
Compliant Cloud Computing (C3): Architecture and Language Support
for User-driven Compliance Management in Clouds

Ivona Brandic, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Vienna, Austria

{ivona,dustdar}@infosys.tuwien.ac.at

Tobias Anstett, David Schumm, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

{anstett,schumm,leymann}@iaas.uni-stuttgart.de

Ralf Konrad
T-Systems International GmbH

Frankfurt, Germany
Ralf.Konrad@t-systems.com

Abstract—Cloud computing represents a promising
computing paradigm, where computational power is
provided similar to utilities like water, electricity or gas.
While most of the Cloud providers can guarantee some
measurable non-functional performance metrics e.g.,
service availability or throughput, there is lack of adequate
mechanisms for guaranteeing certifiable and auditable
security, trust, and privacy of the applications and the data
they process. This lack represents an obstacle for moving
most business relevant applications into the Cloud. In this
paper we devise a novel approach for compliance
management in Clouds, which we termed Compliant
Cloud Computing (C3). On one hand, we propose novel
languages for specifying compliance requirements
concerning security, privacy, and trust by leveraging
domain specific languages and compliance level
agreements. On the other hand, we propose the C3
middleware responsible for the deployment of certifiable
and auditable applications, for provider selection in
compliance with the user requirements, and for enactment
and enforcement of compliance level agreements. We
underpin our approach with a use case discussing various
techniques necessary for achieving security, privacy, and
trust in Clouds as for example data fragmentation among
different protection domains or among different
geographical regions.

Keywords-Compliance managmenet; SLAs; DSLs;

I. INTRODUCTION
Cloud Computing represents a promising approach for

implementing highly scalable software systems for
individual-, community-, and business-use [6] [11] [19]
[23][22]. In order to achieve that, computing resources have
to be allocated to software that has to be executed. The
resources are selected based on functional requirements on
one hand, and on non-functional requirements on the other,
termed Service Level Agreements (SLAs) [13][9][20][5].

The benefits of moving data and applications to the Clouds
are manifold. For instance, Cloud computing allows
companies to decrease expensive in-house computer
systems configured to cope with peak performance by
migrating to custom-tailored pay-per-use solutions for
computing cycles requested on-demand.

However, Cloud users, e.g., application providers,
especially those dealing with sensitive data like customer or
patient data, are concerned about a vast number of issues
regarding their data being stored and processed in the Cloud
[17]. Most of the well-known Cloud products like
Amazon’s EC2 [1] or Google App Engine [12] provide
some basic security, privacy, and trust mechanism, which
however often cannot be customized. Requirements like
limiting the usage of the submitted data only to those
intended by the submitting user or storage of data in certain
geographical regions cannot be guaranteed at all.
Considerable body of work has been done for the
development of user-driven compliance management
frameworks considering various aspects as for example
compliance to requirements coming from laws, regulations,
and internal policies [2][8][21]. However, there is lack of
appropriate mechanisms for the compliance management in
Clouds. This gives cause for serious concerns related to
security, privacy, and trust, which prevents various potential
users to move their data and applications into Clouds.

In this paper we propose a novel approach which we
term Compliant Cloud Computing (C3). We envision that
Cloud providers are selected ensuring customizable
compliance with the user requirements, such as, security
restrictions. To achieve compliance in Clouds we propose
the C3 infrastructure consisting of two major parts: (i)
language concepts to express user requirements and
Compliance Level Agreements (CLAs) and (ii) a
middleware for the deployment of C3-aware applications,
for the management of CLAs, and discovery and brokerage
of the appropriate Cloud providers. Once the CLAs are
agreed between a Cloud provider and a consumer, the C3

middleware manages the enactment of CLAs considering
available monitoring information and complying with
predefined security, privacy, and trust issues. This includes
for example information flow restriction considering
geographic and infrastructure affinity or automatic data
fragmentation and aggregation among different Cloud
providers. Data fragmentation considers dispersal and
isolation of data in order to protect sensitive data. An
example for data fragmentation would be distribution of
personal and medical data of a patient among two different
protection domains. Thus, while dispersed personal and
medical data has medium security/protection demand,
aggregated (i.e., recombined) patient data is highly
sensitive.

The major contributions of the paper are (i) presentation
and the discussion of a use case and derivation of according
requirements for the compliance management in Clouds; (ii)
a conceptual design of the languages for the compliance
specification and management including Domain Specific
Languages (DSLs) and Compliance Level Agreements
(CLAs) and (iii) design of the architecture for the automatic
discovery of appropriate Cloud providers and compliance
management and enforcement.

This paper is structured as follows. In Section 2 we
present a motivating use case for our approach and derive
requirements for the C3 architecture and languages. Based
on the requirements in Section 3 we present the C3’s
application deployment scenario and role models, followed
by the scenario for the sample application execution.
Section 4 presents the language design issues considering
DSLs and CLAs. In Section 5 we elaborate the
implementation issues for the C3 middleware. In Section 6
we discuss related work. Finally, in Section 7 we conclude
the paper and point to future work.

II. MOTIVATING USE CASE
In this section, we present the motivating example for the

development of the C3 infrastructure. T-Systems Deutsche
Telekom 1 operates information and communication
technology systems for multinational corporations and
public sector institutions delivering various solutions based
on global infrastructure of data centers and networks.

A typical example for the T-Systems ICT solutions is the
Process Service Platform (PSP) depicted in Figure 1, which
is offered as a Software as a Service (SaaS) platform. The
PSP enables provision of individual services to consumers,
facilitates look up mechanisms for common services,
classification of services, and orchestration of services to
business processes. The PSP is built as a layered
architecture including hardware infrastructure, infrastructure
services, as for example billing and contracting services,
and enterprise service bus containing various business logic
services and supporting services. Finally, the service
repository and service portal are located on top of the

1 http://www.t-systems.de

infrastructure. These are customized for the end user to
model (process modeling), deploy, and search custom
services. In order to efficiently operate global infrastructures
and networks and for optimal use of the available resources
novel technologies like Cloud computing are gaining more
and more on importance. As indicated in Figure 1, PSP
infrastructure could be outsourced at different layers e.g.,
using IaaS approach for the hardware infrastructure or using
PaaS for the infrastructure services.

Process
Modeling

Search

Portal

Service
Repository

Enterprise
Service Bus

• Business Services
• Supporting Services

Infrastructure
Services

• Billing
• Contracting

• Monitoring
• Portal / Search

InfrastructureHost
Outsource
as IaaS

Outsource
as PaaS

Offer
T‐Systems‘
SaaS Services

Software
Vendors

Customers

Figure 1: T-Systems‘ Process Service Platform (PSP)

KiGa Use Case: One of the custom applications offered
within the PSP portal is the Kindergarten Portal (KiGa)
supporting business processes necessary for the
management and customer support of the German
Kindergarten Association [14]. The business processes
include services for the enrolment of children to a particular
kindergarten, absence recording of children, and
monitoring/controlling of kindergartens. The main objective
of the KiGa Portal is to support three stakeholders: parents,
kindergartens, and communes. Hosting such a portal results
in conflicting priorities of efficiently storing data in Clouds
and protecting sensitive children’s data. There is demand for
flexible and trustworthy management of sensitive data in
compliance with privacy and security requirements. In this
paper we address in particular the following compliance
management scenarios: (1) flexible compliance management
of sensitive children’s data like information about special
diseases (e.g., diabetes or food allergies), which is necessary
for the assignment of trained kindergarten teachers; (2)
guarantees that data is only stored in certain geographical
regions e.g., European Union due to various legal
guidelines, that data is managed properly to ensure its safety
and compliance with local laws.

Thus, C3 should facilitate the following compliance
management issues:
(1) Dispersal of data among different protection domains as

for example business and application data, which are
dispersed among different Cloud providers.

(2) Storage of data only in certain geographic areas, and
guarantees about its adequate retention policies,
privacy, integrity, and safety.

In the following sections we discuss architectural and
language design decisions based on the two major
compliance management issues.

III. C3 ARCHITECTURE
To address the problems described above, we present an

architecture respectively a framework enabling security,
privacy, and trust based compliance management in Clouds.
The abstract architecture is divided into Figure 2, Figure 3,
and Figure 4. In each figure we highlight and elaborate a
particular aspect of the architecture.

A. Application Deployment

C3 infrastructure supports semi-automatic deployment of
applications to a C3-aware Cloud provider. A C3-aware
Cloud provider can execute deployed applications in
compliance with predefined security, privacy, and trust
requirements as defined by the C3 certification process.
Definition of the C3 certification process is part of our
ongoing work. Figure 2 depicts the C3’s deployment
process.

C3 API

using

Application

C3 API

C3 Middleware

C3 G
U
I

Application

deployed to cloud

Figure 2: C3’s application deployment

C3’s API facilitates utilization of the applications for the
deployment in the C3 Cloud, e.g. to assign which
applications’ data can be fragmented. C3’s GUI is used for
the configuration of the deployed application, as for
example to tailor the DSL (see Section 4.2) for the particular
user group. Once the application is deployed, C3
Middleware manages application execution and is
responsible for the establishment and generation of CLAs
between Cloud providers and consumer. C3 middleware
also manages the CLA enactment process. For example, in
case of failures C3 middleware can start a renegotiation
process in order to select new Cloud providers, which can
complete the execution of the particular tasks in compliance
with predefined restrictions.

B. Roles

Each C3 role is exemplified using the KiGa use case.
Before an application can be deployed to a Cloud provider,
it has to be created (i.e. programmed) by an application
developer. Referring to the roles illustrated in Figure 3, an
application developer is similar to a (Cloud) adopter or
(software/service) vendor, who basically enhances own
services and capabilities by exploiting the provided Cloud
platform. In case of KiGa use case the application
administrator would be T-Systems as well. In general,
Cloud providers offer PaaS to the application developers
and SaaS to the application consumers. In the C3 approach
they also act as (Cloud) resellers or aggregators by

aggregating Cloud platforms, while maintaining compliance
to the specified requirements. That means a C3 Cloud
provider has not necessarily to offer resources in terms of
typical SaaS, PaaS or IaaS services. A C3 provider could
offer supporting services for the compliance management
necessary to select an appropriate Cloud provider, who can
grant certain security level. Furthermore, we envision a
dynamic binding of services, if a provider cannot fulfill the
requirements on his own.

Application
Developer

creates

C3 API

deploysApplication

C3 API

C3 Middleware

C3 G
U
I

(T‐Systems)

Application
Administrator
(T‐Systems /
Kindergarten)

Application
Consumer
(Parents)

configures
Application

uses

using

Designtime Roles Runtime Roles

uses

uses
DSL

CLA template
/ capabilities

Data Analyst
(T‐Systems)

annotates
data

Figure 3: C3’s role models

After the application developer has deployed the
application to a C3 Cloud provider, an application
administrator is responsible for configuring the required
(compliance-specific) quality of service by using the
predefined DSLs. DSLs are small languages that can be
tailored to a specific problem domain [16]. As indicated
implicitly the configuration can be done using either a
graphical user interface or a policy-based approach using
domain specific languages (DSLs). In case of KiGa portal, a
systems administrator tailors the DLS for the specification
of data fragmentation among different Cloud providers.
Please note that the role of the application administrator has
not necessarily to be implemented by the same company,
which developed the Cloud application and could also allow
manual or policy-based configuration by multiple tenants.
Application consumers use the provided service directly
(e.g., via a Web client) or integrate it in their tools. In some
cases a Data Analyst annotates data e.g., which data has to
be fragmented. Thus, the parents enrolling their children to
the German Kindergarten Association use the KiGa
application and enter the children’s data, which are
automatically fragmented among different Cloud providers
as specified with the DSL. Cloud providers are selected on
demand for data storage or application processing in
compliance with predefined requirements configured by an
application administrator. The details of the provider
selection process and the necessary CLA-CLA matching are
explained in Section 5. In case of KiGa portal one of the
Cloud providers could for example be Amazon’s EC2 used
for the processing of medical data. Another provider could
be responsible for storing or processing personal data.

C. Application Execution in C3

In this section we analyze the execution of the deployed
application by a C3-aware Cloud provider.

C3 API

C3 Middleware

C3 G
U
I

Application

CLA template
/ capabilities

SaaS

SaaS

SaaS

CLA

CLA

SLA

CLA template
/ capabilities

[C3‐aware SaaS Cloud provider]

[regular SLA‐based
Cloud provider]

[C3‐aware PaaS Cloud provider]

[C3‐aware PaaS Cloud provider]
Figure 4: C3’s application execution

As shown in Figure 3 we distinguish between three
binding scenarios for the Cloud application execution:
(1) Regular SLA-based Cloud provider: represents a regular
Cloud provider using SLAs for granting contracts. This type
of Cloud provider can be used to process data, which require
only basic security, privacy, and trust-related issues.
(2) C3-aware SaaS Cloud provider: represents a C3-aware
SaaS provider. This type of provider can execute
applications in compliance with predefined security, privacy
and trust restrictions.
(3) C3-aware PaaS Cloud provider: represents a Cloud
provider hosting a platform, which recursively composes
other services to fulfill the requested requirements of a C3-
aware PaaS provider. In such a case the provider could just
act as an intermediate without providing a real service other
than routing.

In our approach developers can deploy applications
represented as a Composite as a Service (CaaS), as
explained and discussed in [11]. Business processes usually
contain tasks with different level of required security,
privacy, and trust management. In the following we explain
the C3-based application execution using the KiGa use case:

In case of KiGa portal some business task can be
assigned to regular SLA-based Cloud provider using
standard SLAs, as for example some infrastructure
monitoring services, which do not contain any sensitive
children’s data. Some other tasks could be assigned to C3-
aware SaaS provider as for example to providers offering
some bookkeeping services. Such providers represent C3-
aware SaaS providers, who can guarantee that certain
personal data necessary for the bookkeeping process are
stored within certain geographies (e.g., European Union).
Finally, the C3-aware PaaS Cloud provider depicted on the
left hand side of Figure 4 provides PaaS solution for the
deployment and hosting of the KiGa portal. Business
process tasks are assigned to the different Cloud providers
i.e., regular SLA-based Cloud provider, C3-aware SaaS
provider and C3-aware PaaS Cloud provider depending on

the required security level of the particular task. Thus, C3-
aware PaaS provider depicted on the left-hand side of
Figure 4 acts as an intermediary providing some value
added services i.e., C3-aware compliance management.

IV. C3 LANGUAGE SUPPORT
In this section we present the language support necessary

for the proper implementation of the proposed C3
architecture. Firstly, we present how domain specific
languages can be designed and tailored in order to support
the requirement specification done by C3 API users.
Secondly, we discuss Compliance Level Agreements
(CLAs), used for the specification of compliance based
security, trust, and privacy issues.

A. DSL-CLA
In this section, we present the relation between the DSLs

and CLAs. DSLs describe the domain knowledge either via
a graphical or via a textual syntax.

DSL
Mapping
Rules

(3) Mapping of
DSLs to CLAs

CLA

CLA
Template

(1) DSL
specification

System
Administrator(2) Definition of mapping

rules DSL/CLA
Figure 5: Hierarchical CLA composition

As shown in Figure 5, DSLs are small languages, which
are tailored by the application administrators to domain
specific modeling elements (step 1). Applied to the KiGa
use case, the application administrator tailors the DSL for
the needs of the German Kindergarten Association (cf.
Figure 2). Thus, the system administrator defines mappings
from the DLS to CLAs (see Figure 5, step 2). The mapping
specification process is described in detail in the next
section. Thereafter, the domain knowledge is eventually
transformed into other languages (e.g., programming
languages, Service Level Agreements, etc.) using predefined
mappings. As depicted in Figure 5, in step 3 we translate
DSLs into Compliance Level Agreements (CLAs). CLAs are
extended Service Level Agreements with the elements for
the specification of certifiable and auditable guarantees.
Valid CLA documents are generated using predefined CLA
templates, which are CLA documents with all parties,
elements, and attributes but without concrete Quality of
Service (QoS) values.

B. Model Driven DSL Development
In this section we present an approach to model domain

specific languages, which is used for the generation of
contracts and agreements using Model Driven Software
Development (MDSD) approach [27]. As shown in Figure
6, the Model Driven Development of DSLs is divided into

two parts: the first part is the definition of a DSL e.g.,
necessary to specify different data protection scenarios
(upper part of Figure 6). The second part is the
transformation of the DSL into the CLA (down part of
Figure 6).

Concrete DSL
Syntax

(Activity diagram)

Model (Abstract Syntax)
(UML)

Meta Model
(Eclipse Modeling

Framework)

Mapping
(XSLT)

Patterns
(Data Fragmentation

pattern)

Code
(CLA)

defined in

based on

represents

based on

1 *

1

1..*

*

uses
defined using

1..*

*

1..*

produces

* * *

uses

Model Instance
(Object diagram)

DSL specification

DSL to CLA translation
Figure 6 : DSLs based on Model Driven Software Development

As shown in Figure 6, in case of C3 a DSL consists of an
abstract and a concrete syntax. The abstract syntax which
represents the language model, defines the elements of the
domain and their relationships without any particular
notation. The italic names represent concrete examples of
the KiGa Use Case presented in Section 2. Abstract model
is based on the meta model. In case of KiGa, UML
represents the abstract model used to model different data
protection scenarios e.g., data fragmentation. UML is based
on Eclipse Modeling Framework (EMF). Application
administrators can specify different data protection
scenarios using UML and the Eclipse Modeling Framework.
Concrete DSL syntax describes the representation of the
domain elements and their relationship in a form suitable for
the DSL users. In case of KiGa portal we define activity
diagrams as concrete DSL syntax for the definition of data
protection patterns. Model instances are based on the UML
and defined in the concrete DSL. For KiGa we use Object
diagrams as model instances, which are defined using
UML’s activity diagrams. Once the object diagrams are
defined, they can be mapped to CLA code according to the
CLA template. To do that we need mappings which
translate the object diagrams into the CLAs. Therefore, we
use eXtensible Style Sheets (XSLT)2 to translate between the
object diagrams and CLAs. Mappings can be defined by
application administrators on a high level using UML.
Thereafter, they are automatically translated to XSLT. We
distinguish between the high and the low level
representation of mappings, e.g. using UML versus using
XSLT. The C3 API offers methods for the translation
between the high level into the low level mapping
representation as described next.

2 http://www.w3.org/TR/xslt

Dollar

Euro

map

1. ...
2. <xsl:template ...>
3. <xsl:element name="Function" ...>
4. <xsl:attribute name="type">
5. <xsl:text>Times</xsl:text>
6. </xsl:attribute>
7. <xsl:attribute name="resultType">
8. <xsl:text>double</xsl:text>
9. </xsl:attribute>
10. <xsl:element name="Operand" ...>
11. <xsl:copy>
12. <xsl:copy-of select="@*|node()"/>
13. </xsl:copy>
14. </xsl:element>
15. <xsl:element name="Operand" ...>
16. <xsl:element name="FloatScalar" ...>
17. <xsl:text>1.27559</xsl:text>
18. </xsl:element>
19. </xsl:element>
20. </xsl:element>
21.</xsl:template>
22. ...

(a) (b)
Figure 7: High level UML mapping (a) and corresponding low level XSLT

transformation (b)

Figure 7 (a) represents the high level UML mapping
defined by the application administrator. For case of brevity
we use a very simple example where we map between
dollars and euro.

Figure 7 (b) depicts the corresponding simple XSLT
transformation (to Figure 7 (a)). As shown in that figure, the
euro metric is mapped to the dollar metric. In this example,
we define the mapping rule returning dollars by using the
Times function of the WSLA Specification (see line 5) [25].
The Times function multiplies two operands: the first
operand is the dollar amount as selected in line 12, the
second operand is the dollar/euro quote (1.27559) as
specified in line 17. The dollar/euro quote can be retrieved
by a Web service and is usually not hard coded.

Figure 7 presents a 1:1 mapping rule where one attribute
is translated into another one. However, using XSLT and
corresponding UML modeling tools even more complex
rules can be defined e.g., 1:n, n:m. However, explanation of
such rules is out of scope of this paper.

Data

Region

1

*

1

1

Fragmentation
Method

Geographical
Fragmentation

Administration
Domain‐based
Fragmentation

Assigned automatically
during the negotiation process

Assigned manually
by the data anayst

Region

Column

1

*

(a) (b)
Figure 8: High level Fragmentation Specification (Domain Expert) (a) Low

level Fragmentation Specification (Data Analyst) (b)

DSLs can provide multiple levels of abstraction to help
multiple stakeholders with different backgrounds and
knowledge to express relations and behaviors of a domain
with notations they are familiar with. The goal is that each
stakeholder can easily understand, validate, and even
develop parts of needed solution. For instance, domain
experts do not have to deal with technological aspects, such
as programming APIs or service interface descriptions.

Similar to the separation of concerns for the mapping
specification and as shown in Figure 8, we separate DLS
specification into high level and low level. We exemplify the
separation based on KiGa’s data fragmentation problem.

Figure 8 (a) shows the high level fragmentation
specification used by domain experts. The KiGa
administrator (domain expert) decides which modules of
the provided DSL are relevant. As shown in Figure 8 (a)
he/she decided that the data stored in the database has to be
stored in multiple regions. Furthermore, it has to be decided
whether the data has to be fragmented using the
geographical fragmentation (e.g. children’s private data in
Europe, business data elsewhere) or whether the data has to
be fragmented among different administration domains i.e.,
different Cloud providers. As shown in Figure 8 (a) the
domain expert decides about the fragmentation method and
the concrete resources necessary to fragment data i.e.,
concrete Cloud providers. Those resources are either
geographically or technologically fragmented during the
CLA-CLA negotiation (as described in Section 5). The
domain expert decides in which parts the data has to be split
up and how the fragments have to be distributed to different
geographical regions. An example could be splitting into
personal and medical data. As for example in case of KiGa’s
use case, Figure 8 (b) shows the low level fragmentation for
an application that uses a relational database specified by
data analysts. Thus, a data analyst has to assign which
columns of the data model have to be assigned to which
region.

C. CLA Development
In this section we discuss Compliance Level Agreements

and their relation to common Service Level Agreements
(SLAs). Service Level Agreements represent negotiated
agreements between two parties, namely the service
consumer and the service provider. It serves as a legally
binding formal or informal contract. There are several (de-
facto) standards for the specification of SLAs, e.g. WSLA
[25]. The SLA defines a common understanding between
the parties about different contract terms including
responsibilities, guarantees, warranties, and penalties.
Usually, SLAs in computing resource markets specify
measurable metrics and the way those metrics are measured,
guaranteed, and billed. Measurable metrics include for
example availability, response time, and serviceability. We
define core CLA components as those elements, which are
part of both SLA and CLA specification. Such elements are
for example parties, which are involved in the contract.
Furthermore, each SLA contains performance relevant
objectives as specified in major SLA languages (WSLA
[25], WS-Agreement). Thus, as depicted in Figure 9, each
SLA is a valid CLA. CLAs extend SLAs with the
parameters for the specification of certifiable and auditable
objectives in order to provide some kind of measurement for
compliance agreements, too. Auditable objectives could
include the specific audit method or the necessary audit

intervals. In case of KiGa use case certifiable objectives
could be an agency, which can certify that a specific Cloud
middleware can fragment data among different Cloud
providers in compliance with predefined requirements i.e.,
geographical fragmentation as specified in Figure 8.
Herewith we address the current trends in software
offerings, where more and more providers certify their
services considering data protection and other security
concerns. A good example for the certified software
offerings are certified online shops [26].

Performance
related objectives

Core

Certifiable
objectives

Auditable
objectives

Measurement
method

Metric …

Root
authority

Certification
method …

Audit
method …

Audit
intervals

Valid SLA Valid CLA

Figure 9: Hierarchical CLA composition

V. C3 TECHNICAL ARCHITECTURE AND MIDDLEWARE
In this section we elaborate the technical architecture for

the C3 middleware. As depicted in Figure 10, the C3
middleware consists of the two major parts (1) a Decision
making / deployment component (DCDM) acting as the
connector and mediator between Cloud providers and
consumers and the Runtime Component being responsible
for the enactment of the CLAs. The main tasks
accomplished by DCDM are: process of publishing of CLA
templates (consumer and provider); C3-aware deployment
of applications (described in Section 3.1); mapping of DSLs
to CLAs (as described in Section 4.1); brokering between
consumer and provider by matching requested and provided
CLAs, i.e., CLA-CLA matching; Business Process
Management (BPM); and data fragmentation and execution
(as described in Section 4.2).

C3 API

C3 Middleware

C3 G
U
I

Application

Mapping Rules

Deployment Component /
Decision making (DCDM) CLA

Publisher

BPM
CLA
Template

Enforcer

Autonomic Manager
Data Fragmentator

Runtime component
Deployer

Broker

Figure 10: C3 Middleware

For publishing of CLAs we consider advanced approaches
beyond typical SLA repositories, as for example such
approach presented in [18], in order to facilitate liquid
Cloud markets. CLA-CLA matching considers matching of
providers and consumers in terms of requested and provided
level of security, trust, and privacy. Thus, during the CLA-
CLA matching only those providers are preselected, which
can deliver specific data protection techniques. In case of
KiGa this matching process would include pre-selection of
Cloud providers, who support data fragmentation technique.

Once the applications are deployed and CLAs
agreements between providers and consumers are
established, Runtime Component deals with the enactment
of CLAs and handles events that might lead to CLA
violations. The autonomic manager finds reactive actions to
a given event, where the event might lead to CLA
violations. Our work presented in [3] on self-manageable
Cloud services will be extended for the autonomic
management of C3-aware Cloud services. As identified in
[3] we provide the self-management interface, which has to
be implemented by each application deployed in the C3-
aware Cloud. The proper implementation of the self-
management interface is ensured during the deployment
process though usage of the C3’s APIs.

VI. RELATED WORK
Since there is only little work on compliance

management in Clouds we look particularly into related
areas like (i) usage of SLAs in Clouds, (ii) compliance
management in general e.g., in software development cycle
and (iii) different data protection techniques like data
fragmentation, which however has not yet been applied to
Clouds.

Frutos et al. discuss the main approach of the European
project BREIN [13]: to develop a framework, which will
extend the Grid possibilities by driving their usage inside
new target areas in the business domain. BREIN deals with
the provision of the basic infrastructure which these new
business models need: enterprise system interoperability,
flexible relationships, dynamicity in business processes,
security mechanisms and enhanced SLA and contract
management [5]. However, BREIN applies SLA
management to Grids, whereas C3 targets CLA
management in Clouds. Brandic et al. presents an approach
for adaptive generation of SLA templates [4]. Thereby, SLA
users can define mappings from their local SLA templates to
the publicly available remote templates in order to facilitate
communication with numerous Cloud service providers.
This work represents an initial attempt to facilitate on-
demand communication between Cloud consumer and
provider and will be further investigated for the applicability
on top of C3 architecture. Thielman et al. discuss an
approach for multi-level SLA management, where SLAs are
consistently specified and managed within a service-
oriented infrastructure (SOI) [24]. They present the runtime
functional view of the conceptual architecture and discuss

different case studies including Enterprise Resource
Planning (ERP) or financial services. However, they neither
consider characteristics of Cloud services nor the auditable
and certifiable metrics.

A large body of work has been done on the design and
implementation of novel models, languages, and
architectural frameworks to ensure dynamic and ongoing
compliance of software services to business regulations and
design rules. COMPAS (Compliance-driven Models,
Languages, and Architectures for Services) is an example
European Commission’s Framework 7 Specific targeted
research project (STREP) dealing with compliance issues
[8]. However, very little work has been done on compliance
issues in Cloud computing. Anstett et al. propose so-called
compliance interfaces that can be used by customers to
subscribe to evidence at a provider and to enforce
regulations at a provider [2]. They introduced a general
architecture that allows compliance to be monitored and
enforced at services deployed in different Cloud delivery
models. However, the authors do not consider all
characteristics of security, privacy, and trust in Clouds,
which require novel contract specification languages. Daniel
et al. highlights research challenges that need to be
addressed in SOA-based compliance governance, spanning
design, execution, and evaluation of concerns [10]. They
define the compliance management life cycle and the major
research goals in compliance governance. For instance, in
data outsourcing, privacy constraints on the outsourced data
are enforced by combining data fragmentation with
encryption and by possibly considering additional
assumptions such as different network conditions. Koller et
al. [15] discusses autonomous QoS management using a
proxy-like approach developed within the SLA@SOI
project [20]. The implementation is based on WS-
Agreement. Thereby, SLAs can be exploited to define
certain QoS parameters that a service has to maintain during
its interaction with a specific customer. However, their
approach is limited to Web services and does not consider
compliance issues in Clouds. Comuzzi et al. defines the
process for SLA establishment adopted within the EU
project SLA@SOI framework [9].

Work presented in [7] deals with data outsourcing, and
privacy constraints on the outsourced data which are
enforced by combining data fragmentation with encryption
and by possibly considering additional constraints such as
the impossibility of external servers to communicate with
each other. The approaches presented [7] will be
investigated further in context of C3 and possibly applied as
a one of the available data fragmentation techniques.

VII. CONCLUSION AND FUTURE WORK
In this paper we presented a first attempt to devise

concepts for Compliant Cloud Computing (C3). Based on
the use case from the telecommunication domain we derived
requirements considering compliance management of
security, privacy, and trust related issues. We developed

concepts for the languages necessary for the user based
requirements specification (domain specific languages) and
for the agreement specification (compliance level
agreement). We presented the C3 architecture considering
application deployment, roles, and the application execution
issues. Finally, we presented the technical architecture for
the C3 middleware responsible for the application
deployment execution, negotiation and enforcement, and
compliance level agreements.

In the future we will investigate implementation issues
regarding available open source projects. Furthermore, we
will develop concepts for the certification processes of the
C3-aware Cloud providers.

ACKNOWLEDGMENT
The work described in this paper is supported by the Vienna
Science and Technology Fund (WWTF) under grant
agreement ICT08-018 Foundation of Self-governing ICT
Infrastructures (FoSII), the COMPAS project under the EU
7th Framework Programme ICT Objective (contract no. FP7-
215175) and the MASTER project under the EU 7th
Framework Programme Information Society Technologies
Objective (contract no. FP7-216917).

REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/ 2010.
[2] T. Anstett, D. Karastoyanova, F. Leymann, R. Mietzner, G.

Monakova, D. Schleicher, S. Strauch. MC-Cube: Mastering
Customizable Compliance in the Cloud. In: Springer (Hrsg):
Proceedings of the 7th International Joint Conference on Service
Oriented Computing, 2009.

[3] I. Brandic. Towards Self-manageable Cloud Services. RTSOAA
2009. In conjunction with the 33rd Annual IEEE International
Computer Software and Applications Conference. July 20 - 24, 2009,
Seattle, Washington, USA.

[4] I. Brandic, D. Music, Ph. Leitner, S. Dustdar. VieSLAF Framework:
Enabling Adaptive and Versatile SLA-Management. GECON09. In
conjunction with Euro-Par 2009, 25- 28 August 2009, Delft, The
Netherlands.

[5] Brein Project (Business objective driven reliable and intelligent Grids
for real business), http://www.eu-brein.com/ 2009.

[6] R. Buyya, Ch. Sh. Yeo, S. Venugopal, J. Broberg, I. Brandic. Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility, Future Generation Computer
Systems, 25(6):599-616, June 2009.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S.
Paraboschi, P. Samarati. Fragmentation and Encryption to Enforce
Privacy in Data Storage, in ACM Transactions on Information and
System Security, 2009.

[8] Compliance-driven Models, Languages, and Architectures for
Services (COMPAS), FP7 http://www.compas-ict.eu/ 2009.

[9] M. Comuzzi, C. Kotsokalis, G. Spanoudkis, R. Yahyapour.
Establishing and Monitoring SLAs in Complex Service Based

Systems, IEEE International Conference on Web Services 2009 Los
Angeles, CA.

[10] F. Daniel, F. Casati, V. D'Andrea, S. Strauch, D. Schumm, F.
Leymann, E. Mulo U. Zdun, S. Dustdar, S. Sebahi, F. de Marchi,
M.S. Hacid. Business Compliance Governance in Service-Oriented
Architectures. In: Proceedings of the IEEE 23rd International
Conference on Advanced Information Networking and Applications
(AINA'09), Bradford, United Kingdom, May 26-29, 2009.

[11] F. Leymann. Cloud Computing. In: Proc. 52th Photogrammetric
Week. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik. S. 1-10,. Online, September 2009.

[12] Google App Engine http://code.google.com/intl/de-AT/appengine
[13] H. M. Frutos, I. Kotsiopoulos. BREIN: Business Objective Driven

Reliable and Intelligent Grids for Real Business, International Journal
of Interoperability in Business Information Systems, Issue 3 (1),
2009.

[14] Kindergatenportal, http://kindergartenportal.o-s.de/elternFN 2009.
[15] B. Koller, L. Schubert. Towards autonomous SLA management using

a proxy-like approach. Multiagent Grid Syst. 3(3), 2007, IOS Press,
Amsterdam, The Netherlands, The Netherlands.

[16] E. Oberortner, U. Zdun, S. Dustdar. Tailoring a Model-Driven
Quality-of-Service DSL for Various Stakeholders, MiSE'09

[17] Open Cloud manifesto 2009,
http://www.opencloudmanifesto.org 2010.

[18] M. Risch, I. Brandic, J. Altmann. Using SLA Mapping to Increase
Market Liquidity. NFPSLAM-SOC'09. In conjunction with the 7th
International Joint Conference on Service Oriented Computing,
November 23-27 2009, Stockholm, Sweden.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. B.-Y.,
W. Emmerich, F. Galan. The RESERVOIR Model and Architecture
for Open Federated Cloud Computing, IBM System Journal Special
Edition on Internet Scale Data Centers, to appear.

[20] SLA@SOI Project, http://sla-at-soi.eu/
[21] D. Schleicher, T. Anstett, F. Leymann, R. Mietzner. Maintaining

Compliance in Customizable Process Models. In: Proceedings of the
17th International Conference on COOPERATIVE INFORMATION
SYSTEMS (CoopIS 2009).

[22] L Schubert, K. Jeffery, B. Neidecker-Lutz. The Future of Cloud
Computing, Opportunities for European Cloud Computing Beyond
2010, Version 1.0
http://cordis.europa.eu/fp7/ict/ssai/docs/executivesummary-
forweb_en.pdf

[23] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster. Capacity
Leasing in Cloud Systems using the OpenNebula Engine. In
Proceedings of Cloud Computing and Its Applications (CCA08), 22 –
23 October 2008, Chicago USA.

[24] W. Thielman, R. Yahyapour, J. Butler. Multi-level SLA Management
for Service-Oriented Infrastructures, Proceedings of the 1st European
Conference on Towards a Service-Based Internet, 2008.

[25] Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

[26] VeriSign - Increase Online Sales and Conversions, Proven Results
with VeriSign Seals, http://www.verisign.com/trust-seal/increase-
online-sales/index.html

[27] M. Völter, Th. Stahl, J. Bettin, A. Haase. Model-Driven Software
Development. John Wiley & Sons, 2006.

