as |C| − K(|P |) increases. Therefore, although the exe-

cution time of Phase 1 increases, that of Phases 2 and

3 decreases with |P |. As a result, for large |P | values,

PS-ARSM is almost two orders of magnitude faster.

Varying the data sequence length. Figure 13 shows

the execution time on data sequences of different lengths.

Note that to construct a sequence of length |S| from

the real datasets, we extract the first |S| symbols, and

that the maximum possible length is 44M for D2 and

74M for D3. The execution time of all methods grows

linearly, as the data sequence size increases. Therefore,

the performance improvement of PS-ARSM over M-ARSM

and N-ARSM, in all datasets and |S| values, is over one

order of magnitude.

Varying the core/pattern length ratio. Figure 14

illustrates the execution time for several values of the

|C|/|P | ratio. The results are similar for all datasets.

As the |C|/|P | ratio increases, the execution time of all

methods decreases. This is because the number of re-

gions decreases and the average region length increases.

Note that the benefit of PS-ARSM over its competitors

increases with the ratio as, in addition to the above, the

number of core occurrences produced in its first phase

decreases. The reason is that |C|, and thus |C|−K(|P |),
increases (see Section 3.4).

Varying the position of the core. Figure 15 presents

the execution time as the location of the core in the pat-

tern changes. As we move the core position to the start

or to the end of the pattern (while the other parameters

remain fixed) the number of regions decreases slightly.

Therefore, all the algorithms run faster in this case.

However, the decrease in the execution time of PS-ARSM

is more pronounced. Briefly, the reason is that, in ad-

dition to the previous, the number of core occurrences

are fewer when the core lies near the edges of the pat-

tern. A detailed explanation when the core is at the left

follows (the explanation for the other case is similar).

Consider the case of the core in the middle Cm =

[am, bm] and that at the left of the pattern Cl = [al, bl] =

[am − c, bm − c], where c > 0. In both cases, PS-ARSM

chooses to split the lattice horizontally. Let Ctopm and

P topm (resp. Cbotm and P botm) denote the core and the

pattern for the top (resp. bottom) half lattice when

Approximate Regional Sequence Matching for Genomic Databases 15

!

!"

!""

#$%& '())#$ *(+,&

-
('

$
./
0
$
1
2

13*$.430(&(35

6789:;
;789:;
<:789:;

(a) Synthetic dataset, D1

!

!"

!""

#$%& '())#$ *(+,&

-
('

$
./
0
$
1
2

13*$.430(&(35

6789:;
;789:;
<:789:;

(b) 3’UTR dataset, D2

!

!"

!""

#$%& '())#$ *(+,&

-
('

$
./
0
$
1
2

13*$.430(&(35

6789:;
;789:;
<:789:;

(c) CDS dataset, D3

Fig. 15: Varying the core position cPos.

!"#

#

#!

#!!

!"# !"#$!"% !"%$!"&

'
()

*
+,
-
*
.
/

.0-1+231(0

456789
956789
:856789

(a) Synthetic dataset, D1

!"#

#

#!

#!!

!"# !"#$!"% !"%$!"&

'
()

*
+,
-
*
.
/

.0-1+231(0

456789
956789
:856789

(b) 3’UTR dataset, D2

!"#

#

#!

#!!

!"# !"#$!"% !"%$!"&

'
()

*
+,
-
*
.
/

.0-1+231(0

456789
956789
:856789

(c) CDS dataset, D3

Fig. 16: Varying the cost ratio α.

the core lies in the middle. The corresponding nota-

tion for the core at the left is obtained by substitut-

ing m with l. Then, for the top half lattice, it holds

that |Ctopm | = |Ctopl | and |P topl | = (|Pl| + bl − 1)/2 =

|P topm | − c/2 < |P topm |. In other words, when the core

is at the left, the top half pattern is smaller, and thus

the allowable cost is also smaller, which leads to fewer

core occurrences. On the other hand for the bottom

half lattice, it holds that |P botm | = |P botl |, and |Cbotl | =

(|Pl|+ bl + 1)/2− al + 1 = |Cbotm |+ c/2 > |Cbotm |. Here,

the bottom half pattern, and thus the allowable cost,

is the same, but the bottom half core is larger, which

again means fewer occurrences when the core is at the

left. Overall, the total number of core occurrences in

both lattices is smaller when the core is at the left.

Varying the cost ratio. Figure 16 shows the execu-

tion time as the cost threshold ratio varies. Higher α

values require more effort by all methods. However, the

performance of M-ARSM and PS-ARSM deteriorates faster

and approaches that of the näıve method. Intuitively,

the reason is the following. These two methods try to

filter out certain areas of the data sequence that do not

contain ARSM results. When the allowable transcript

cost increases, fewer and smaller areas are excluded,

and thus their filtering benefit diminishes and they be-

have similar to the brute force method of N-ARSM.

!"#

#

#!

#!!

$%&'()*+(), -!%&./01234, 5$%&)6788,

9
3:

2
%&
;
2
<
,

=>.?=@21%;3A2

(B)+6C
CB)+6C
D6B)+6C

Fig. 17: Varying the alphabet size Σ.

Varying the alphabet size. Although the focus of

this work is on genomic databases, where |Σ| = 4, we

also examine the behavior of all methods on databases

with different alphabet size. In particular, we consider

protein sequences, where |Σ| = 20, and ASCII text se-

quences, where |Σ| = 94. In this experiment, we only

use synthetic data. Figure 17 shows the results. The ex-

ecution time of all methods decreases as |Σ| increases,

because their exist fewer possible occurrences (see Sec-

tion 3.4). Note that both M-ARSM and PS-ARSM become

significantly more efficient than the näıve method, while

the benefit of PS-ARSM over M-ARSM remains close to one

order of magnitude.

16 Thanasis Vergoulis et al.

0

5000

10000

15000

20000

25000

T
im

e
 (

s
e
c
)

dataset D2

N-ARSM
M-ARSM

PS-ARSM

Fig. 18: Setting with real patterns.

Using real patterns. In the final experiment, we in-

vestigate the performance of PS-ARSM for the real-life

problem of predicting micro-RNA bindings. Based on

several biological observations (e.g., [7]), we select the

following parameters. We use the 3’UTR dataset (D2)

as the data sequence, since most known micro-RNA

bindings are located in this gene section. Further, we

randomly select 100 micro-RNA sequences from Mir-

Base2 as the patterns. Since the most important sym-

bols for the binding are located at the left of the micro-

RNA sequences, we select |C| = 10, cPos = left, and

set α = 0.2 for all regions, except the core where the

allowable transcript cost is restricted to 1.

Figure 18 presents the results. Note that we report

the total running times for all 100 micro-RNA pat-

terns. The findings are similar to the case of synthetic

patterns. PS-ARSM is around one order of magnitude

faster than N-ARSM, and more than five times faster

than M-ARSM.

5 Related Work

ARSM is a novel problem that belongs to the broad

family of inexact sequence matching problems. Refer-

ences of such problems are encountered in the sixties

and seventies, in a number of different fields like sig-

nal processing, text retrieval and computational biology

[9,27]. Generally speaking, inexact sequence matching

searches for sequences that are “similar” to a given pat-

tern sequence. There exist various metrics to quantify

sequence similarity, such as similarity measures (e.g.,

SW score [30]) or distance/deviation measures (e.g.,

edit distance [14,15]).

The most basic inexact sequence matching prob-

lem is global alignment [24,28]. Its goal is to compute

the edit distance between two sequences, and thus de-

termine the transcript with the minimum cost. Intu-

2 http://www.mirbase.org/, the database where all micro-
RNA sequences are registered.

itively, based on this transcript, the two strings are

globally (i.e., completely) aligned opposite each other

with the minimum number of spaces and mismatches.

A dynamic programming (DP) algorithm [28] can com-

pute the edit distance in O(nm) time, and determine

the optimal transcript by backtracking the DP array

in O(n + m) time, where n, m are the lengths of the

sequences.

Given a pattern and a data sequence, the objective

of the semi-global (also known as global-local) align-

ment [29] is to find a subsequence of the data that has

the smallest edit distance to the pattern. Intuitively, the

pattern is aligned only to this subsequence, and not to

the entire data sequence. An important variation is to

retrieve all data subsequences that have edit distance

below a specified threshold k [21]. Throughout this pa-

per, we refer to this problem as Approximate Sequence

Matching, and denote it as ASM. There exist several

works surveying proposed algorithms for this problem,

e.g., [11,21]. The most known solution is the dynamic

programming of Sellers [29], which has running time

O(nm), where n, m are the lengths of the data and

pattern sequence, respectively.

Several improvements to the basic DP formulation

for ASM have been proposed; see e.g., [21]. One such op-

timization is the cut-off heuristic [31], which we use in

our DP implementations. The basic idea is that, given

an edit distance threshold k, all dynamic programming

cells that have value greater than k are not required

when reporting the results. Therefore, upon filling a

DP column, the algorithm determines which cells in the

next column need not be computed, and avoid unneces-

sary computations. It is shown that the cut-off heuristic

has an expected running time of O(kn).

The most efficient algorithms for ASM belong to the

group of filtering algorithms. Chang’s [6] and Fredriks-

son’s [8] algorithms have optimal average case time com-

plexity [6]. These algorithms first compare the pattern

to any sequence of a predetermined length `, called `-

gram, and then use this information to filter out areas of

the data sequence that cannot contain an ASM result.

The remaining areas are processed using a conventional

ASM algorithm.

Note that an ARSM instance can be stated as sev-

eral ASM instances, one for each region of the pattern.

Therefore, any ASM algorithm can solve the ARSM

problem. The drawback, however, is that this approach

performs a large number of redundant computations,

mainly because the regions are overlapping sequences.

A more attractive approach is to use algorithms de-

signed for the Multiple ASM (MASM) problem. The

goal of MASM is to retrieve the ASM results for a group

of overlapping patterns. While several methods exist

Approximate Regional Sequence Matching for Genomic Databases 17

(e.g., [20,4,10,8]), Fredriksson’s algorithm [8] is proven

to be optimal [23]. This algorithm scans the data se-

quence using a sliding window. For each window posi-

tion, it reads backwards (i.e., from the right to the left)

consecutive, non-overlapping `-grams. When the aggre-

gated deviation of the read `-grams exceeds a threshold,

the algorithm skips the current window and slides it to

the right. Otherwise, it must examine the window for

results.

Although it is possible to directly apply a MASM al-

gorithm for the ARSM problem, it is not recommended

for two reasons. First, it is not efficient to select the

same ` value for all ARSM regions, as the optimal choice

depends on the region length and its maximum allowed

deviation. Second, MASM algorithms are designed for

pattern of similar length, whereas the length of ARSM

regions may vary considerably. Based on these obser-

vations, the most efficient approach would be to group

regions according to their length, and execute a MASM

algorithm once per group. Still, this method cannot ex-

ploit overlaps in regions across groups.

An important inexact sequence matching problem is

local alignment [30]. Given a pattern P and a data se-

quence S, the goal is to determine two subsequences,

one from P and one from S, that have the highest

similarity score. For an important class of similarity

scores, the dynamic programming of Smith-Waterman

[30] can solve this problem in O(nm) time, where n =

|S| and m = |P |. When searching for highly similar

subsequences, the high computational cost of DP al-

gorithms makes approximation solutions (e.g., [17,26,

1,2]) more attractive. These methods use heuristics to

avoid searching parts of the sequences that are unlikely

to contain a local alignment. As a side-effect they may

miss results. The most known approximation solution

is BLAST [1] and its variations [2,32,13,12].

Local alignment methods are not suitable for the

ARSM problem. Even exact DP-based algorithms, e.g.,

Smith-Waterman (SW) [30], are not guaranteed to re-

turn all ARSM answers. Consider the data sequence

S = · · · GTTGA · · · , and the region R = GCCGA. Clearly,

there exists an occurrence of R in S with cost (edit dis-

tance) 2. However, SW would fail to identify it3. The

reason is the following. In the DP array, the cell corre-

sponding to the two As in the sequences has the highest

value 2, meaning that there exists two subsequences

ending in A that have similarity score 2. However, since

this score corresponds to the GA subsequences, there

is no way to backtrack and identify the GCCGA, GTTGA

subsequences.

3 We assume that a match has score 1, whereas a mismatch,
delete or insert has score −1. Note that a similar counter-
example exists for other scores.

Several index structures, e.g., suffix trees, suffix ar-

rays, q-grams, etc., can be applied to inexact sequence

matching problems (see [22]). For instance, the methods

in [5,19,25,16] utilize indices to quickly eliminate parts

of the search space and focus on areas that may contain

results. Note that any such ASM algorithm, e.g., [25,

5], can be applied in Phase 1 of PS-ARSM.

6 Conclusion

We introduce a novel approximate sequence matching

problem, the ARSM problem. Its objective is to retrieve

all regional occurrences of a pattern in a data sequence.

The matching regions of the pattern must contain a pre-

determined area of the pattern, the core. Moreover, the

allowable deviation from the data sequence is stricter

for smaller and looser for larger regions.

To deal with the previous problem, we propose the

PS-ARSM method. Our method takes advantage of the

prefix and suffix overlaps avoiding redundant compu-

tations. A detailed experimental evaluation shows that

PS-ARSM is up to two orders of magnitude faster than

existing techniques adapted to the ARSM problem.

References

1. Stephen F. Altschul, Warren Gish, Webb Miller, Eu-
gene W. Myers, and David J. Lipman. Basic local align-
ment search tool. Journal of Molecular Biology, 215(3):403
– 410, October 1990.

2. Stephen F. Altschul, Thomas L. Madden, Alejandro A.
Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and
David J. Lipman. Gapped blast and psi-blast: a new
generation of protein database search programs. Nucleic
Acids Research, 25(17):3389–3402, September 1997.

3. Ricardo A. Baeza-Yates and Gonzalo Navarro. Faster
approximate string matching. Algorithmica, 23(2):127–
158, 1999.

4. Ricardo A. Baeza-Yates and Gonzalo Navarro. New and
faster filters for multiple approximate string matching.
Random Structure and Algorithms, 20(1):23 – 49, 2002.

5. Ricardo A. Baeza-Yates and Chris H. Perleberg. Fast
and practical approximate string matching. Inf. Process.
Lett., 59(1):21–27, 1996.

6. William I. Chang and Thomas G. Marr. Approximate
string matching and local similarity. In Combinatorial

Pattern Matching (CPM), volume 807 of Lecture Notes in
Computer Science (LNCS), pages 259–273. Springer, 1994.

7. John G. Doench and Phillip A. Sharp. Specificity of mi-
crorna target selection in translational repression. Genes

Dev., 18(5):504–511, 2004.
8. Kimmo Fredriksson and Gonzalo Navarro. Average-

optimal single and multiple approximate string matching.
ACM Journal of Experimental Algorithms, 9, 2004.

9. Dan Gusfield. Algorithms on strings, trees, and sequences.
Cambridge University Press, 1999.

10. Heikki Hyyrö and Gonzalo Navarro. Faster bit-parallel
approximate string matching. In Combinatorial Pattern
Matching (CPM), volume 2373 of Lecture Notes in Com-
puter Science (LNCS), pages 203–224. Springer, 2002.

18 Thanasis Vergoulis et al.

11. Petteri Jokinen, Jorma Tarhio, and Esko Ukkonen. A
comparison of approximate string matching algorithms.
Softw., Pract. Exper., 26(12):1439–1458, 1996.

12. You Jung Kim, Andrew Boyd, Brian D Athey, and Jig-
nesh M Patel. miblast: scalable evaluation of a batch
of nucleotide sequence queries with blast. Nucleic Acids

Research, 33(13):4335–44, 2005.
13. I. Korf and W. Gish. Mpblast: Improved blast per-

formance with multiplexed queries. Bioinformatics,
16(11):1052–1053, November 2000.

14. Vladimir Levenshtein. Binary codes capable of correct-
ing spurious insertions and deletions of ones. Probl. Inf.

Transmission, 1:8 – 17, 1965.
15. Vladimir Levenshtein. Binary codes capable of correct-

ing deletions, insertions and reversals. Sov. Phys. Dokl.,
10(8):707 – 710, 1966. Original in Russian in Dokl. Akad.
Nauk SSSR 163(4): 845-848, 1965.

16. Yinan Li, Allison Terrell, and Jignesh M. Patel. Wham:
a high-throughput sequence alignment method. In SIG-

MOD Conference, pages 445–456, 2011.
17. D. J. Lipman and W. R. Pearson. Rapid and sensi-

tive protein similarity searches. Science, 227(4693):1435
– 1441, March 1985.

18. M. Maragkakis, M. Reczko, V. A. Simossis, P. Alex-
iou, G. L. Papadopoulos, T. Dalamagas, G. Giannopou-
los, G. Goumas, E. Koukis, K. Kourtis, T. Vergoulis,
N. Koziris, T. Sellis, P. Tsanakas, and A. G. Hatzige-
orgiou. Diana-microt web server: elucidating microrna
functions through target prediction. Nucleic Acids Re-

search, 37(suppl 2):W273–W276, 2009.
19. Colin Meek, Jignesh M. Patel, and Shruti Kasetty. Oa-

sis: An online and accurate technique for local-alignment
searches on biological sequences. In VLDB, pages 910–
921, 2003.

20. R. Muth and U. Mamber. Approximate multiple string
search. In Combinatorial Pattern Matching (CPM), volume
1075 of Lecture Notes in Computer Science (LNCS), pages
75–86. Springer, 1996.

21. Gonzalo Navarro. A guided tour to approximate string
matching. ACM Computing Surveys (CSUR), 33(1):31 –
88, March 2001.

22. Gonzalo Navarro, Ricardo A. Baeza-Yates, Erkki Suti-
nen, and Jorma Tarhio. Indexing methods for approx-
imate string matching. IEEE Data Engineering Bulletin

(DEBU), 24(4):19 – 27, December 2001.
23. Gonzalo Navarro and Kimmo Fredriksson. Average com-

plexity of exact and approximate multiple string match-
ing. Theor. Comput. Sci., 321(2-3):283 – 290, 2004.

24. S B Needleman and C D Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3):443–53, March 1970.

25. Panagiotis Papapetrou, Vassilis Athitsos, George Kollios,
and Dimitrios Gunopulos. Reference-based alignment in
large sequence databases. PVLDB, 2(1):205–216, 2009.

26. W. R. Pearson and D. J. Lipman. Improved tools for
biological sequence comparison. Proc Natl Acad Sci USA,
85(8):2444 – 2448, April 1988.

27. David Sankoff and Joseph Kruskal. Time Warps, String
Edits, and Macromolecules: the Theory and Practice of Se-

quence Comparison. Addison-Wesley,Reading,MA, 1983.
28. Peter H. Sellers. An algorithm for the distance between

two finite sequences. J. Combin. Theory Ser. A, 16:253–
258, 1974.

29. Peter H. Sellers. The theory and computation of evolu-
tionary distances: Pattern recognition. Journal of Algo-
rithms, 1(4):359 – 373, 1980.

30. T F Smith and M S Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biol-
ogy, 147(1):195–7, March 1981.

31. Esko Ukkonen. Finding approximate patterns in strings.
Journal of Algorithms, 6:132–137, 1985.

32. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A
greedy algorithm for aligning dna sequences. J. Comput.
Biol., 7(1-2):203–214, 2000.

