
Future Generation Computer Systems 29 (2013) 472–487
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Adaptive resource configuration for Cloud infrastructure management
Michael Maurer a,∗, Ivona Brandic a, Rizos Sakellariou b

a Vienna University of Technology, Distributed Systems Group, Austria
b University of Manchester, School of Computer Science, UK

a r t i c l e i n f o

Article history:
Received 30 October 2011
Received in revised form
28 June 2012
Accepted 14 July 2012
Available online 25 July 2012

Keywords:
Cloud Computing
Autonomic Computing
Rule-based system
Case-Based Reasoning
Knowledge management
Resource management

a b s t r a c t

To guarantee the vision of Cloud Computing QoS goals between the Cloud provider and the customer
have to be dynamically met. This so-called Service Level Agreement (SLA) enactment should involve
little human-based interaction in order to guarantee the scalability and efficient resource utilization of
the system. To achieve this we start from Autonomic Computing, examine the autonomic control loop
and adapt it to govern Cloud Computing infrastructures. We first hierarchically structure all possible
adaptation actions into so-called escalation levels. We then focus on one of these levels by analyzing
monitored data from virtualmachines andmaking decisions on their resource configurationwith the help
of knowledge management (KM). The monitored data stems both from synthetically generated workload
categorized in different workload volatility classes and from a real-world scenario: scientific workflow
applications in bioinformatics. As KM techniques, we investigate two methods, Case-Based Reasoning
and a rule-based approach. We design and implement both of them and evaluate them with the help
of a simulation engine. Simulation reveals the feasibility of the CBR approach and major improvements
by the rule-based approach considering SLA violations, resource utilization, the number of necessary
reconfigurations and time performance for both, synthetically generated and real-world data.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The vision of Cloud Computing is to provide computing power
as a utility, like gas, electricity or water [1]. For the underlying
infrastructure this means that it has to deal with dynamic load
changes, ranging from peak performance to utilization gaps. This
brings up two issues: on the one hand, the management of a
Cloud Computing infrastructure has to guarantee pre-established
contracts despite all the dynamism of workload changes. On
the other hand it has to efficiently utilize resources and reduce
resource wastage. As to the former, the pre-established contracts,
so called Service Level Agreements (SLAs), contain Service Level
Objectives (SLOs) that represent Quality of Service (QoS) goals,
e.g., ‘‘storage should be at least 1000 GB’’, ‘‘bandwidth should be
at least 10 Mbit/s’’ or ‘‘response time should be less than 2 s’’, and
penalties that have to be paid to the customer if these goals are
violated.

This work can be integrated into the Foundations of Self-
governing ICT Infrastructure (FoSII) project [2], but is on its own
completely self-sufficient. The FoSII project aims at developing an

∗ Correspondence to: Argentinierstrasse 8/184-1, 1040Wien, Austria. Tel.: +43 1
58801 18457.

E-mail addresses: maurer@infosys.tuwien.ac.at (M. Maurer),
ivona@infosys.tuwien.ac.at (I. Brandic), rizos@cs.man.ac.uk (R. Sakellariou).

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.07.004
infrastructure for autonomic SLA management and enforcement.
Besides the already implemented LoM2HiS framework [3] that
takes care of monitoring the state of the Cloud infrastructure
and its applications, the knowledge management (KM) system
presented in this article can be viewed as another building block
of the FoSII infrastructure. [4] proposes an approach to manage
Cloud infrastructures bymeans of Autonomic Computing, which in
a control loop monitors (M) Cloud parameters, analyzes (A) them,
plans (P) actions and executes (E) them; the full cycle is known
as MAPE [5]. According to [6] a MAPE-K loop stores knowledge
(K) required for decision-making in a knowledge base (KB) that
is accessed by the individual phases. This paper addresses the
research question of finding a suitable KM system (i.e., a technique
of how stored information should be used) and determining how
it interacts with the other phases for dynamically and efficiently
allocating resources.

One of the imminent problems that come up when dealing
with the MAPE-K loop is to define possible actions that can be
executed at the end of the loop. Due to the plethora of possible
reconfiguration actions in Clouds, e.g., increasing/decreasing
available memory or storage for virtual machines (VMs), choosing
VMs to migrate to selected physical machines (PMs), determining
PMs to power on/off, etc., it is not trivial to identify the most
beneficial action in a certain situation. On the one hand it is not
trivial to retrieve and store all necessary information in a Cloud
infrastructure. On the other hand, andmore important in ourwork,

http://dx.doi.org/10.1016/j.future.2012.07.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:maurer@infosys.tuwien.ac.at
mailto:ivona@infosys.tuwien.ac.at
mailto:rizos@cs.man.ac.uk
http://dx.doi.org/10.1016/j.future.2012.07.004

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 473
dealing with the complexity of recommending an action based
on this information is, as we will see, in most cases NP-hard. To
tackle this, we structure all possible actions and organize them in
a hierarchical model of so called escalation levels.

In [7,8] we have shown that approaches using Case Based
Reasoning (CBR) and rules as knowledge management techniques
succeed in autonomically enacting SLAs and governing important
parts of Cloud computing infrastructures. Case Based Reasoning
was chosen, because it offers a natural translation of Cloud status
information into formal knowledge representation and an easy
integration with the MAPE phases. Moreover, it promises to
be scalable (as opposed to e.g., Situation Calculus) and easily
configurable (as opposed to rule-based systems). Related work
has not observed the usage of CBR nor has it evaluated different
KM techniques in Cloud environments. However, we determined
some drawbacks of CBR as far as its learning performance and
its scalability were concerned. Therefore, we also designed and
implemented a rule-based knowledge management approach.
Using rules [8]wemanaged to improve not only SLA adherence and
resource allocation efficiency as discussed in [7], but also attained
an efficient use of reallocation actions and high scalability.

Yet, evaluating the KM system on a real environment is not
a trivial task because of two reasons: First, Cloud infrastructures
usually are huge data centers consisting of hundreds of PMs and
even more VMs. Thus, a first step is to simulate the impact of
autonomic management decisions on the Cloud infrastructure to
determine the performance of the KM decisions. Consequently, we
designed and implemented a simulation engine that mimics the
MAPE-K cycle on large Clouds. Second, workload data for a large
number of VMs has to be provided as input for the simulation.
We decided to go two ways: On the one hand, we generated
synthetic workload data categorized into different workload
volatility classes. These workload volatility classes are determined
by the speed and intensity of workload change. On the other hand,
we gathered real world data from monitoring scientific workflow
applications in the field of bioinformatics [9]. These workflows
need a huge, yet unpredictable and varying amount of resources,
and are thus – due to the needed flexibility and scalability – a
perfect match for a Cloud computing application [10].

Themain challenge in thiswork is to evaluateKMtechniques for
autonomic SLA enactment in Cloud computing infrastructures that
fulfill the three following conflicting goals: (i) achieving low SLA
violation rates; (ii) achieving high resource utilization such that the
level of allocated but unused resources is as low as possible; and
(iii) achieving (i) and (ii) by as few time- and energy-consuming
reallocation actions as possible. We will call this problem the
resource allocation problem throughout the rest of the paper.

The main contributions of this paper are:

1. Design and implementation of a generic (KM-technique ag-
nostic) simulation engine to assess the quality of the KM and
decision-making techniques.

2. Partitioning the resource allocation problem for Cloud infras-
tructures into several subproblems by proposing escalation lev-
els that structure all possible reaction possibilities into different
subproblems using a hierarchical model.

3. Design, Implementation and Evaluation of two KM techniques
for one escalation level, i.e., VM resource configuration: CBR,
and the rule-based approach.

4. Application of the rule-based approach to real-world monitor-
ing data from scientific workflow applications in the field of
bioinformatics.

The remainder of this work is divided as follows: In Section 2
we present related work. Section 3 gives some background
information by explaining the MAPE-K loop and the FoSII project.
In Section 4 we structure the problem into the mentioned
escalation levels, and in Section 5 we describe how to use
the two KM techniques (CBR and rules) to tackle the resource
allocation problem for a certain escalation level. Section 6 shows
the evaluation of both approaches, especially focusing on the rule-
based approach. Section 7 concludes this contribution and points
out future work.

2. Related work

Concerning related work, we have determined four different
ways to compare our work with other achievements in this area.
Whereas the first level compares other works dealing with SLA
enactment and resource efficiency, the second one considers the
area of knowledge management, and the third one compares
commercial products to our approach. Fourthly, the FoSII project
is briefly related to other projects in this field.

Firstly, there has been some considerable work on optimizing
resource usage while keeping QoS goals. These papers, however,
concentrate on specific subsystems of Large Scale Distributed
Systems, such as [11] on the performance of memory systems,
or only deal with one or two specific SLA parameters. Petrucci
et al. [12] or Bichler et al. [13] investigate one general resource
constraint andKhanna et al. [14] only focuses on response time and
throughput. A quite similar approach to our concept is provided by
the Sandpiper framework [15], which offers black-box and gray-
box resource management for VMs. Contrary to our approach,
though, it plans reactions just after violations have occurred. Also
the VCONF model by Rao et al. [16] has similar goals as presented
in Section 1, but depends on specific parameters, can only execute
one action per iteration and it neglects the energy consumption
of executed actions. Other papers focus on different escalation
levels (as described in Section 4). [17,18] focus on VM migration
and [19] on turning on and off physical machines, whereas our
paper focuses on VM re-configuration. Additionally, none of the
presented papers uses a KB for recording past action and learning.
Hoyer et al. [20] also undertake a speculative approach as in
our work by overbooking PM resources. They assign VMs to PMs
that would exceed their maximum resource capacities, because
VMs hardly ever use all their assigned resources. Computing this
allocation they also take into consideration workload correlation
of different VMs. Borgetto et al. [21] tackle the trade-off between
consolidating VMs on PMs and turning off PMs on the one
hand, and attaining SLOs for CPU and memory on the other.
However, the authors assume a static setting and do not consider
dynamically changing workloads. So, e.g., they do not take the
number of migrations into account. Stillwell et al. [22] in a similar
setting define the resource allocation problem for staticworkloads,
present the optimal solution for small instances and evaluate
heuristics by simulations. Nathani et al. [23], e.g., also deal with
VM placement on PMs using scheduling techniques. [24] react
to changing workload demands by starting new VM instances;
taking into account VM startup time, they use prediction models
to have VMs available already before the peak occurs. Other works
such as [25] have already considered the last escalation level
(see Section 4), i.e., outsourcing of applications to other Clouds.
Summarizing we can say that there has been a great deal of work
on the different escalation levels, whereas VM configuration has
not been observed yet.

Secondly, there has been work on KM of SLAs, especially rule-
based systems. Paschke and Bichler [26] look into a rule based
approach in combination with the logical formalism ContractLog.
It specifies rules to trigger after a violation has occurred, but it
does not deal with avoidance of SLA violations. Others inspected
the use of ontologies as KBs only at a conceptual level. [27] viewed
the system in four layers (i.e., business, system, network and
device) and broke down the SLA into relevant information for

474 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
each layer, which had the responsibility of allocating required
resources. Again, no details on how to achieve this have been
given. Bahati and Bauer [28] also use policies, i.e., rules, to achieve
autonomic management. They provide a system architecture
including a KB and a learning component, and divide all possible
states of the system into so called regions, which they assign a
certain benefit for being in this region. A bad region would be,
e.g., response time > 500 (too slow), fair region response time <
100 (too fast, consuming unnecessary resources) and a good region
100 ≤ response time ≤ 500. The actions are not structured, but
are mixed together into a single rule, which makes the rules very
hard to manage and to determine a salience concept behind them.
However, we share the idea of defining ‘‘over-utilized’’, ‘‘neutral’’
and ‘‘under-utilized’’ regions. Our KM system allows us to choose
any arbitrary number of resource parameters that can be adjusted
on a VM. Moreover, our paper provides a more wholesome
approach than related work and integrates the different action
levels that work has been carried out on.

Thirdly, commercial Cloud IaaS platforms such as Amazon
EC2 [29], Rackspace [30] or RightScale [31] have a very limited
choice of preconfigured and static VM resource provisioning
types. Amazon EC2 only offers VM instance types such as small,
medium or large with predefined storage, computing units, and
memory without the possibility of reconfiguring or fine-tuning
them beforehand, not to mention during runtime. Rackspace only
offers storage on the IaaS level, and RightScale focuses more
on integrating different IaaS platforms such as Amazon EC2 or
Rackspace into a holistic view.

Fourthly, compared to other SLA management projects like
SLA@SOI [32], the FoSII project in general is more specific on Cloud
Computing aspects like deployment, monitoring of resources and
their translation into high level SLAs instead of just working on
high-level SLAs in general service-oriented architectures.

3. Background

In this section we describe how the KM approach can be
integrated within a more holistic Cloud management project that,
e.g., also consists of amonitoring component. Yet, the KMapproach
does not depend on the specific used monitoring framework, as
long as it correctly measures the current values of the parameters
specified in the SLA.

In this case, the FoSII project will serve as a running exam-
ple. We will describe how the KM approach relates to other com-
ponents of the FoSII project. Generally, the project distinguishes
between system set-up and run time. During system set-up, applica-
tions, their corresponding SLAs and used infrastructure are tailored
and adapted. Once the application is deployed, we consider mon-
itoring, knowledge management and execution phases during run
time. In this section, in particular,we focus on the adaptation,mon-
itoring, and knowledge management phases, as shown in Fig. 1.
Thus, the MAPE-K loop is extended to the A-MAPE-K loop, where
the additional A stands for the adaptation phase during system set-
up. This adaptation phase, however, should not be confused with
later adaptation and re-configuration of resources during system
run time. Quite evidently, we especially focus on the knowledge
management phase in this paper. The three mentioned phases are
described as follows:

Adaptation As shown in Fig. 1, part 1, the adaptation phase com-
prises all steps necessary to be done before successful
deployment and start of the application. This includes
SLA contract establishment and tailoring of the monitor-
ing systems for the particular application. We assume
that Cloud providers register their resources to partic-
ular databases containing public SLA templates. There-
after, Cloud users can look up resources that they want
to use for the deployment of their applications. Similar
to the providers, Cloud users also have an SLA template
utilized for their private business processes. We assume
that the private SLA template cannot be changed, since it
could also be part of some other local business processes
and has usually to comply with different legal and secu-
rity guidelines. If matching SLA templates are found, an
SLA contract can be negotiated and established and the
application can be deployed.
Thus, during this phase it has to be ensured that
private templates of the provider and consumers match
publicly available templates. However, public and private
templates may differ. A typical mismatch between
templates would be between different measurement
units of attributes, as for example for the SLO clock
speed or missing attributes. Therefore, a mechanism is
required for the automatic adaptation between different
templates without changing the templates themselves.
A possible solution for this is the so called SLA mapping
approach presented in [33]. This approach can include
handling of missing SLA parameters, inconsistencies
between attributes and translation between different
attributes. More complex adaptations would include
automatic service aggregation, including third party
services, if, for example, the clock speed attribute is
completely missing in the public template, but required
in the private template. A third party provider (e.g., a
computer hardware reseller) could be integrated to
deliver information about the clock speed attribute.
Detailed information on the adaptation phase including
the SLA mapping approach are found in [33,34].

Monitoring Current monitoring systems (e.g., ganglia [35]) facili-
tatemonitoring only of low-level systems resources, such
as free_disk or packets_sent, but SLA parameters
typically are, e.g., storage and outgoing bandwidth. Thus,
SLA parameters required by an application usually differ
from the parameters measured by the monitoring tools.
To achieve a mapping from the low-level metrics to the
high-level SLA parameters, the monitoring phase should
comprise two core components, namely the host mon-
itor and the run-time monitor (see Fig. 1, part 2). The
former is responsible for monitoring low-level resource
metrics, whereas the latter is responsible formetricmap-
ping, and consequently for the monitoring of SLAs and
informing the KM phase about SLA violations. This moni-
toring framework has proven to be highly scalable and is
presented in more detail in [3].

Knowledge Management Since the analysis, plan and KB parts
are highly interweaved with each other, we call the
ensemble of these phases the Knowledge Management
Phase (see Fig. 1, part 3). The knowledge management
component receives current information about SLA
parameters of each running application from the run-
time monitor of the monitoring component. Depending
on the KM technique in use, the KM phase analyzes
this data to determine critical situations, where either
SLA parameters are about to be violated or too many
resources are wasted. The analysis component receives
the monitoring data, stores it in the KB and queries
it to recommend an action to be executed. The plan
phase maps these actions onto PMs or plans outsourcing
them to other Cloud providers. Finally, the actions are
executed (Execution phase) with the help of actuators.
Additionally, the KB does not only enable decision
making out of current data, i.e., suggesting actions to
be executed, but also improving the quality of decisions
by keeping track of the success or failure of previous
decisions, i.e., learning.

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 475
Fig. 1. FoSII infrastructure.
4. Structuring the problem: escalation levels

This section presents a methodology of dividing the resource
allocation problem into smaller subproblems using a hierarchical
approach. It demonstrates which actions can be executed in what
level to achieve SLA adherence and efficient resource allocation for
Cloud infrastructures.

In general, we can think of the following reallocation actions:

1. for individual applications:
(a) Increase incoming bandwidth share by x%.
(b) Decrease incoming bandwidth share by x%.
(c) Increase outgoing bandwidth share by x%.
(d) Decrease outgoing bandwidth share by x%.
(e) Increase memory by x%.
(f) Decrease memory by x%.
(g) Add allocated storage by x%.
(h) Remove allocated storage by x%.
(i) Increase CPU share by x%.
(j) Decrease CPU share by x%.
(k) Outsource (move application) to other Cloud.
(l) Insource (accept application) from other Cloud.

(m) Migrate application to different VM.
2. for VMs:

(a) Increase incoming bandwidth share by x%.
(b) Decrease incoming bandwidth share by x%.
(c) Increase outgoing bandwidth share by x%.
(d) Decrease outgoing bandwidth share by x%.
(e) Increase memory by x%.
(f) Decrease memory by x%.
(g) Add allocated storage by x%.
(h) Remove allocated storage by x%.
(i) Increase CPU share by x%.
(j) Decrease CPU share by x%.
(k) Outsource (move VM) to other Cloud.
(l) Insource (accept VM) from other Cloud.

(m) Migrate VM to different PM.
3. for physical machines (computing nodes):
(a) Add x computing nodes.
(b) Remove x computing nodes.

4. Do nothing.

For an application, under ‘‘increase incoming bandwidth share’’
we understand to increase the application’s share of all the
available incoming bandwidth of a VM, and for a VM the share
relates to all the available incoming bandwidth of a PM. The
idea of bandwidth sharing is a common idea in network systems
as described in [36]. Similar arguments account for outgoing
bandwidth or CPU share.

We then group these actions into so called escalation levels
that we define in Table 1. The idea is that every problem that
occurs should be solved on the lowest escalation level. Only if
this is not possible, the problem is tried to be solved on the next
level, and again, if this fails, on the next one, and so on. The
levels are ordered in a way such that lower levels offer faster and
more local solutions than higher ones. At every level it has to be
decided, whether the proposed action should be executed or not,
because it is important to know when to do nothing, since every
reallocation action is time and energy consuming. In fact, for every
level there is the possibility not to execute the proposed action.
If the proposed action is not executed, then the decision-making
process will stop and not evaluate whether the next escalation
level should be considered or not.

The first escalation level (‘‘change VM configuration’’) works lo-
cally on a PM and tries to change the amount of storage ormemory,
e.g., that is allocated to the VM from the PM resources. Then, mi-
grating applications (escalation level 2) is more lightweight than
migrating VMs and turning PMs on/off (escalation levels 3 and
4). For all three escalation levels already the whole system state
has to be taken into account to find an optimal solution. The
problem stemming from escalation level 3 alone can be formu-
lated into a binary integer problem (BIP), which is known to be
NP-complete [37]. The proof is out of scope for this paper, but a
similar approach can be seen in [12]. The last escalation level has
least locality and greatest complexity, since the capacity of other

476 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
(a) Before action execution. (b) After action execution.

Fig. 2. Actions used in five escalation levels: before and after action execution.
Table 1
Escalation levels.

1. Change VM configuration.
2. Migrate applications from one VM to another.
3. Migrate one VM from one PM to another or create new VM on

appropriate PM.
4. Turn on/off PM.
5. Outsource to other Cloud provider.

Cloud infrastructures have to be taken into account, too, and nego-
tiations have to be started with them as well.

Also the rule-based approach benefits from this hierarchical
action level model, because it provides a salience concept for
contradicting rules. Without this concept it would be troublesome
to determine which of the actions, e.g., ‘‘Power on additional
PM with extra storage and migrate VM to this PM’’, ‘‘Increase
storage for VM by 10%’’ or ‘‘Migrate application to another VM
with more storage’’ should be executed, if a certain threshold for
allocated storage has been exceeded. The proposed KMapproaches
will present a solution for escalation level 1. Fig. 2 visualizes the
escalation levels fromTable 1 before and after actions are executed.
Fig. 2(a) shows applications App1 and App2 deployed on VM1 that
is itself deployed on PM1, whereas App3 runs on VM2 running on
PM2. Fig. 2(b) shows example actions for all five escalation levels.
The legendnumbers correspond to the respective numbering of the
escalation levels.

• Escalation level 1: At first, the autonomic manager considers
whether it should change VM configuration or not. Actions (1)
show that the autonomic manager decided to change the VM
configuration; VM1 is being up-sized and VM2 being down-
sized.

• Escalation level 2: If VM reconfiguration has taken place, or
if it has been recommended, but cannot be fulfilled yet,
because some resource cannot be increased anymore due to the
constraints of the PM hosting the VM, in level 2 the autonomic
manager considers migrating the application to another larger
VM that fulfills the required specifications from level 1. So
if, e.g., provided storage needs to be increased from 500 to
800 GB, but only 200 GB are available on the respective VM,
then the application has to be migrated to a VM that has at
least the same resources as the current one plus the remaining
100 GB of storage. Action (2) shows the re-deployment of App2
to VM2. Due to possible confinements of some applications
to certain VMs, e.g., a user deployed several applications that
need to work together on one VM, this escalation might be
skipped in some scenarios. Also for Infrastructure as a Service
(IaaS) providers, who directly provide the VMs without caring
about the applications running on them, this escalation level is
omitted.
• Escalation level 3: If there is no appropriate VM available in
level 2, or if level 2 is skipped and VM configurations have
been recommended in level 1, in level 3 the autonomicmanager
considers creating a newVMon an appropriate PMormigrating
the VM to a PM that has enough available resources. Action (3)
shows the re-deployment of VM2 to PM1.

• Escalation level 4: Again, if there is no appropriate PM available
in level 3, the autonomic manager suggests turning on a new
PM (or turning it off if the last VMwas emigrated from this PM)
in level 4. Action (4) shows powering on a new PM (PM3).

• Escalation level 5: Finally, the last escalation level 5 tries to out-
source the application to another Cloud provider as explained,
e.g., in the Reservoir project [38]. Action (5) outsources App3 to
another Cloud provider.

For an IaaS provider omitting escalation level 2, the sequence of
these escalation levels is quite obvious: If VM sizes are not changed
in escalation level 1, there is no need to trigger escalation level 3
as VMs have not changed, and no better allocation of VMs to PMs
can be found, if the previous one was already optimal. However,
if VM sizes were changed, escalation level 3 can still come to
the conclusion that VM migrations are unnecessary. On the other
hand, if VM migrations were recommended, some PMs could be
then turned off in escalation level 4. Similarly, if no migrations
were triggered, thinking about turning off PMs is unnecessary,
as no PMs run idle now that have not been running idle before.
Finally, if all the previous actions were successfully executed
without the help of another Cloud provider, there is no need to
consider outsourcing applications. Only if the last possibility failed,
outsourcing applications should be considered. (Other business
incentives for outsourcing applications such as cheaper execution
costs in other Clouds, etc., are not consideredhere.) For providers of
other Cloud delivery models such as SaaS or PaaS, the sequence of
placing applicationmigration after VM reconfiguration is arguable;
another model could also propose an inverse sequence for these
two levels.

5. Implementing the knowledge management phase

In this sectionwepresent the implementation of theKnowledge
Management phase using CBR and a rule-based approach.

5.1. Prerequisites

This subsection subsumes all the common assumptions for both
approaches.

We assume that customers deploy applications on an IaaS
Cloud infrastructure. SLOs are defined within an SLA between
the customer and the Cloud provider for every application.

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 477
Table 2
Cases of (non-) SLA violations using the example of storage.

Provided (1) (GB) Utilized (2) (GB) Agreed (3) (GB) Violation?

500 400 1000 No
500 510 1000 Yes

1000 1010 1000 No

Furthermore, there is a 1:1 relationship between applications and
VMs. One VM runs on exactly one PM, but one PM can host an
arbitrary number of VMs with respect to supplied vs. demanded
resource capacities. After allocating VMs with an initial capacity
(by estimating initial resource demand) for every application,
we continuously monitor actually used resources and re-allocate
resources according to these measurements.

For tackling the resource allocation for VMs, we need to define
how measured, provided and agreed values interrelate, and what
actually constitutes an SLA violation. An example is provided
in Table 2. First, we deal with the measured value (1), which
represents the amount of a specific resource that is currently used
by the customer. Second, there is the amount of allocated resource
(2) that can be used by the customer, i.e., that is allocated to the
VM which hosts the application. Third, there is the SLO agreed in
the SLA (3). A violation therefore occurs, if less is provided (2) than
the customer utilizes (or wants to utilize) (1) with respect to the
limits set in the SLA (3). Considering Table 2we can see that rows 1
and 3 do not represent violations, whereas row 2 does represent an
SLA violation. In order to save resources we envision a speculative
approach: Can we allocate less than agreed, but still more than
used in order not to violate an SLA? Themost demanding questions
are how much can we lower the provisioning of resource without
risking an SLA violation. This heavily depends on the characteristics
of the workload of an application, especially its volatility.

5.2. Case Based Reasoning

Case Based Reasoning is the process of solving problems based
on past experience [39]. In more detail, it tries to solve a case
(a formatted instance of a problem) by looking for similar cases
from the past and reusing the solutions of these cases to solve the
current one. In general, a typical CBR cycle consists of the following
phases assuming that a new case was just received:

1. Retrieve the most similar case or cases to the new one.
2. Reuse the information and knowledge in the similar case(s) to

solve the problem.
3. Revise the proposed solution.
4. Retain the parts of this experience likely to be useful for future

problem solving. (Store new case and found solution in KB.)

To adapt CBR to our problem, three issues have to be solved.
First, it has to be decided how to format an instance of the problem.
Second, it has to be decidedwhen two cases are similar. Third, good
reactions have to be distinguished from bad reactions.

As to the first problem we assume that each SLA has a unique
identifier id and a collection of SLOs. SLOs are predicates of the form

SLOid(xi, comp, πi) with comp ∈ {<, ≤, >,≥, =}, (1)

where xi ∈ P represents the parameter name for i = 1, . . . ,
nid, πi the parameter goal, and comp the appropriate comparison
operator. Then, a CBR case c is defined as

c = (id,m1, p1,m2, p2, . . . ,mnid , pnid), (2)

where id represents the SLA id, andmi and pi themeasured (m) and
provided (p) value of the SLA parameter xi, respectively.

To use the SLA parameters storage and incoming bandwidth for
example, a typical use case looks like this: SLA id = 1 with
SLO1 (‘‘Storage’’, ≥, 1000) and SLO1 (‘‘Bandwidth’’, ≥, 50.0). A
corresponding case received by the measurement component is
therefore written as c = (1, 500, 700, 20.0, 30.0). A result case
rc = (c−, ac, c+, utility) includes the initial case c−, the executed
action ac , the resulting case c+ measured some time interval later,
which corresponds to one iteration in the simulation engine, and
the calculated utility described later. In order to give the KB some
knowledge about what to do in specific situations, several initial
cases are stored in the KB as described in [7] in more detail.

Secondly, to define similarity between two cases is not straight-
forward, because due to their symmetric nature Euclidean dis-
tances, e.g., do not recognize the difference between over- and
under-provisioning. Following the principle of semantic similar-
ity from [40] for the summation part this leads to the following
equation

d(c−, c+) = min(wid, |id−
− id+

|)

+

x∈P

wx

 (p
−
x − m−

x) − (p+
x − m+

x)

max
x

−min
x

 , (3)

where w = (wid, wx1 , . . . , wxn) is the weight vector; wid is the
weight for non-identical SLAs; wx is the weight, and maxx and
minx themaximum andminimum values of differences px −mx for
parameter x.

As far as the third issue is concerned, every action is evaluated
by its impact on violations and utilization. This way CBR is
able to learn whether an action was appropriate for a specific
measurement or not. The utility of an action is calculated by
comparing the initial case c− with the resulting final case c+. The
utility function is composed by a violation and a utilization term
weighed by the factor 0 ≤ α ≤ 1:

utility =

x∈P

violation(x) + α · utilization(x). (4)

Higher values forα strengthen theutilization of resources,whereas
lower values the non-violation of SLA parameters. We further note
that c(x) describes a case only with respect to parameter x. E.g.,
we say that a violation has occurred in c(x), when in case c the
parameter xwas violated.

We define the violation function for every parameter x as
follows:

violation(x) =

1, No violation occurred in c+(x),
but in c−(x)

1/2, No violation occurred in c+(x)
and c−(x)

−1/2 Violation occurred in c+(x) and c−(x)
−1 Violation occurred in c+(x),

but not in c−(x).

(5)

The utilization function is calculated by comparing the used
resources to the provided ones. We define the distance δ(x, y) =

|x − y|, and utilization for every parameter as

utilization(x) =

1, δ(p−

x ,m−

x) > δ(p+

x , u+

x)

−1, δ(p−

x ,m−

x) < δ(p+

x , u+

x)
0, otherwise.

(6)

A utilization utility of 1 is retrieved if less over-provisioning of
resources takes place in the final case than in the initial one, and
a utilization utility of −1 if more over-provisioning of resources
takes place in the final case than in the initial one.

The whole CBR process works as follows: Before the first
iteration, we store the mentioned initial cases consisting of an
initialmeasurement, an action and a resultingmeasurement. Then,
when CBR receives a new measurement, this measurement is
compared to all cases in the KB. From the set of closest cases

478 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
Table 3
Resource policy modes.

Green Plenty of resources left. Over-consumption allowed.

Green–orange Heavy over-consumption is forbidden. All applications that consume more
than τ% (threshold to be specified) of the agreed resource SLO are
restrained to τ/2% over-consumption

Orange Resource is becoming scarce, but SLA demand can be fulfilled if no
over-consumption takes place. Thus, over-provisioning is forbidden.

Orange–red Over-provisioning forbidden. Initiate outsourcing of some applications.

Red Over-provisioning forbidden. SLA resource requirements of all consumers
cannot be fulfilled. If possible, a specific choice of applications is
outsourced. If not enough, applications with higher reputation points or
penalties are given priority over applications with lower reputation
points/penalties. SLAs of latter ones are deliberately broken to ensure SLAs
of former ones.
grouped by a clustering algorithm we choose the one with the
highest utility and execute exactly the same action as in the chosen
case. Afterwards, this action, the resulting measurement and the
utility of the action is added to the initial measurement, and stored
as a complete case.

5.3. Rule-based approach

For the rule-based approach we first introduce several resource
policy modes to reflect the overall utilization of the system in
the VM configuration rules. Dealing with SLA-bound resource
management, where resource usage is paid for on a ‘‘pay-as-
you-go’’ basis with SLOs that guarantee a minimum capacity of
these resources as described above, raises the question, whether
the Cloud provider should allow the consumer to use more
resources than agreed. We will refer to this behavior as over-
consumption. Since the consumer will pay for every additional
resource, it should be in the Cloud provider’s interest to allow
over-consumption as long as this behavior does not endanger the
SLAs of other consumers. Thus, Cloud providers should not allow
over-consumption when the resulting penalties they have to pay
are higher than the expected revenue from over-consumption.
To tackle this problem, we introduce five policy modes for every
resource that describe the interaction of the five escalation levels.
As can be seen in Table 3 the policymodes are green, green–orange,
orange, orange–red and red. They range from low utilization of the
system with lots of free resources left (policy mode green) over
a scarce resource situation (policy mode orange) to an extremely
tight resource situation (policy mode red), where it is impossible
to fulfill all SLAs to their full extent and decisions have to be
made which SLAs to deliberately break and which applications to
outsource.

In order to know whether a resource r is in danger of under-
provisioning or already is under-provisioned, or whether it is over-
provisioned, we calculate the current utilization ut r =

user
prr × 100,

where user and prr signify howmuch of a resource r was used and
provided, respectively, and divide the percentage range into three
regions using the two ‘‘threat thresholds’’ TT r

low and TT r
high:

• Region −1: Danger of under-provisioning, or under-provision-
ing (>TT r

high).
• Region 0: Well provisioned (≤TT r

high and ≥ TT r
low).

• Region +1: Over-Provisioning (<TT r
low).

The idea of this rule-based design is that the ideal value that
we call target value tv(r) for utilization of a resource r is exactly
in the center of region 0. So, if the utilization value after some
measurement leaves this region by using more (Region −1) or less
resources (Region +1), then we reset the utilization to the target
value, i.e., we increase or decrease allocated resources so that the
utilization is again at

tv(r) =
TT r

low + TT r
high

2
%.
Fig. 3. Example behavior of actions at time intervals t1–t6 .

As long as the utilization value stays in region 0, no action will be
executed. E.g., for r = storage, TT r

low = 60%, and TT r
high = 80%,

the target value would be tv(r) = 70%. Fig. 3 shows the regions
and measurements (expressed as utilization of a certain resource)
at time steps t1, t2, . . . , t6. At t1 the utilization of the resource
is in Region −1, because it is in danger of a violation. Thus, the
KB recommends to increase the resource such that at the next
iteration t2 the utilization is at the center of Region 0, which equals
the target value. At time steps t3 and t4 utilization stays in the
center region and consequently, no action is required. At t5, the
resource is under-utilized and so the KB recommends the decrease
of the resource to tv(r), which is attained at t6. Additionally, if
over-provisioning is allowed in the current policy mode, then the
adjustment will always be executed as described regardless of
what limit was agreed in the SLA. On the other hand, if over-
provisioning is not allowed in the current policy mode, then the
rule will allocate at most as much as agreed in the SLA (SLOr).

The concept of a rule increasing resource r is depicted in Fig. 4.
The rule executes if the current utilization ut r and the predicted
utilization ut rpredicted of the next iteration (cf. next paragraph) both
exceed TT r

high (line 2). Depending on what policy level is active
the rule either sets the provided resource prr to the target value
tv(r) for policy levels green and green–orange (line 3) or to at most
what was agreed in the SLA (SLOr) plus a certain percentage ϵ to
account for rounding errors when calculating the target value in
policy levels orange, orange–red and red (line 5). A similar rule
scheme for decreasing a resource can be seen in Fig. 5. The main
difference is that it does not distinguish between policymodes and
that it sets the provisioned resource to at least a minimum value
minPr r , whichmay be 0, that is needed to keep the application alive

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 479
Fig. 4. Rule scheme for increasing a resource.
Fig. 5. Rule scheme for decreasing a resource.

(line 4). The rule is executed if the current utilization ut r and the
predicted utilization ut rpredicted of the next iteration both lie below
TT r

low (line 2).
A large enough span between the thresholds TT r

low and TT r
high

helps to prevent oscillations of repeatedly increasing and decreas-
ing the same resource. However, to further reduce the risk of os-
cillations, we suggest to calculate a prediction for the next value
based on the latest measurements. Thus, an action is only invoked
when the current AND the predicted measurement exceed the re-
spective TT. So, especially when only one value exceeds the TT, no
action is executed.

The rules have been implemented using the Java rule engine
Drools [41]. The Drools engine sets up a knowledge session
consisting of different rules and a working memory. Rules get
activated when specific elements are inserted into the working
memory such that the conditional ‘‘when’’ part evaluates to true.
Activated rules are then triggered by the simulation engine. In
our case, the simulation engine inserts measurements and SLAs
of applications into the working memory. Different policy modes
will load slightly modified rules into the Drools engine and thus
achieve a high adaptability of the KM system reacting to the
general performance of the Cloud infrastructure. As opposed to the
CBR approach in [7], the rule-based approach is able to fire more
than one action at the same iteration, which inherently increases
the flexibility of the system. Without loss of generality we can
assume that one application runs on one VM (several applications’
SLAs can be aggregated to form one VM SLA) and we assume the
more interesting case of policy modes orange, orange–red or red,
where over-provisioning is not allowed.

Listing 1 shows the rule to increase parameter storage formu-
lated in the Drools language following the pattern presented in
Fig. 4. Line 1 defines the name of the rule that is split into a con-
dition part (when, lines 2–12) and an execution part (then, lines
13–17). Line 4 tries to find the SLA of an application, and stores its
id in $slaID and the SLA into $slaApp. Line 6 looks for a set of
actions for this $slaID where no storage action has been added
yet (storage == false) in order to avoid contradicting actions
for storage for one measurement. Line 8 searches for a measure-
ment for the appropriate VM (vmID == $slaID) that has been in-
serted into working memory that is no prediction ($prediction
== false) and where the percentage of utilized storage exceeds
TT r

high (storage_utilized > storage_HighTT), and stores
used and provided values into $s_used and $s_provided, re-
spectively. The predicted measurement for the next iteration is
handled similarly in line 10. Finally, line 12 checks whether pro-
vided storage is still below the agreed value in the SLA. This is done,
because in policy modes orange to red over-consumption is pro-
hibited. The rules for policy modes green and green–orange would
omit this line. Now, if all these conditions are met, the rule gets
activated. When fired, line 15 calculates the new value for prr as
explained in Fig. 4. This line (as line 12) would also be altered for
policy modes green and green–orange. Line 17 then modifies the
action container $as and inserts the appropriate storage action
with the value for provided storage to be set. Other rules follow
the same pattern as described here and in Fig. 4 for rules increas-
ing resource allocations and in Fig. 5 for rules decreasing resource
allocations.

Listing 1: Rule ‘‘storage_increase’’
1 rule " storage_increase "
2 when
3 / / Remember SLA id o f app l i ca t i on
4 $SLA_app : Application ($slaID : id)
5 / / Look f o r s e t o f ac t i ons that has no storage act ion yet
6 $ as : Actions (s la ID == $slaID , storage == fa lse)
7 / / Look f o r measurement that has high u t i l i z a t i o n of

s torage
8 $m : Measurement (predict ion == false , s to rage_ut i l i zed >

storage_HighTT , vmID == $slaID , $s_used : storage_used
, $s_provided : storage_provided)

9 / / Look f o r pred i c ted measurement that w i l l have high
u t i l i z a t i o n of s torage

10 $m_pred : Measurement (predict ion == true ,
s to rage_ut i l i zed > storage_HighTT , vmID == $slaID)

11 / / Check whether we provide l e s s than SLO value
12 eval ($s_provided <= Double . valueOf ($SLA_app .

getThresholdByName (" storage ")))
13 then
14 / / Ca l cu la t e tv
15 double newStorage = Math .min($s_used / ((storage_HighTT+

storage_LowTT) /2) , Double . valueOf (SLA_app .
getThresholdByName (" storage "))∗ (1+eps /100)) ;

16 / / Add storage act ion to s e t o f ac t i ons
17 modify ($ as) addAction (new StorageActionDirect (newStorage

, "GB")) , setStorage () ;
18 end

6. Evaluation and comparison

In this section we evaluate the two presented approaches
with several different synthetic and real-world workload data. For
this purpose, we present a KM-agnostic simulation engine that
implements the autonomic control loop and simulates executed
actions and evaluates their quality responding to the workload
data at stake.

6.1. Simulation engine implementing the MAPE-K loop

The goal of the simulation engine is to evaluate the quality
of a KM system with respect to the number of SLA violations,
the utilization of the resources and the number of required
reallocation actions. Furthermore, the simulation engine serves
as an evaluation tool for any KM technique in the field of Cloud
Computing, as long as it can implement the twomethods of the KB
management interface:

1. public void receiveMeasurement(int slaID,
String[] provided,
String[] measurements, List<String>violations)
; and

2. public Actions recommendAction(int slaID);.

480 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
Fig. 6. Simulation engine implementing MAPE-K loop.
The parameter slaID describes the ID of the SLA that
is tied to the specific VM, whose provided and measured
values are stored in the arrays provided and measurements,
respectively (cf. Section 5.1). The list violations contains all
SLA parameters being violated for the current measurements.
The method receiveMeasurement inputs new data into the
KB, whereas the method recommendActions outputs an action
specific to the current measurement of the specified SLA. The
simulation engine traverses all parts of the MAPE-K loop as can
be seen in Fig. 6 and described in Section 3. The simulation
engine is iteration based, meaning that in one iteration the MAPE-
K loop is traversed exactly once. (In reality, one iteration could
last from some minutes to about an hour depending on the
speed of the measurements, the length of time the decision
making takes, and the duration of the execution of the actions,
for example migrating a resource intensive VM to another PM.)
The Monitoring component receives monitoring information from
either synthetic or real-world workload from the current iteration.
It forwards the data into the Knowledge base (1). The Knowledge
base contains representations of all important objects in the Cloud
and their characteristic information. These objects are the running
applications, the virtual machines, and the physical machines
with the current state of their CPU power, memory, storage, etc.,
the corresponding SLAs with their SLOs, and information about
other Clouds in the same federation. Furthermore, the KB also has
representations of the inserted measurements, and the available
actions to execute (these have to be pre-defined). Finally, the KB
also contains a decision mechanism that interprets the state of
available objects in order to recommend a reconfiguration action.
This mechanism can be substituted by any KM technique; as
already mentioned, we used CBR and a rule-based mechanism.
The next step in the MAPE loop is the Analysis component, which
queries the KB for actions to recommend (for a specific SLA id)
(2); these actions are then returned to the analysis component
(3). The Planning component schedules the suggested actions,
and the Execution component executes them. The changed state
configuration of the Cloud objects are automatically reflected in
the KB (4). The Monitoring and the Execution components are
simulated. This means that the monitoring data is not measured
on a real system during the simulation, even though it handles
input measured at a real system or synthetic workloads generated
beforehand (see Sections 6.3 and 6.4). The Execution component
updates the object representation of themanipulated objects in the
KB, but obviously does not actually manipulate real-world objects.
The quality of the decision making can ultimately be judged by
the number of occurred SLA violations, resource wastage and the
number of needed reallocation actions.

6.2. Performance indicators

The subsequent evaluations will be based on the following
performance indicators: violations, utilization, actions, resource
allocation efficiency (RAE), costs, and time efficiency. Whereas
the first three and the last one are rather self-explanatory,
costs and RAE need a little more explanation. So violations
and actions measure (as a percentage) the amount of occurring
violations/actions in relation to all possible violations/actions, and
utilization the average utilization over all iterations (and over all
SLA parameters, if they are not shown explicitly). Time efficiency
measures the average time that is needed to handle one VM in
one iteration. For resource allocation efficiency we want to relate
violations and utilization. The basic is idea is that RAE should equal
utilization (100%−w, wherew stands for wastage, see below) if no
violations occur (p = 0%, where p stands for penalty, see below),
equal 0 if the violation rate is at 100%, and follow a linear decrease
in between. Thus, we define

RAE =
(100 − w)(100 − p)

100
. (7)

A more general approach also taking into account the cost of
actions represents the definition of a generic cost function that
maps SLA violations, resource wastage and the costs of executed
actions into a monetary unit, which we want to call Cloud EUR.
First, we define a penalty function pr(p) : [0, 100] → R+ that
defines the relationship between the percentage of violations p (as
opposed to all possible violations) and the penalty for a violation
of resource r . Second, we define a function wastage wr(w) :

[0, 100] → R+ that relates the percentage of unused resources w
to the energy in terms ofmoney that these resources unnecessarily
consume. Third, we define a cost function ar(a) : [0, 100] →

R+ from the percentage of executed actions a (as opposed to all
possible actions that could have been executed) to the energy and
time costs in terms of money. The total cost c is then defined as

c(p, w, c) =

r

pr(p) + wr(w) + ar(a). (8)

We assume functions pr , wr and ar for this evaluationwith pr(p) =

100p, wr(w) = 5w, and ar(a) = a for all r . The intention behind
choosing these functions is (i) to impose very strict fines in order

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 481
to proclaim SLA adherence as top priority, (ii) to weigh resource
wastage a little more than the cost of actions.

The cost function is currently not evaluated within the simula-
tion engine, it is a value calculated after the simulation for compar-
ison reasons. Thus, the recommended actions do not depend on the
specific functions we assumed. However, it could be incorporated
into the KB in order to adjust and learn the TTs for every resource r .

6.3. Evaluation and comparison of CBR and rules using synthetic data

To evaluate a great variety of workload data, one approach is
to create them synthetically. For this, we extended the workload
generator as described in [7] to allow a categorization of data
volatility.

The workload generator is intended to generate very general
workloads for IaaS platforms dealing with slower developments
as well as rapid changes. For one parameter, the workload is
generated as follows: The initial value of theworkloads is randomly
drawn from a Gaussian distribution with µ =

SLO
2 and σ =

SLO
8 ,

where SLO represents the Service Level Objective value agreed
in the SLA. Then, an up- or down-trend is randomly drawn, as
well as a duration of this trend between a pre-defined number
of iterations (for our evaluation this interval of iterations equals
[2, 6]), both with equal probability. For every iteration, as long
as the trend lasts, the current measured value is increased or
decreased (depending on the trend) by a percentage evenly drawn
from the interval [iBegin, iEnd]. After the trend is over, a new trend
is drawn and the iterations continue as described before.

Clearly, the values for iBegin and iEnd determine the difficulty
for handling the workload. A workload that operates with low
iBegin and iEnd values exhibits only very slight changes and does
not, consequently, need a lot of dynamic adaptations. Large iEnd
values, on the contrary, need the enforcement mechanisms to
be very elastically tuned. For the evaluation and comparison of
CBR and the rule-based approach we defined a LOW_MEDIUM
workload volatility class with iEnd = 18%. For the further eval-
uation of the rule-based approach we defined and tested LOW,
MEDIUM, MEDIUM_HIGH and HIGH workload volatility classes
(not shown here) with iEnd = 10%, 50%, 75%, and 100%, re-
spectively. As a minimum change we set iBegin = 2% for all
classes.

As the crucial parameters for CBR and the rule-based approach
differ, we define scenarios for both approaches separately, but still
compare them to the aforementioned six performance indicators.

As resources for IaaS one can use all parameters that can be
adapted on a VM. For the evaluation we chose to take the follo-
wing parameters and SLOs for CBR: storage ≥ 1000 GB, incoming
bandwidth ≥ 20 Mbit/s, and the following parameters and
SLOs for the rule-based approach: storage ≥ 1000 GB, incoming
bandwidth ≥ 20 Mbit/s, outgoing bandwidth ≥ 50 Mbit/s,
memory ≥ 512 MB, and CPU power ≥ 100 MIPS (Million Instruc-
tions Per Second).

As far as CBR is concerned, its behavior differs by the α value
in Eq. (4) (setting importance to avoiding violations or achieving
high utilization), by the number of executed iterations, because
of its inherent learning feature, and the initial cases. At the
beginning, we configure all 50 VMs exactly equally with 80%
of the storage SLO value and two-thirds of the bandwidth SLO
value provided. Then, we execute 2, 5, 10 and 20 iterations with
values for α being 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8. We omit
values 0.2 and 0.4 in the evaluation because their outcomes do
not differ enough from the values shown, and all values > 0.5,
because they reveal unacceptable high SLA violation rates. Setting
up the initial cases was done by choosing one representative
case for each action that could be triggered. For our evaluation
the SLA parameters bandwidth and storage (even though not
Fig. 7. Choosing initial cases for CBR using the example of storage.

Table 4
Eight simulation scenarios for TTlow and TThigh .

Scenarios
1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)

TTlow 30 30 30 50 50 50 70 70
TThigh 60 75 90 60 75 90 75 90

being tied to them in any way—we could have also named
them, e.g., memory and CPU time) were taken into consideration
resulting in nine possible actions ‘‘Increase/Decrease bandwidth
by 10%/20%’’, ‘‘Increase/Decrease storage by 10%/20%’’, and ‘‘Do
nothing’’. Taking storage for example, we divide the range of
distances for storage St betweenmeasured and provided resources
into five parts as depicted in Fig. 7. We choose some reasonable
threshold for every action as follows: If pSt − mSt = −10 then
action ‘‘Increase Storage by 20%’’ as this already is a violation; if
p−

St−mSt = +50 then action ‘‘Increase Storage by 10%’’ as resources
are already scarce but not so problematic as in the previous case;
if pSt − mSt = +100 then action ‘‘Do nothing’’ as resources are
neither very over- nor under-provisioned; if pSt − mSt = +200
then action ‘‘Decrease Storage by 10%’’ as now resources are over-
provisioned; and we set action ‘‘Decrease Storage by 20%’’ when
we are over the latest threshold as then resources are extremely
over-provisioned. We choose the values for our initial cases from
the center of the respective intervals. Ultimately, for the initial
case for the action, e.g., ‘‘Increase Storage by 20%’’ we take the
just mentioned value for storage and the ‘‘Do nothing’’ value for
bandwidth. This leads to c = (id, 0, −10, 0, 7.5), and because
only the differences between the values matter, it is equivalent to,
e.g., c = (id, 200, 190, 7.5, 15.0).

As far as the rule-based approach is concerned, its behavior dif-
fers by the set threat thresholds. Thus, we investigate low, mid-
dle and high values for TT r

low and TT r
high (as defined in Section 5.3),

where TT r
low ∈ {30%, 50%, 70%} and TT r

high ∈ {60%, 75%, 90%} for
all resources stated above.We combine the TTs to formeight differ-
ent scenarios as depicted in Table 4.Weexecute 100 iterationswith
500 applications, and set the ‘‘safety slack’’ ϵ = 5% (cf. Listing 1).

Fig. 8 presents the aforementioned performance indicators
of CBR. The ‘‘No CBR’’ line means that the autonomic manager
is turned off, which implies that the configuration of the VMs
is left as set at the beginning, i.e., no adaptation actions due
to changing demands are executed. In Fig. 8(a) we see that
up to more than half of the violations can be avoided when
using α ∈ {0.1, 0.3} instead of no autonomic management.
However, fewer SLA violations result in lower resource utilization
(cf. Fig. 8(b)), as more resources have to be provided than can
actually be utilized. Reconfiguration actions as depicted in Fig. 8(c)
lie slightly below or at 50%, except for ‘‘No CBR’’, of course.
Another point that can be observed is that after a certain amount
of iterations the quality of the recommended actions decreases.
This is probably due to the fact that the initial cases get more
and more blurred when more cases are stored into CBR, as all
new cases are being learned and there is no distinction made
between ‘‘interesting’’ and ‘‘uninteresting’’ cases. Nevertheless,
when we relate SLA violations and resource utilization in terms
of RAE, all CBR methods are generally better than the default
method, especially for α ∈ {0.3, 0.5} after five iterations. Yet,
RAE decreases strictly monotonically for all α. Furthermore, costs
– relating violations, utilization and reconfiguration actions – can
also be reduced to half for α ∈ {0.1, 0.3}. However, there is a

482 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
35%

25%

15%

30%

20%

10%

20

5%
0%

2 5
#Iterations

"Alpha=0.1" "Alpha=0.3"

"Alpha=0.5" "No CBR"

V
io

la
tio

ns
 [%

]

10

85%

80%

75%

70%

65%

55%

50%

45%

60%

202 5

#Iterations

10

U
til

iz
at

io
n

[%
]

202 5

#Iterations

10

52%

50%

48%

46%

42%

40%

44%A
ct

io
ns

 [%
]

(a) Violations. (b) Utilization. (c) Actions.

202 5

#Iterations

10

75

70

65

60

55

50

45

40

R
A

E

202 5 10

C
os

t [
C

lo
ud

 €
]

3500

3000

2500

2000

1500

1000

500
#Iterations

250

200

150

100

50

0

300

0 5 10 15 20

T
im

e
[m

s]

(d) Resource allocation efficiency. (e) Cost. (f) Average execution time per VM.

Fig. 8. Evaluation of CBR with respect to SLA violations, utilization and energy efficiency.
seemingly exponential increase in the average execution time per
VM (cf. Fig. 8(f)) due to higher number of cases stored in the KB.

Summing up, the simulation shows that learning did take place
(and cost some time) and that CBR is able to recommend right
actions for many cases, i.e., to correctly handle and interpret the
measurement information that is based on a random distribution
not known to CBR.

Fig. 9 shows the same evaluation for the rule-based approach
evaluating the aforementioned eight scenarios. From Fig. 9(a) we
learn that in terms of SLA violations Scenario 1 achieves the best
result, where only 0.0908% of all possible violations occur, and
Scenario 8 yields the worst result, with a still very low violation
rate of 1.2040%. In general, the higher the values are for TThigh, the
worse is the outcome. The best result achieved with CBR was at
7.5%. Thus, the rule-based approach achieves an up to 82 times
better performance with the right TTs set, and still a six times
better performance in the worst case.

Fig. 9(b) shows resource utilization. We see that the combina-
tion of high TTlow and high TThigh (Scenario 8) gives the best uti-
lization (84.0%), whereas low values for TTlow and TThigh lead to
the worst utilization (62.0% in Scenario 1). Still, compared to CBR
which scored a maximum of 80.4% and a minimum of 51.8%, the
rule-based approach generally achieves better results.

The percentage of all executed actions as compared to all
possible actions that could have been executed is shown in Fig. 9(c).
One observes that the greater the span between TTlow and TThigh
is, the fewer actions have to be executed. Most actions (60.8%)
are executed for Scenario 7 (span of only 5% between TT values),
whereas least actions (5.5%) are executed for Scenario 3 (span of
60% between TT values). CBR almost always recommended exactly
one (out of two possible) actions and hardly ever (in about 1% of
the cases) recommended no action.

As violations are very low in general, the resource allocation
efficiency is very similar to the utilization. The best value can
be achieved with Scenario 8 (84.0%), the worst with Scenario 1
(62.0%). CBR achieves a RAE of at most 69.7% (α = 0.5 at iteration
2), and at least 45.5% (α = 0.1 at iteration 20).

Fig. 8(e) shows the costs for each scenario using Eq. (8). The
best trade-off between the three terms is achieved by Scenario
5 that has medium values for TT r

low and TT r
high. It has a very low

violation rate of 0.0916%, a quite elaborate utilization of 72.9%,
but achieves this with only 19.8% of actions. Scenario 7 achieves
a better violation and utilization rate but at the cost of an action
rate of 60.8%, and consequently has higher costs. The lowest cost
value for CBR is 923.0 Cloud EUR, the highest 2985.3 Cloud EUR.

If the utility of the decision decreases for a certain time frame
(as cost increases), the KB could determine the cost summand in
Eq. (8) that contributes most to this decrease. For any resource
r , if the term is p, then decrease TT r

high. If the term is w, then
increase TT r

low. Otherwise, if the term is c, then widen the span of
TT r

high and TT r
low, i.e., increase TT

r
high and decrease TT r

low. We plan to
investigate this in our future research.

As far as time performance and scalability are concerned,
the performance tests are very encouraging. We executed 100
iterations from 100 to 3000 VMs. We performed every test twice
and calculated the average execution time as well as the average
time it took for the simulation engine to handle one VM. As shown
in Fig. 9(f) the execution time per VM stays quite constant for up
to 1500 VMs, and thus average execution time is about linear. For
3000 VMs, it took 647 s/100 = 6.47 s for one iteration to treat all
VMs. The high time consumption per VM for 100 VMs in Fig. 9(f)
is due to the initialization of the rule knowledge base which takes
over-proportionally long for just a small number of VMs and does
not weigh so much for more VMs.

CBR took 240 s for 50 VMs and 20 iterations. Thus, CBR took
240 s/20 = 12 s for one iteration to treat all VMs, which is twice
as long as the rule-based approach takes, which even has 60 times
more VMs. However, CBR implements learning features, which the
rule-based approach currently does not, and could be sped up by
choosing only specific cases to be stored in the KB.

Summarizing, the rule-based approach highly outperforms
CBR with respect to violations (up to 82 times better results),
actions, cost, and time performance. The rule-based approach also
achieves better ‘‘best case’’ and better ‘‘worst case’’ results for
the remaining performance indicators utilization and resource
allocations efficiency. In more detail, seven out of eight scenarios
were better than the worst CBR value for utilization, whereas
only one scenario was better than the best CBR utilization value.
Again, accumulating these results into cost, all rule-based scenarios
outperform CBR by a factor of at least 4 (worst rule-based scenario
(236) compared to the best CBR result (923)), which to a large
extent is due to the huge number of violations that the rule-based

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 483
1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

0.2%

0.0%
1 2 3 4 5 6 7 8

Scenario

V
io

la
tio

ns
 [%

]

1 2 3 4 5 6 7 8
Scenario

U
til

iz
at

io
ns

 [%
]

90%

85%

80%

75%

70%

65%

60%

55%

50%
1 2 3 4 5 6 7 8

Scenario

80%

60%

40%

20%

0%

A
ct

io
ns

 [%
]

(a) Violations. (b) Utilization. (c) Actions.

1 2 3 4 5 6 7 8

Scenario

85

80

75

70

65

60

55

50

R
A

E

1 2 3 4 5 6 7 8

Scenario

240

220

200

180

160

140

120

C
os

t [
C

lo
ud

 €
]

2.5

2

1.5

1

0.5

0
0 1000 2000 3000

VMs

Ti
m

e
[m

s]

(d) Resource allocation efficiency. (e) Cost. (f) Average execution time per VM.

Fig. 9. Violations, utilization, actions and utility for Scenarios 1–8, execution time for rule-based approach.
approach is able to prevent and the high number of actions it can
save.

Consequently, we consider the rule-based approach as the bet-
ter technique to deal with VM reconfiguration in Cloud Computing
infrastructures, and we will focus the remaining part of this article
on a deeper investigation and understanding of the rule-based ap-
proach by evaluating it with real world workload. A deeper inves-
tigation of synthetic workload also suggests the self-adaptation of
the TTs from the rule-based approach. A successful self-adaptation
has been presented in [42].

6.4. Applying and evaluating a bioinformatics workflow to the rule-
based approach

As detailed in [43,44], bioinformatics workflows have gained
a great need for large-scale data analysis. Due to the fact that
these scientific workflows are very resource intensive and can
take hours if not days to complete, provisioning them in an
environment with fixed resources leads to poor performance.
On the one hand, the workflow might run out of resources and
thus may have to be restarted on a larger system. On the other
hand, too many resources might be provisioned in order not
to take risks of a premature abort, which may cause a lot of
resources to be wasted. Thus, Cloud computing infrastructures
offer a promising way to host these sorts of applications [10].
The monitoring data presented in this Section was gathered with
the help of the Cloud monitoring framework Lom2His [3]. Using
Lom2His we measured utilized resources of TopHat [45], a typical
bioinformatics workflow application analyzing RNA-Seq data [46],
for a duration of about three hours [9].

In the following we briefly describe the bioinformatics work-
flow inmore detail. We here consider Next Generation Sequencing
(NGS), a recently introduced high-throughput technology for the
identification of nucleotide molecules like RNA or DNA in biomed-
ical samples. The output of the sequencing process is a list of bil-
lions of character sequences called ‘reads’, each typically holds up
to 35–200 letters that represent the individual DNA bases deter-
mined. Lately, this technology has also been used to identify and
Fig. 10. Overview of the TopHat aligning approach.

count the abundances of RNA molecules that reflect new gene ac-
tivity. We use the approach, called RNA-Seq, as a typical example
of a scientific workflow application in the field of bioinformatics.

At first, in the analysis of RNA-Seq data, the obtained sequences
are aligned to the reference genome. The aligner presented here,
TopHat [45], consists of many sub-tasks, some of them have to be
executed sequentially, whereas others can run in parallel (Fig. 10).
These sub-tasks can have different resource-demand characteris-
tics: needing extensive computational power, demanding high I/O
access, or requiring extensive memory size.

In Fig. 10, the green boxes represent simplified sub-tasks of
the workflow application, whereas the blue boxes represent the
data transferred between the sub-tasks. The first sub-task aligns
input reads to the given genome using the Bowtie program [47].

484 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%
CPU Memory Storage Avg

Scenario 2.1 Scenario 2.2 Scenario 2.3 Scenario 2.4

Scenario 2.8Scenario 2.7Scenario 2.6Scenario 2.5

V
io

la
tio

ns
 [%

]

CPU Memory Storage Avg

Scenario 1 Scenario 2.1 Scenario 2.2 Scenario 2.3

Scenario 2.8

Scenario 2.4

Scenario 3Scenario 2.7Scenario 2.6Scenario 2.5

100%

80%

60%

40%

20%

00%

U
til

iz
at

io
n

[%
]

(a) Violations. (b) Utilization.

CPU Memory Storage Avg

Scenario 1 Scenario 2.1 Scenario 2.2 Scenario 2.3

Scenario 2.8

Scenario 2.4

Scenario 3Scenario 2.7Scenario 2.6Scenario 2.5

35%

30%

25%

20%

15%

10%

5%

0%

A
ct

io
ns

 [%
]

(c) Reconfiguration actions.

Fig. 11. Violations, utilization and reconfiguration actions for ten autonomic management scenarios using bioinformatics workflow.
Table 5
TopHat SLA.

Service Level Objective (SLO) name SLO value

CPU power ≥20000MIPS
Memory ≥8192 MB
Storage ≥19456 MB

Unaligned reads are then divided into shorter sub-sequences
which are further aligned to the reference genome in the next sub-
task. If sub-sequences coming from the same read were aligned
successfully to the genome, that may indicate that this read
was straddling a ‘gap’ in the gene, falling on a so-called splice-
junction. After verification of candidate reads falling on splice
junctions, these and the reads that were aligned in the first sub-
task are combined to create an output with a comprehensive list of
localized alignments.

We demonstrate by simulation that the rule-based approach
can guarantee the resource requirements in terms of CPU, memory
and storage for the execution of the workflow in a resource-
efficient way.

Therefore, we define the SLA shown in Table 5 for TopHat
with the maximum amount of available resources on the physical
machine on which we are executing it. The physical machine has a
Linux/Ubuntu OS with a Intel Xeon(R) 3 GHz CPU, two cores, 9 GB
of memory, and 19 GB of storage. For CPU power, we convert CPU
utilization intoMIPS based on the assumption that an Intel Xeon(R)
3 GHz processor delivers 10000MIPS for 100% resource utilization
of one core, and linearly degrades with CPU utilization.

In order to validate our approach, we make three simulation
categories,wherewe set up andmanage our VMsdifferently: In the
first category (Scenario 1) we assume a static configuration with
a fixed initial resource configuration of the VMs. Normally, when
setting up such a testbed as described in [9], an initial guess of
possible resource consumption is done based on early monitoring
data. From this data on, we assume quite generous resource limits.
The first ten measurements of CPU, memory, and storage lie in
the range of [140, 12500] MIPS, [172, 1154] MB, [15.6, 15.7] GB,
respectively. So we initially configured our VM with 15000 MIPS,
4096MB, and 17.1 GB, respectively. The second category subsumes
several scenarios, where we apply our autonomic management
approach to the initial configuration in the first category. The eight
scenarios in this category depend on the chosen TTs. According
to Table 4 we define these scenarios as Scenario 2.1, 2.2, . . . , 2.8,
respectively. As the third category (Scenario 3), we consider a best
case scenario, where we assume we have an oracle that predicts
the maximal resource consumption that we statically set our VM
configuration to. Moreover, according to the first measurements
we decide to enforce a minimum of 1 MIPS CPU, 768 MB memory,
and 1 GB storage.

As depicted in Fig. 11(a)–(c) one sees violations, utilization, as
well as the number of reconfiguration actions, respectively, for
every parameter (together with an average value) in the different
scenarios. Generally, the bars are naturally ordered beginning from
Scenario 1, over Scenarios 2.1, . . . , 2.8, ending with Scenario 3.
The number of violations in Scenario 1 reach 41.7% for CPU and
memory, and 49.4% for storage, which leads to an average of
44.3%. (For better visibility, these results have been excluded from
Fig. 11(a).) Thus, we experience violations in almost half of the
cases. This is especially crucial for parametersmemory and storage,
where program execution could fail, if it runs out of memory or
storage, whereas for a violation of the parameter CPU, we would
‘‘only’’ delay the successful termination of the workflow.

With Scenarios 2.* we can reduce the SLA violations to a
minimum. We completely avoid violations for storage in all sub-
scenarios, as well as for memory in all but one sub-scenarios.
Also CPU violations can be reduced to 0.6% for sub-scenarios

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 485
185

180

175

170

165

160

155

150

145

140

135

Sce
nario

 2.1

Sce
nario

 2.2

Sce
nario

 2.3

Sce
nario

 2.4

Sce
nario

 2.5

Sce
nario

 2.6

Sce
nario

 2.7

Sce
nario

 2.8

Sce
nario

 3

C
os

t [
C

lo
ud

 €
]

(a) Cost.

Sce
nario

 2.1

Sce
nario

 1

Sce
nario

 2.2

Sce
nario

 2.3

Sce
nario

 2.4

Sce
nario

 2.5

Sce
nario

 2.6

Sce
nario

 2.7

Sce
nario

 2.8

Sce
nario

 3

90

85

80

75

70

65

60

55

50

45

40

R
A

E

(b) Resource allocation efficiency.

Fig. 12. Resource allocation efficiency and cost for ten autonomic management scenarios using bioinformatics workflow.
2.1 and 2.4, and still achieve a maximum SLA violation rate of
2.8% with Scenario 2.8. The average SLA violation rate can be
lowered to 0.2% in the best case. Scenario 3, of course, shows no
violations. However, it is unlikely to know the maximum resource
consumption before workflow execution.

As to the utilization of the resources, it is clearly higher when
a lot of violations occur, so Scenario 1 naturally achieves high
utilization. This is the case, because when a parameter is violated,
then the resource is already fully used up, but even more of the
resource would be needed to fulfill the needs. On the opposite,
Scenario 3 naturally achieves low utilization, as a lot of resources
are over-provisioned. Scenarios 2.* achieve a good utilization
that is on average in between the two extremes and ranges
from 70.6% (Scenario 2.1) to 86.2% (Scenario 2.8). Furthermore,
we observe some exceptions to this ‘‘rule’’ when considering
individual parameters. So, e.g., formemorywe achieve a utilization
of 85.0% with Scenario 2.8 or 80.0% with Scenario 2.6, which is
higher than the utilization in Scenario 1 (77.4%). The same is true
for CPU utilization rates of 85.5% as compared to 84.3% for the
Scenario 1 and 2.8, respectively. Only for storage the utilization of
all but one of the Scenarios 2.*, which is at 85.9%, is smaller than
for Scenario 3 (90.1%).

A huge advantage of Scenarios 2.* is that they do not run into
any crucial SLA violation (except for Scenario 2.3), but achieve a
higher utilization as compared to Scenario 3. As to the reallocation
actions, of course, Scenario 1 and 3 do not execute any, but also
for the autonomic management in Scenarios 2.*, the amount of
executed reallocation actions for most scenarios stays below 10%.
Only Scenario 2.7 executes actions in 19.8% of the cases on average
of the time. Five out of eight scenarios stay below 5% on average.

When it comes to the overall costs of the scenarios (cf.
Fig. 12(a)), all 2.* scenarios approach the result achieved by the
best case scenario 3. Scenario 1 sums up costs of 4493.6, and
has therefore been omitted in the figure. Furthermore, the lowest
cost is achieved using Scenario 2.6, which is even lower than the
cost for Scenario 3. This is possible, because Scenario 2.6 achieves
a very good utilization and SLA violation rate with a very low
number of reallocation actions. Also resource allocation efficiency
for Scenarios 2.* as shown in Fig. 12(b) achieves unambiguously
better results than for Scenario 1 (RAE of 48.2%). Furthermore, all
scenarios of the second category achieve a better RAE than the RAE
of Scenario 3 (69.3%).

Thus, we conclude that by using the suggested autonomic
management technique, we can avoid most costly SLA violations,
and thus ensure workflow execution, together with a focus on
resource-efficient usage. All this can be achieved by a very low
number of time- and energy-consuming VM reallocation actions
for many of the autonomic management scenarios.

7. Conclusion

The goal of this research field is to enact SLAs in a resource-
efficient way with little human-based interaction in order to
guarantee the scalability and strengthen the dynamic behavior
and adaptation of the system. Autonomically governing Cloud
Computing infrastructures is the investigated method leading to
this goal.

In this paper we have hierarchically structured all possible
reallocation actions, and designed, implemented, and evaluated
two knowledge management techniques, Case Based Reasoning
and a rule-based approach to achieve the aforementioned goal for
one reallocation level, i.e., VM reconfiguration. After a comparison,
we determined the rule-based approach to outperform CBR with

486 M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487
respect to violations and utilization, but also to time performance.
Furthermore, we applied the rule-based approach to a real-
world use case evaluating a scientific workflow from the area
of bioinformatics. We showed by simulation that the rule-based
approach can effectively guarantee the execution of a workload
with unpredictably large resource consumptions.

The next step will be to move from simulation to a real Cloud
testbed. Furthermore, the presented methods still involve some
user-interaction for parameter tuning. Thus, it will be of great in-
terest to autonomically determine crucial parameters of the pre-
sented methods and to adapt them based on current performance.

Another related field is the autonomic generation of IaaS SLA
out of SaaS or PaaS SLAs. Theoretically, SaaS or PaaS applications
can be perfectly set up on top of IaaS platforms. The crucial point is
to extract an SLA for the IaaS parameters like bandwidth, storage,
CPU power and memory that fit to SaaS/PaaS parameters like
response time. It is obvious that response time directly relates to
the mentioned IaaS parameters and user interaction. It is not that
obvious, however, how this translation should take place. E.g., does
the SLO ‘‘response time < 2 s’’ translate into ‘‘memory > 512MB’’
and ‘‘CPU power > 8000 MIPS’’ or rather ‘‘memory > 4096 MB’’
and ‘‘CPU power > 1000 MIPS’’? Once the autonomic governance
of IaaS infrastructures is up and running, the autonomic translation
of these SLAs will probably leverage the usage and usability of IaaS
even more.

Acknowledgments

The work described in this paper is supported by the Vienna
Science and Technology Fund (WWTF) under grant agreement
ICT08-018 Foundations of Self-Governing ICT Infrastructures
(FoSII) and by COST-Action IC0804 on Energy Efficiency in
Large Scale Distributed Systems. We also want to thank PawełP.
Łabaj and David P. Kreil (Boku University Vienna) for providing
us with the bioinformatics workflow application and Vincent
C. Emeakaroha (TU Vienna) for providing monitoring data on it.

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging it platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599–616.
http://dx.doi.org/10.1016/j.future.2008.12.001.

[2] (FOSII)—Foundations of self-governing ICT infrastructures, March, 2012.
http://www.infosys.tuwien.ac.at/linksites/FOSII.

[3] V.C. Emeakaroha, I. Brandic, M. Maurer, S. Dustdar, Low level metrics to high
level SLAs-LoM2HiS framework: bridging the gap betweenmonitoredmetrics
and SLA parameters in cloud environments, in: The 2010 High Performance
Computing and Simulation Conference in Conjunction with IWCMC 2010,
Caen, France, 2010.

[4] I. Brandic, Towards self-manageable cloud services, in: S.I. Ahamed, et al.
(Eds.), COMPSAC (2), IEEE Computer Society, 2009, pp. 128–133.

[5] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F. Yassin, A Practical Guide to the IBM
Autonomic Computing Toolkit, IBM Redbooks, 2004.

[6] M.C. Huebscher, J.A. McCann, A survey of autonomic computing—degrees,
models, and applications, ACM Computing Surveys 40 (3) (2008) 1–28.
http://doi.acm.org/10.1145/1380584.1380585.

[7] M. Maurer, I. Brandic, R. Sakellariou, Simulating autonomic SLA enactment
in clouds using case based reasoning, in: ServiceWave 2010, Ghent, Belgium,
2010.

[8] M. Maurer, I. Brandic, R. Sakellariou, Enacting SLAs in clouds using rules, in:
Euro-Par 2011, Bordeaux, France, 2011.

[9] V.C. Emeakaroha, P. Labaj, M. Maurer, I. Brandic, D.P. Kreil, Optimizing bioin-
formaticsworkflows for data analysis using cloudmanagement techniques, in:
The 6thWorkshop onWorkflows in Support of Large-Scale Science,WORKS11,
2011.

[10] N. Merchant, J. Hartman, S. Lowry, A. Lenards, D. Lowenthal, E. Skidmore,
Leveraging cloud infrastructure for life science research laboratories: a
generalized view, in: International Workshop on Cloud Computing at
OOPSLA09, Orlando, USA, 2009.

[11] B. Khargharia, S. Hariri, M.S. Yousif, Autonomic power and performance
management for computing systems, Cluster Computing 11 (2) (2008)
167–181.
[12] V. Petrucci, O. Loques, D. Mossé, A dynamic optimization model for power
and performance management of virtualized clusters, e-Energy’10, ACM,
New York, NY, USA, 2010, pp. 225–233. http://doi.acm.org/10.1145/1791314.
1791350.

[13] M. Bichler, T. Setzer, B. Speitkamp, Capacity planning for virtualized servers,
Presented at Workshop on Information Technologies and Systems, WITS,
Milwaukee, Wisconsin, USA, 2006.

[14] G. Khanna, K. Beaty, G. Kar, A. Kochut, Application performance management
in virtualized server environments, in: Network Operations and Management
Symposium, 2006. NOMS 2006, 10th IEEE/IFIP, pp. 373–381, 2006. http://dx.
doi.org/10.1109/NOMS.2006.1687567.

[15] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Sandpiper: black-box and
gray-box resource management for virtual machines, Computer Networks 53
(17) (2009) 2923–2938. http://dx.doi.org/10.1016/j.comnet.2009.04.014.

[16] J. Rao, X. Bu, C.-Z. Xu, L.Wang, G. Yin, Vconf: a reinforcement learning approach
to virtual machines auto-configuration, ICAC’09, ACM, New York, NY, USA,
2009, pp. 137–146. URL: http://doi.acm.org/10.1145/1555228.1555263.

[17] Y. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti, Y.
Coady, Dynamic resource allocation in computing clouds using distributed
multiple criteria decision analysis, in: Cloud Computing, CLOUD, 2010 IEEE
3rd International Conference on, pp. 91–98, 2010. http://dx.doi.org/10.1109/
CLOUD.2010.66.

[18] X.Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, D. Pendarakis, Efficient resource
provisioning in compute clouds via VMmultiplexing, in: Proceeding of the 7th
International Conference on Autonomic Computing, ICAC’10, ACM, New York,
NY, USA, 2010, pp. 11–20. URL: http://doi.acm.org/10.1145/1809049.1809052.

[19] M. Mazzucco, D. Dyachuk, R. Deters, Maximizing cloud providers revenues
via energy aware allocation policies, in: CLOUD 2010, pp. 131–138, 2010.
http://dx.doi.org/10.1109/CLOUD.2010.68.

[20] M. Hoyer, K. Schröder, W. Nebel, Statistical static capacity management
in virtualized data centers supporting fine grained QoS specification,
in: Proceedings of the 1st International Conference on Energy-Efficient
Computing and Networking, e-Energy’10, ACM, New York, NY, USA, 2010,
pp. 51–60. URL: http://doi.acm.org/10.1145/1791314.1791322.

[21] D. Borgetto, H. Casanova, G.D. Costa, J.-M. Pierson, Energy-aware service
allocation, Future Generation Computer Systems 28 (5) (2012) 769–779. http:
//dx.doi.org/10.1016/j.future.2011.04.018. URL: http://www.sciencedirect.
com/science/article/pii/S0167739X11000690.

[22] M. Stillwell, D. Schanzenbach, F. Vivien, H. Casanova, Resource allocation
algorithms for virtualized service hosting platforms, Journal of Parallel and
Distributed Computing 70 (9) (2010) 962–974. http://dx.doi.org/10.1016/
j.jpdc.2010.05.006. URL: http://www.sciencedirect.com/science/article/pii/
S0743731510000997.

[23] A. Nathani, S. Chaudhary, G. Somani, Policy based resource allocation in IaaS
cloud, Future Generation Computer Systems 28 (1) (2012) 94–103. http://dx.
doi.org/10.1016/j.future.2011.05.016. URL: http://www.sciencedirect.com/
science/article/pii/S0167739X11000987.

[24] S. Islam, J. Keung, K. Lee, A. Liu, Empirical prediction models for adaptive
resource provisioning in the cloud, Future Generation Computer Systems
28 (1) (2012) 155–162. http://dx.doi.org/10.1016/j.future.2011.05.027. URL:
http://www.sciencedirect.com/science/article/pii/S0167739X11001129.

[25] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, Z. Neméth, An approach for virtual
appliance distribution for service deployment, Future Generation Computer
Systems 27 (2011) 280–289. http://dx.doi.org/10.1016/j.future.2010.09.009.

[26] A. Paschke, M. Bichler, Knowledge representation concepts for automated SLA
management, Decision Support Systems 46 (1) (2008) 187–205.

[27] G. Koumoutsos, S. Denazis, K. Thramboulidis, SLA e-negotiations, enforcement
and management in an autonomic environment, in: Modelling Autonomic
Communications Environments, 2008, pp. 120–125.

[28] R.M. Bahati, M.A. Bauer, Adapting to run-time changes in policies driving
autonomic management, in: ICAS’08: Proceedings of the 4th Int. Conf. on
Autonomic and Autonomous Systems, IEEE Computer Society, Washington,
DC, USA, 2008, http://dx.doi.org/10.1109/ICAS.2008.47.

[29] Amazon elastic compute cloud (Amazon EC2), 2010. http://aws.amazon.com/
ec2/.

[30] Rackspace cloud, March, 2012. http://www.rackspace.com/cloud/.
[31] Rightscale, 2012. http://www.rightscale.com/.
[32] SLA@SOI, March, 2012. http://sla-at-soi.eu/.
[33] M. Maurer, V.C. Emeakaroha, I. Brandic, J. Altmann, Cost-benefit analysis of

an SLA mapping approach for defining standardized cloud computing goods,
Future Generation Computer Systems 28 (1) (2012) 39–47. http://dx.doi.org/
10.1016/j.future.2011.05.023. URL: http://www.sciencedirect.com/science/
article/pii/S0167739X11001051.

[34] I. Breskovic, M. Maurer, V.C. Emeakaroha, I. Brandic, S. Dustdar, Cost-efficient
utilization of public sla templates in autonomic cloud markets, in: 4th
IEEE International Conference on Utility and Cloud Computing, UCC 2011,
Melbourne, Australia, 2011.

[35] M.L. Massie, B.N. Chun, D.E. Culler, The ganglia distributedmonitoring system:
design, implementation and experience, Parallel Computing 30 (7) (2004)
817–840.

[36] L. Massoulie, J. Roberts, Bandwidth sharing: objectives and algorithms,
in: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings, vol. 3, IEEE, 1999, pp. 1395–1403.
http://dx.doi.org/10.1109/INFCOM.1999.752159.

http://dx.doi.org/doi:10.1016/j.future.2008.12.001
http://www.infosys.tuwien.ac.at/linksites/FOSII
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://doi.acm.org/10.1145/1791314.1791350
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/10.1109/NOMS.2006.1687567
http://dx.doi.org/doi:10.1016/j.comnet.2009.04.014
http://doi.acm.org/10.1145/1555228.1555263
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://dx.doi.org/10.1109/CLOUD.2010.66
http://doi.acm.org/10.1145/1809049.1809052
http://dx.doi.org/10.1109/CLOUD.2010.68
http://doi.acm.org/10.1145/1791314.1791322
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://dx.doi.org/10.1016/j.future.2011.04.018
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://www.sciencedirect.com/science/article/pii/S0167739X11000690
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://dx.doi.org/10.1016/j.jpdc.2010.05.006
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://www.sciencedirect.com/science/article/pii/S0743731510000997
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://www.sciencedirect.com/science/article/pii/S0167739X11000987
http://dx.doi.org/doi:10.1016/j.future.2011.05.027
http://www.sciencedirect.com/science/article/pii/S0167739X11001129
http://dx.doi.org/doi:10.1016/j.future.2010.09.009
http://dx.doi.org/doi:10.1109/ICAS.2008.47
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/
http://www.rightscale.com/
http://sla-at-soi.eu/
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://dx.doi.org/10.1016/j.future.2011.05.023
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://www.sciencedirect.com/science/article/pii/S0167739X11001051
http://dx.doi.org/doi:10.1109/INFCOM.1999.752159

M. Maurer et al. / Future Generation Computer Systems 29 (2013) 472–487 487
[37] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller,
J.W. Thatcher (Eds.), Complexity of Computer Computations: Proc. of a
Symp. on the Complexity of Computer Computations, Plenum Press, 1972,
pp. 85–103.

[38] B. Rochwerger, et al. The Reservoir model and architecture for open federated
cloud computing, IBM Journal of Research and Development, 53 (4) (2009).
URL: http://www.research.ibm.com/journal/rd/534/rochwerger.pdf.

[39] A. Aamodt, E. Plaza, Case-based reasoning: foundational issues, methodologi-
cal variations, and system approaches, AI Communications 7 (1994) 39–59.

[40] M. Hefke, A framework for the successful introduction of KM using CBR and
semantic web technologies, Journal of Universal Computer Science 10 (6)
(2004).

[41] Drools, 2012. http://www.drools.org.
[42] M. Maurer, I. Brandic, R. Sakellariou, Self-adaptive and resource-efficient

SLA enactment for cloud computing infrastructures, in: 5th International
Conference on Cloud Computing, IEEE Cloud 2012, Honolulu, HI, USA, 2012.

[43] P. Romano, Automation of in-silico data analysis processes through workflow
management systems, Briefings in Bioinformatics 9 (1) (2007) 57–68.

[44] D. Smedley,M.A. Swertz, K.Wolstencroft, G. Proctor,M. Zouberakis, J. Bard, J.M.
Hancock, P. Schofield, Solutions for data integration in functional genomics:
a critical assessment and case study, Briefings in Bioinformatics 9 (6) (2008)
532–544.

[45] C. Trapnell, L. Pachter, S.L. Salzberg, Tophat: discovering splice junctions with
RNA-Seq, Bioinformatics 25 (9) (2009) 1105–1111. http://dx.doi.org/10.1093/
bioinformatics/btp120.

[46] P.P. Łabaj, G.G. Leparc, B.E. Linggi, L.M. Markillie, H.S. Wiley, D.P. Kreil,
Characterization and improvement of RNA-Seq precision in quantitative
transcript expression profiling, Bioinformatics 27 (13) (2011) i383–i391.
http://dx.doi.org/10.1093/bioinformatics/btr247.

[47] B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome, Genome Biology 10
(3) (2009) R25.

MichaelMaurer is currentlyworking as a project assistant
at the Distributed System Group, Information Systems
Institute, Vienna University of Technology (TU Wien). He
studied the diploma program Applied Mathematics with
a focus on Computer Science (first M.Sc.) and the master’s
programComputational Intelligence (secondM.Sc.),which
he finished both with distinction in November 2007 and
April 2009 respectively. Furthermore, he studied at the
City College of New York in New York USA during the
winter term 2008. He has been working on the FoSII
(Foundations of Self-governing ICT Infrastructures) project
funded by the Vienna Science and Technology Fund (WWTF) since 2009. His
research areas of interest include Cloud Computing, Autonomic Computing, Service
Level Agreements, and Knowledge Databases. He is especially interested in the
autonomic governing of Cloud Computing infrastructures.

Ivona Brandic is Assistant Professor at the Distributed
Systems Group, Information Systems Institute, Vienna
University of Technology (TU Wien). Prior to that, she
was Assistant Professor at the Department of Scientific
Computing, Vienna University. She received her Ph.D.
degree from Vienna University of Technology in 2007.
From 2003 to 2007 she participated in the special
research project AURORA (AdvancedModels, Applications
and Software Systems for High Performance Computing)
and the European Union’s GEMSS (Grid-Enabled Medical
Simulation Services) project. She is involved in the

European Union’s SCube project and she is leading the Austrian national FoSII
(Foundations of Self-governing ICT Infrastructures) project funded by the Vienna
Science and Technology Fund (WWTF). She is aManagement Committeemember of
the European Commission’s COST Action on Energy Efficient Large Scale Distributed
Systems. From June to August 2008 she was visiting researcher at the University
of Melbourne. Her interests comprise SLA and QoS management, service-oriented
architectures, autonomic computing, workflow management, and large scale
distributed systems (Cloud, Grid, Cluster, etc.).

Rizos Sakellariou is a Senior Lecturer in the School
of Computer Science of the University of Manchester,
where he teaches and leads a Research Laboratory with
research interests in the wide area of High-Performance,
Parallel and Distributed Computing. He has carried
out research focusing primarily on issues related to
parallelism and resource sharing, on a wide variety of
topics (e.g., parallelizing compilers, performancemodeling
and prediction, multithreading, load balancing, workload
and task scheduling, distributed query processing, grid
information systems, service level agreements, adaptive

and autonomic computing) and with a large number of collaborators. Currently,
he is particularly interested in problems related to resource management and
scheduling on any High-Performance and/or Parallel Computing environment
(from multi-/many-core to grids and clouds), adaptive and autonomic computing,
SLA-based and cloud computing.

http://www.research.ibm.com/journal/rd/534/rochwerger.pdf
http://www.drools.org
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/doi:10.1093/bioinformatics/btr247

	Adaptive resource configuration for Cloud infrastructure management
	Introduction
	Related work
	Background
	Structuring the problem: escalation levels
	Implementing the knowledge management phase
	Prerequisites
	Case Based Reasoning
	Rule-based approach

	Evaluation and comparison
	Simulation engine implementing the MAPE-K loop
	Performance indicators
	Evaluation and comparison of CBR and rules using synthetic data
	Applying and evaluating a bioinformatics workflow to the rule-based approach

	Conclusion
	Acknowledgments
	References

