
Majority-Rule-Based Web Service Selection

Karim Benouaret1, Dimitris Sacharidis2, Djamal Benslimane1, and
Allel Hadjali3

1 Claude Bernard Lyon1 University, LIRIS, 69622 Villeurbanne, France
{karim.benouaret, djamal.benslimane}@liris.cnrs.fr
2 IMIS, Athena Research Center, Marousi 15125, Greece

dsachar@imis.athena-innovation.gr
3 Enssat, University of Rennes 1, IRISA, 22305 Lannion, France

allel.hadjali@enssat.fr

Abstract. In many Web service selection scenarios, the responsibility to
decide which is the appropriate service is shared among multiple parties,
e.g., among the department heads of a university. The standard approach
is to discard services which are unanimously inappropriate, and return
the rest. However, as the involved parties may have conflicting inter-
ests, it is possible that only few services are eliminated, and thus almost
all discovered services need to be considered. This work addresses this
shortcoming, by enforcing the majority rule: a service is discarded if the
majority of the parties find it inappropriate. We formulate the majority-
rule-based service selection problem based on the notions of dominance
and skyline. Furthermore, we propose an algorithm that returns a more
manageable set of services, eliminating many inappropriate ones, and is
more efficient that standard skyline techniques.

1 Introduction

Several techniques for discovering Web services have been recently proposed. As
the number of services and service providers proliferate, there is a large number
of candidate, most likely competing, services for fulfilling a desired task. Thus,
service selection is becoming important for helping users to identify desirable
services. User preferences play a key role during the selection process [3,14,4].
However, in many practical situations, the responsibility to decide which is the
appropriate service is shared among multiple parties, e.g., among the department
heads of a university.

The service selection process follows two phases. In the first, given the user’s
preferences on service description attributes, the degrees of match between a
requested and an available service (see e.g., [12,11,8]) are computed. In this
work, we assume the Jaccard coefficient for matching service descriptions. If I1,

I2 are two intervals, their Jaccard coefficient is J(I1, I2) = |I1∩I2|
|I1∪I2| , where |I|

measures the length of the interval [9].
The second phase of service selection is to identify the most interesting ser-

vices w.r.t. users preferences. Most of service selection approaches focus on com-
puting a score for each service as an aggregate of its individual matching degrees.



Various approaches for aggregating the matching degrees exist. A common direc-
tion is to assign weights over different preference attributes; e.g., [10]. However,
when multiple users are involved, it would be difficult to make tradeoffs between
different weights. The natural option is to use the skyline operator [5,7,13] to
determine an objectively good set of services [15,1,16,2,18,17]. We refer to this
set as the unanimous service skyline, and it contains all services which are not
unanimously dominated. A service unanimously dominates another, if the former
has higher matching degrees than the latter in all users’ preferences.

Computing the unanimous service skyline frees users from assigning relative
importance over different preference attributes. However, a major drawback is
that, when multiple parties are involved, the number of services in the skyline
becomes very large and no longer offers any interesting insights. The reason is
that as the number of users and preferences increase, for any services si, sj ,
it is more likely that si and sj are incomparable, i.e., better than each other
in different matching degree. It is thus crucial to further reduce the size of the
service skyline.

The core of the above drawback is in the definition of dominance, which
requires a unanimous verdict. To mitigate this, we choose to follow the majority
rule. Informally, a service majority-dominates another, if the former has higher
matching degrees than the latter in the majority of users’ preferences. Then,
we naturally define the majority service skyline as the services which are not
majority-dominated.

To compute the majority service skyline, we make the observation that con-
ventional skyline computation algorithms, with the exception of [6], cannot be
adapted, due to the intransitivity of the majority-dominance relationship. There-
fore, an extension of the algorithms in [6] can be used to compute the majority
service skyline. However, we propose a novel algorithm for the service selection
problem and show that it most cases it outperforms the extended algorithms.

The rest of the paper is structured as follows. Section 2 introduces the prob-
lem of majority service skyline and describes the majority service skyline com-
putation algorithm. Section 3 presents our experimental study and Section 4
concludes the paper.

2 Computing the Majority Service Skyline

Section 2.1 introduces the problem, while Section 2.2 describes our algorithm.

2.1 Problem Definition

We assume a set of users U = {u1, u2, . . . , um}, and a set of discovered services
S = {s1, s2, . . . , sn}. We use si.uk to denote the matching degrees of service
si w.r.t. user uk. Given a user uk, we say that service si weakly dominates sj
w.r.t. uk, denoted as si.uk � sj .uk, iff si has better matching degrees than sj on
all specified preference attributes. A service si dominates sj w.r.t. uk, denoted



as si.uk � sj .uk, iff si has better matching degrees than sj on all specified
preference attributes, and strictly better matching degree on at least one.

Given a set of users U , we say that service si unanimous-dominates sj ,
denoted as si �U sj , iff si weakly dominates sj w.r.t. all users, i.e., ∀uk ∈
U si.uk � sj .uk, and there exists one user, say u′k, for which si dominates sj ,
i.e., ∃u′k ∈ U si.u

′
k � sj .u

′
k. Given a set of discovered services S and a set of

users U , the unanimous service skyline USS(S,U) comprises the set of services
that are not dominated by any other.

Given a set of users U , we say that service si majority-dominates sj , denoted
as si �M sj , iff (1) there exists a subset U ′ ⊆ U containing more than half of
the users such that si weakly dominates sj w.r.t. all users in this subset, i.e.,
|U ′| > b|U|/2c and ∀uk ∈ U ′ si.uk � sj .uk, and (2) there exists one user, say u′k,
for which si dominates sj , i.e., ∃u′k ∈ U si.u

′
k � sj .u

′
k. Given a set of discovered

services S and a set of users U , the majority service skyline MSS(S,U) comprises
the set of services that are not majority- dominated by any other.

Problem statement: Given a set of users U and a set of discovered services
S, compute the majority service skyline.

2.2 Majority Service Skyline Algorithm

In this section, we introduce the Majority Service Skyline Algorithm (MSA),
which is based on the following properties. Note that the proofs of all lemmas
and theorems appear in the full version of this paper4.

Theorem 1. It is possible to have a set of users U and a set of discovered
services S = {s1, s2, . . . , sn} such that s1 majority-dominates s2, s2 majority-
dominates s3, . . . , sn−1 majority-dominates sn and sn majority-dominates s1,
i.e., forming a cyclic majority dominance relationship.

The previous theorem shows that the majority dominance relationship shares
the cyclic property of the k-dominance relationship introduced in [6]. Therefore,
a service cannot be discarded even if it is majority-dominated because it might
be needed for excluding other services. This justifies why the existing algorithms
for computing the skyline are not applicable for computing the majority service
skyline. However, the one scan algorithm (OSA) and two scan algorithm (TSA)
of [6], can be adapted to compute the majority service skyline, by exchanging
k-dominance checks for majority dominance checks. In the following, we denote
as OSA and TSA the adaptations of the algorithms in [6] to computing the
majority service skyline.

The MSA algorithm also takes advantage of the following observations.

Lemma 1. If si unanimous-dominates sj, then si majority-dominates sj. i.e.,
si �U sj ⇒ si �M sj.

Lemma 2. If si unanimous-dominates sj and sj majority-dominates sk, then
si majority-dominates sk. i.e., si �U sj ∧ sj �M sk ⇒ si �M sk.

4 http://liris.cnrs.fr/Documents/Liris-5691.pdf

http://liris.cnrs.fr/Documents/Liris-5691.pdf


Lemma 3. Let f : S → R+ be a monotone function aggregating the matching
degrees of si for all users. If si unanimous-dominates sj, then f(si) > f(sj).
i.e., si � sj ⇒ f(si) > f(sj).

From Lemma 1 and Lemma 2, we can see that it is sufficient to compare each
service against the unanimous skyline services to detect if it is part (or not) of
the majority service skyline. This essentially reduces the number of comparisons.
Specifically, if a service si is unanimous-dominated, then discard it as (1) it is
not part of the majority service skyline (Lemma 1), and (2) it is unnecessary for
eliminating other services (Lemma 2).

Lemma 3 also helps reduce unnecessary comparisons. In fact, to exploit this
property, we sort the services in non-ascending order of the sum of their matching
degrees. Then, given a service si, searching for services by which si is unanimous-
dominated can be limited to the part of the service before si. This is the idea
behind the SFS algorithm [7], which in this context we apply it for cyclic domi-
nance relationships.

The MSA algorithm leverages the observations made above to compute ef-
ficiently the majority service skyline. Based on Lemma 1 and Lemma 2, MSA
maintains two sets R and T , containing respectively the set of intermediate ma-
jority skyline services and the set of intermediate unanimous skyline services
that are not in R. Thus, R∪T constitutes the intermediate unanimous skyline.

The MSA algorithm operates as follows. First, services in S are sorted in a
non-ascending order of the sum of their matching degrees, and both sets R and
T are initialized to empty sets. Then, the top service (i.e., the service with the
maximum sum of matching degrees), say si, is extracted from S. Service si is
compared against services in R∪T , i.e., the set of services that may unanimous-
dominate si (as the other services cannot dominate si from Lemma 3). If si is
unanimous-dominated, then it is removed from S as it is not part of the majority
service skyline (Lemma 1) and it is unnecessary for eliminating other services
(Lemma 2). Otherwise, i.e., when si is not unanimous- dominated by any service
in R ∪ T , if si majority-dominates any service sj in R (i.e., sj is not a service
in MSS), then sj is removed from R to T , as it is a unanimous skyline service,
thus useful for eliminating other services. For the same reason, if si is majority-
dominated by any service in R ∪ T , it is inserted into T as it is not part of
the majority service skyline. Else, si is an intermediate MSS service and is thus
inserted into R. Once all services in S have been examined, i.e., S is empty,
services in R form the majority service skyline, and R is returned.

3 Experimental Evaluation

In this section, we present an experimental evaluation of our approach. Our
objective is to prove the effectiveness of the majority service skyline and the
efficiency of the proposed algorithm. Specifically, we focus on two issues. (1)
The size of the majority service skyline (denoted as MSS). To demonstrate that
the majority service skyline further reduces the size of the (traditional) skyline,



we also compute the size of the unanimous service skyline (denoted as USS)
(2) The performance of our algorithm in terms of elapsed time for computing
the majority service skyline. For comparison purposes, we also implemented the
adaptations of OSA and TSA [6] for computing the majority service skyline.

Table 1: Parameters and Examined Values
Parameter Symbol Range Default

Number of discovered services n [2, 10]K 5K
Number of users m [3, 7] 5

Number of preferences per user d [3, 7] 5

Due to the limited availability of real-world service data, we implemented
a service generator that takes as input a (real-world) model service and its
associated constraints, representing the requested service and the multiple users
preferences, and produce a set of synthetic services, as well as their associated
constraints, representing the set of discovered services. The Jaccard coefficient is
used for computing the matching degrees between discovered service’ constraints
and users preferences. The generation of the sets of synthetic services is controlled
by the parameters in Table 1, which displays the parameters under investigation,
their corresponding ranges and their default values. In each experimental setup,
we investigate the effect of one parameter, while setting the remaining ones to
its default value.

The service generator and the algorithms, i.e., MSA, OSA and TSA were
implemented in Java, and all experiments were conducted on a 2.3 GHz Intel
Core i5 processor.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 4 6 8 10

S
iz

e
 (

s
e
rv

ic
e
)

Number of discovered services (K)

MSS
MSS

(a) Effect of n

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e
rv

ic
e
)

Number of users

MSS
USS

(b) Effect of m

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

3 4 5 6 7

S
iz

e
 (

s
e
rv

ic
e
)

Number of preferences per user

MSS
USS

(c) Effect of d

Fig. 1: Result cardinality.

Figure 1 shows the cardinality of MSS and USS w.r.t. n, m and d. Constantly,
the size of MSS is less than USS, which is almost equal to the number of discov-
ered services, as the unanimous service skyline cannot discard all inappropriate
services, while the majority service skyline includes only the most interesting
ones. As shown in Figure 1a, the size of the majority service skyline increases
slightly with n. This is because as n varies, it is becoming more difficult to find
services which are majority-dominated. Figure 1b shows a fluctuation in the size
of the majority service skyline. The fluctuation is related to the definition of the



majority dominance relationship. Indeed, we can distinguish two trends. One for
the even values of m, and the second for the odd values of m; each trend increases
as m increases. This is because, if we have an odd value of m, say mo, and an
even value of m, say me, such that mo = me + 1, then the percentage of most of
users for me is greater than that of mo. For example, for m = 4, the percentage
is 3

4 = 0.75%, and for m = 5 the percentage is 3
5 = 0.60%. When this percentage

is large, a small number of services is discarded, and vice versa. As depicted in
Figure 1c, the size of the majority service skyline increases significantly with
d. As d increases, a service has greater probability to not be dominated in all
preference attributes w.r.t. a given user.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2  4  6  8  10

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of discovered services (K)

OSA
TSA
MSA

(a) Effect of n

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3  4  5  6  7

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of users

OSA
TSA
MSA

(b) Effect of m

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3  4  5  6  7

E
la

p
s
e
d
 t
im

e
 (

m
s
e
c
)

Number of preferences per user

OSA
TSA
MSA

(c) Effect of d

Fig. 2: Elapsed time.

Figure 2 investigates the runtime of OSA, TSA and MSA w.r.t. n, m and d.
Overal, MSA outperforms OSA and TSA. Figure 2a shows that the execution
time of the algorithms increases with n. However, MSA consistently outperforms
OSA and TSA. As shown in Figure 2b, when m increases, the performance of
TSA deteriorates due to the second scan performed. However, the execution
time of OSA and MSA increases slightly with m. Still, MSA is better. As shown
in Figure 2c, TSA is better than OSA and MSA for d ≤ 4 since the size of
the majority service skyline is small, thus a large number of services can be
eliminated in the first scan. However, TSA does not scale with d as the size of
the majority service skyline becomes large, thus the second scan is very time
consuming. The execution time of OSA and MSA, on the other hand, increases
slightly with d. Finally, observe that MSA consistently performs better than
OSA.

4 Conclusion

We introduce a novel concept for the preference-based Web service selection un-
der multiple users preferences problem based on the majority rule. This allows
users to make a “democratic” decision on which services are the most appropri-
ate. We develop a suitable algorithm for the majority-rule-based Web selection
problem. Our experimental evaluation demonstrates the effectiveness of the con-
cept and the efficiency of the algorithm.



References

1. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for qos-based web
service composition. In: WWW. pp. 11–20 (2010)

2. Benouaret, K., Benslimane, D., Hadjali, A.: On the use of fuzzy dominance for
computing service skyline based on qos. In: ICWS. pp. 540–547 (2011)

3. Benouaret, K., Benslimane, D., Hadjali, A., Barhamgi, M.: Fudocs: A web service
composition system based on fuzzy dominance for preference query answering.
PVLDB 4(12), 1430–1433 (2011)

4. Benouaret, K., Benslimane, D., Hadjali, A., Barhamgi, M.: Top-k web service com-
positions using fuzzy dominance relationship. In: IEEE SCC. pp. 144–151 (2011)

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE. pp.
421–430 (2001)

6. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: SIGMOD Conference. pp. 503–514
(2006)

7. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE.
pp. 717–719 (2003)

8. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Simlarity search for
web services. In: VLDB. pp. 372–383 (2004)

9. Duda, R.O., Hard, P.E.: Pattern Classifcation and Scene Analysis. A Wiley-
Interscience Publication, New York (1973)

10. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW. pp. 1013–1022 (2007)

11. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: WWW. pp. 331–339 (2003)

12. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of
web services capabilities. In: International Semantic Web Conference. pp. 333–347
(2002)

13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: SIGMOD Conference. pp. 467–478 (2003)

14. Wang, H., Xu, J., Li, P.: Incomplete preference-driven web service selection. In:
IEEE SCC (1). pp. 75–82 (2008)

15. Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE
T. Services Computing 3(1), 16–29 (2010)

16. Yu, Q., Bouguettaya, A.: Computing service skylines over sets of services. In:
ICWS. pp. 481–488 (2010)

17. Yu, Q., Bouguettaya, A.: Efficient service skyline computation for composite service
selection. IEEE Transactions on Knowledge and Data Engineering 99(PrePrints)
(2011)

18. Yu, Q., Bouguettaya, A.: Multi-attribute optimization in service selection. World
Wide Web 15(1), 1–31 (2012)


	Majority-Rule-Based Web Service Selection

