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Abstract—Since we are entering the Post-Moore Law era
and consequently the limit of Von Neumann’s architecture, the
scientific community is looking for alternatives to satisfy the
growing computing power demands of scientific applications.

Quantum computing promises to achieve a computational ad-
vantage over the classic Von Neumann architecture. However, the
limited capabilities of current noisy intermediate-scale quantum
(NISQ) devices require quantum computers to interoperate with
classic systems, forming the so-called hybrid quantum systems.
Research on hybrid quantum systems led to the design of
Variational Quantum Algorithms, currently the most promising
way to move towards quantum advantage.

However, execution time and accuracy of variational quantum
algorithms are affected by different hyperparameters, including
selected cost functions and parametrized quantum circuits. Con-
sequently, providing developers with methods to select the right
set of parameters is of paramount importance.

In this work, we provide a formal method for the selection of
hyperparameters in variational quantum algorithms, which will
support quantum algorithms developers in the design of quantum
applications, and evaluate it on a real-world scientific application,
showing a reduction of error up to 31%.

I. INTRODUCTION

Research on scientific applications and workflows gained
significant momentum due to the recent COVID-19 Pandemic.
Because of the complexity of scientific applications, they often
rely on HPC clusters for their execution. However, since we
are entering the Post-Moore law era [1], there is a strong
possibility that classical architectures will not be able to meet
such high computational demands in the future, calling for
research efforts on alternative forms of computing.

Quantum computing has the potential to offer a significant
computational advantage over Von-Neumann’s architectures,
which allows for solving different intractable problems in
different application domains (i.e., from finance, molecular dy-
namics, computational chemistry [2]) and its native modeling
of many scientific phenomena [3]. Due to the limited number
of resources available and the high noise in their results,
quantum processing units (QPUs) are combined with classic
architectures, defining so-called Hybrid Quantum Systems [4].

Variational Quantum Algorithms (VQAs) are the most
promising way to exploit hybrid quantum systems and achieve
so-called quantum advantage [5]. VQAs rely on a parametrized

quantum circuit (PQC), i.e., a circuit whose expected value
depends on a set of free parameters Θ encoding a solution
to a specific problem, and a cost function C on Θ. VQAs
aim to iteratively tune parameters in Θ by optimizing C(Θ)
on a classical computer and then computing quantum circuit
expectation using Θ. The output of this process is a (close-to)
optimal solution to the target problem.

However, VQAs execution is strongly affected by hyper-
parameters, such as (i) PQC selection, (ii) cost function
and (iii) classic optimizer. Considering the growing interest
of the scientific community in quantum computing, finding
methods to improve the execution of quantum computations
is of paramount importance for the development of quantum
computing.

In this work, we focus on workflow decomposition for the
execution on hybrid quantum systems. We identify workflow
tasks that are suitable for execution on quantum machines
and design a quantum implementation for selected tasks.
Afterward, we collect data about quantum tasks’ execution
considering different quantum hyperparameters, identifying
the setting providing the best accuracy. Finally, we evaluate
our method on a molecular dynamics (MD) workflow.

We focus on the computation of inter-atomic distance, for
which we design a quantum circuit, and computation of the
largest eigenvalue based on Variational Quantum Eigensolver,
for which we identify the set of hyperparameters allowing to
reduce error in eigenvalues’ calculations.

Our results represent a first step in the employment of
quantum machines as accelerators for scientific computations.
Data collected for VQA execution show that hyperparameter
selection can affect accuracy up to 31%, providing insights
on the setup of VQAs and showing the necessity for methods
supporting quantum developers in selecting hyperparameters.

The paper is organized as follows: first, we introduce
notions about quantum computing and VQAs in Section II.
Afterward, we describe the target MD use case and hybrid
quantum decomposition in Section III, while our method is
described in Section IV. Afterwards, we describe experimental
setup in Section V, commenting our results in Section VI.
Related works are discussed in Section VII, while conclusions
and future work are presented in Section VIII.



II. BACKGROUND

A. Quantum Computing

The basic unit of quantum computation is the qubit. In
contrast to classic bits, which can be either 0 or 1, a qubit
can be in a superposition of both. A set of n qubits taken
together forms a quantum register. Quantum computation is
performed by manipulating qubits within a quantum register.
The state of a n-qubits register |ψ⟩ is represented as a linear
combination (superposition) of n orthonormal basis, denoted
as n column vectors, i.e.,

|0⟩ 7→ [1, 0, . . . , 0]T

|1⟩ 7→ [0, 1, . . . , 0]T

...

|n− 1⟩ 7→ [0, 0, . . . , 1]T .

|ψ⟩ =
∑n−1

i=0 ci |i⟩ with suitable complex coefficients (weights)
c0, c1, . . . , cn−1 ∈ Cn known as the complex amplitudes. The
normalization condition for the quantum state |ψ⟩ implies that∑n−1

i=0 |ci|2 = 1. The simplest intuitive visualization of a
quantum bit (qubit) is a unit vector living on a so-called Bloch-
sphere. A qubit |ψ⟩ is a two-level quantum system, described
by a two-dimensional complex Hilbert space. It is spanned
by two orthonormal states {|0⟩ , |1⟩} and can be written in a
consise form in the Bloch-sphere representation [6],

|Ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (1)

with θ ∈ [0, π] ∧ ϕ ∈ [0, 2π]. Thus, in contrast to a classical
bit which can be either 0 or 1, a qubit is an arbitrary point on
this sphere taking uncountably infinite values on this sphere.

In constrast to classic registers, a quantum register is in
a superposition of each state, i.e., can be in each one of
|0⟩ , . . . |n− 1⟩ at the same time. At the moment of obser-
vation, the probability that we will find it in a particular basis
state |i⟩ is P (|i⟩) = | ⟨i|ψ⟩ |2 = |ci|2.

Given the probabilistic nature of quantum computation, the
quantum computation must be repeated for a given number
of times, s, and the result of quantum computation will be
the most frequent result over s executions. As a consequence,
the goal of quantum computation is to manipulate registers to
obtain the solution to the target problem with high probability.
Quantum registers are manipulated through quantum circuits.
Quantum circuit model a quantum computation as a sequence
of (1) initialization of qubits, (2) application of specific unitary
matrices called quantum gates, which can be compared to clas-
sical logical gates for quantum computing, (3) measurement
of the circuit and (4) resets.

B. Hybrid Quantum Systems

Hybrid Quantum Systems define a class of systems that
combine classic and quantum computers to solve a problem.
The main advantage of using this approach is that allows
the exploitation of the strengths of classic computers for
specific tasks (e.g., error correction) and additional capabilities
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Fig. 1: Hybrid Quantum Systems.
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Fig. 2: Variational Quantum Algorithms.

provided by quantum machines (e.g., quantum parallelism) [4].
Hybrid quantum systems are depicted in Figure 1: in step 1,
data are pre-processed on the classic system for execution on
the quantum system; in step 2, the quantum state is prepared
based on preprocessed input, and manipulated in step 3 using
quantum circuit modeling required computation; in step 4, the
quantum state is measured and post-processed in step 5.

C. Variational Quantum Eigensolver (VQE)

Variational Quantum Algorithms (VQA) are known as the
most promising way to achieve quantum advantage [5], as they
allow to reduce the number of qubits required by other quan-
tum algorithms and to fully exploit the capabilities of hybrid
quantum systems. The main idea of VQAs is to minimize a
cost function C representing a specific property of a physical
system (e.g., the ground state of a Hamiltonian, HG). The
state of the physical system is modeled by a Parametrized
Quantum Circuit (PQC), which is a quantum circuit whose
state is determined by a set of input parameters Θ. The main
idea is that by minimizing C(Θ) we will obtain the specific
property we are interested in, similarly to Simulated Annealing
metaheuristic [7]. Therefore, VQAs are to find the set of
parameters Θ∗ which minimizes C.

Typical VQA execution is summarized in Figure 2. First,
an initial set of parameters Θ is provided in input to a
parametrized quantum circuit, which is then executed on the
PQC deployed on the quantum machine (step 2). After exe-
cution, measurements of quantum execution are performed to
verify the termination condition. If the termination condition is
FALSE, then a new set Θ is identified through the optimization



of C employing a classic optimizer. The process is repeated
until the termination condition is TRUE.

The most known VQAs are Quantum Approximate Opti-
mization Algorithm (QAOA), which is often used for combina-
torial optimization problems, and Variational Quantum Eigen-
solver (VQE), which is used to compute matrix eigenvalues
to find the ground state energy EG of a Hamiltonian [5].
In this work, we focus on VQE. As in Figure 2, VQAs are
defined by (1) the initial Θ state preparation, (2) selected PQC,
(3) optimizer, and (4) cost function C. VQE cost function is
defined as

Θ∗ = argmin
Θ

C(Θ) = ⟨ψ(Θ)|H |ψ(Θ)⟩ , (2)

meaning that for each state |ψ(Θ)⟩ one tries to minimize
expectation of H , with |ψ(Θ)⟩ = PQC(Θ) |ψi⟩. It follows
from the variational principle that, argminΘ C(Θ) ≥ EG,
therefore minimizing C(Θ) enables us to approximate the
ground state of H , EG, which corresponds to the minimum
eigenvalues of H .

III. MD WORKFLOW DECOMPOSITION

Here we describe the target MD application used for our
method evaluation.

A. Molecular Dynamics

Experiments to study the dynamics of complex structures
are usually sophisticated and time-consuming to conduct in
the lab. Computer simulations provide a method to validate
theoretical models that are not experimentally attainable in
reality. Computer simulations help to bridge the gap between
theory and experiment and accommodate a better understand-
ing of real-life systems. Molecular dynamics (MD) simulation
is a popular model computing the atomic states of a molec-
ular system evolving by observing microscopic interactions
between atoms. MD simulation serves as a productive method
to observe important processes at atomic resolution for a
better understanding of the behaviors of the system. Rather
than dealing with the complexity of setting an experiment
environment, MD simulation offers a powerful approach to
control the configurations of the molecular systems, such as
temperature and pressure. Due to these discussed advantages,
MD simulations have been extensively applied to various
scientific domains of chemistry, material sciences, molecular
biology, and drug design.

The biological insight into a molecular system is obtained
by analyzing trajectories, which are a time series of coordi-
nate snapshots or frames periodically generated in a specific
interval by the simulation during simulation time. The frames
comprise of atomic coordinates, which obtained by solving
Newton’s motion equations for atomic-level interations of the
molecular structure. Trajectory analysis allows the user to trace
dynamics of the considered molecular system, which serves as
a key point in detecting biologically relevant processes, such
as protein folding and conformational changes [8].

B. Target Application

Since MD trajectories are high-dimensional objects, tra-
jectories are not suitable for applying direct interpretation.
Many atomic motions in the frames are not equally important,
such as high-frequency thermal fluctuations are usually of no
interest. Therefore, methods of reducing the dimensionality
of trajectories or describing frames using a smaller number
of variables are commonly employed to transform trajectories
into a data format that is easier to analyze. Metadynamics [9]
is one example, in which scientists use well-chosen collective
variables (CVs) to capture important molecular motions in
the region of interest. Technically, a CV is defined as a
function of the atomic coordinates in one frame that helps
to reconstruct the free-energy surface for enhanced sampling.
Since trajectories are reduced to time series of a small number
of such CVs, simulated molecular processes are much more
amenable to interpretation and further analysis. A CV can be
as simple as the distance between two atoms or can involve
complex mathematical operations on a large number of atoms.
The CV that we will use in this work is the Largest Eigenvalue
of the Bipartite Matrix (LEBM).

Specifically, to capture the structural changes between two
amino acid segments, instead of considering all atoms com-
posing of the amino acids, we extract only the positions of α-
Carbon (Cα) backbone atoms. Those backbone atoms are then
used to form a bipartite matrix whose the maximum eigenvalue
is a proxy for discovering structural changes in the molecular
system. Formally, given two amino acid segments I and J , if
dij is the Euclidean distance between Cα atoms i and j, then
the symmetric bipartite matrix BIJ = [bij ] is defined as:

bij =


dij , if i ∈ I and j ∈ J
dij , if i ∈ J and j ∈ I
0, otherwise.

(3)

We note that BIJ is symmetric and has zeroes in its diagonal.
Johnston et al. [10] showed that the largest eigenvalue of
BIJ is an efficient measurement to monitor changes in the
conformation of I relative to J .

C. Hybrid Quantum Decomposition

Fig. 3: Target MD Simulation.



Figure 3 visualizes target MD application. After reading
input from the user, the application reads a trajectory file,
which provides information about the molecule structure, and
identifies the atom segments that have to be considered in our
calculations. For each pair of atom segments, the application
performs parallel computations to calculate BIJ matrices
which are used as an input for the LEBM calculation. At the
end of this process, results for different BIJ are collected and
analyzed. Following from the previous section, we identify
that two parts are most suitable for quantum execution: the
BIJ and LEBM calculation.

Generating the matrix BIJ involves the computation of Eu-
clidean distances between different atom segments. Exploiting
the capability of quantum machines in manipulating large
numbers of higher-dimensional vectors and tensors, makes
them highly suited for performing vector-based machine learn-
ing tasks and operations such as vector dot products, overlaps,
norms, etc., in N -dimensional vector spaces.

It was shown in [11] and by S. Aaranson [12] that sam-
pling post-processed vectors and estimating distances or inner
products between these post-processed vectors is exponentially
hard on a classical computer and has O(N) complexity on a
classical system.

Instead, replacing the traditional classical computing codes
with quantum circuits would significantly reduce the runtime.
This is because, classical data (typically vectors or tensors),
expressed in terms of N - dimensional complex valued vectors
can be encoded into log2N qubits. These mapped vectors can
then be stored in a quantum random access memory (qRAM).
This mapping can be achieved in O(log2N) steps [11]. This
stored quantum information can later be post-processed by
various quantum algorithms like Quantum Fourier Transforms
(QFT) (cf. [6]) or matrix inversion techinques, which take time
O(poly(logN)). While, estimating distances and inner prod-
ucts between these post-processed vectors can be completed
in time O(logN) on a quantum computer [13].

Furthermore, computing the LEBM of the target matrix
BIJ can be achieved efficiently using Variational Quantum
Eigensolver (VQE) [5]. The VQE circuit then performs the
optimization task through a hybrid classical-quantum scheme.
Therefore we apply VQE machinery to identify LEBM.

D. Assumptions and Limitations

1) Input size: While on classic architectures the amount
of atoms and segments we can process is dependent by the
amount of RAM available in the system, in the quantum
machines we are limited by the amount of qubits of the
machine. In general, to embed a k×k matrix, ⌈log2 k2⌉ qubits
are required. For this reason, we limit our input, i.e. the length
of amino acid segments used to form the bipartite matrix,
according to the limitations of target machines. Let n denote
the chosen segment length, then size of the bipartite matrix,
which is generated as in Equation 3, is 2n× 2n.

To compute Euclidean distance, the quantum circuit used
for our study comprises of a single execution for each atom
pair. Hence, a total number of n repeated circuit executions

are required for calculating the distances between n atom
pairs using the quantum architechture. Ideally, developing
a quantum circuit yielding the Euclidean distances between
all the atom pairs on one single execution should also be
possible. One such method involves the introduction of an
oracle (black-box) function that can encode multiple classical
vector data [14]. Alternatively, multiple fidelities/innerproducts
between the input qubits can be computed using the SWAP-test
technology as developed for a quantum neuron model [15].

With respect to 5 available qubits, we consider a bipartite
matrix of size 32×32. We evaluate hyperparameters selection
on 32× 32 off-diagonal block matrices.

The atom coordinates are vectors in R3. Since each qubit
has two possible states, the number of coordinates of the
classical vector must necessarily be 2n [16]. For this reason,
the three dimensional vector is padded 0 as the fourth coor-
dinate. This leads to a vector in form (x, y, z, 0) with 22 = 4
coordinates, which can be encoded into a 2-qubit quantum
register.

2) Matrix shape: The symmetric bipartite matrix BIJ can
be partioned into a block matrix form.

BIJ =

(
0n×n EIJ

E⊺
IJ 0n×n

)
(4)

The diagonal entries of the bipartite block matrix contains the
zero matrix. The off-diagonal entries EIJ (n× n matrix) and
its transpose E⊺

IJ contain as entries the Euclidean distances
dij as defined in Eq.(3). The Euclidean distance (metric) is a
function defined on vector space V,

d : V× V 7→ R.

Therefore, the block matrix EIJ takes values only over the
field R. The matrix representation is given by,

EIJ =

d
11
ij · · · d1nij
...

. . .
...

dn1ij · · · dnnij

 . (5)

For given two segments I and J , the Euclidean metric
between Cα carbon atoms i and j reads,

dij = d(i, j) =
√
(ix − jx)2 + (iy − jy)2 + (iz − jz)2. (6)

Lemma 1. Input matrix BIJ is a Hermitian matrix.

Proof. Let BIJ ∈ R2n × R2n, with n ∈ N. Note that from
Equation 4,

B⊺
IJ =

(
0n×n EIJ

E⊺
IJ 0n×n

)⊺

= BIJ

Hence, BIJ is a real symmetric matrix Since, every real
symmetric matrix is a Hermitian matrix, BIJ is Hermitian. ■

Since the bipartite matrix is Hermitian, its eigenspectrum is
in R. Therefore, we can use BIJ as the input to the VQE pro-
tocol without further transformations, since states of quantum
systems (physical observables) described by operators that are
necessarily linear and Hermitian matrices.



IV. PROPOSED METHOD

A. Generation of Distance Matrix

1) Quantum circuit: The generation of BIJ in our case
is achieved using a quantum algorithm called the SWAP test.
The SWAP-test algorithm is a quantum subroutine that was
first introduced in the context of quantum fingerprinting [17]
and computes the fidelity or overlap between two quantum
states in terms of the measurement probability of the control
qubit in the state |0⟩. The Fidelity F between two normal-
ized quantum states |ϕ⟩ , |ψ⟩ is mathematically expressed as,
F (ϕ, ψ) = | ⟨ϕ|ψ⟩ |2 [18].

Hence, higher the fidelity, closer are the quantum states to
each other. F (ϕ, ψ) = 0 means that the quantum states are
orthogonal to each other. The SWAP-test algorithm is one such
method that can be used as a fidelity estimator of two pure
states. The quantum circuit with the amplitude encoded vectors
for four atomic-pairs is presented in Figure 4.

control0 : H • H

qr1 : |ϕ⟩ (a,b) ×
qr20 :

|ψ⟩ (x, y, z, 0, ...)

0 ×
qr21 : 1

qr22 : 2

c : /
1

0

��

Fig. 4: Visualization of SWAP-test circuit.

This quantum circuit has been used extensively in accel-
erating the k-nearest neighbor (kNN) classification algorithm
in supervised machine learning [19]. We shall implement this
quantum circuit to compute the euclidean distances between
the Cα atoms and generates the distance matrix BIJ .

Thus quantum algorithms offer a major advantage in work-
ing with large complex chains of molecules consisting of large
number of atoms, due to the aforementioned speedup

2) Two state SWAP-test circuit description: To apply our
circuit, first we initialize an ancillary qubit |0⟩, two quantum
registers |ψ⟩ and |ϕ⟩. The combined initial state is

|ΨI⟩ = |0⟩ ⊗ |ϕ⟩ ⊗ |ψ⟩ , (7)

where the symbol ⊗ denotes the tensor-product (Kronecker
product) of the quantum states. The states |ϕ⟩ and |ψ⟩ contain
the coordinates of the atoms, encoded by means of a method
called Amplitude encoding.

Definition: For x ∈ Rn, amplitude encoding maps x 7→
E(x), and reads [20],

|x⟩ =
n∑
i

fi(x) |i⟩ ,

where, |fi(x)|2 = 1.
Calculation of amplitude corresponds to the state prepara-

tion phase as described in Figure 1. The qubits are initialized

with the state amplitudes (coefficients), in the following man-
ner:

|ϕ⟩ = 1√
W

(||u⃗|| |0⟩ − ||v⃗|| |1⟩), (8a)

|ψ⟩ = 1√
2
(|u, 0⟩+ |v, 1⟩), (8b)

with ||u⃗||, ||v⃗|| being the Euclidean norm of the coordinates
of two different atoms and W = ||u⃗||2 + ||v⃗||2. Where, the
compact notation |x, y, .., z⟩ denotes |x⟩ ⊗ |y⟩ ⊗ ....⊗ |z⟩.

The amplitude encoded vectors are given by,

|u⟩ =
N−1∑
i=0

ui
||u⃗||
|i⟩ , (9a)

|v⟩ =
N−1∑
i=0

vi
||v⃗||
|i⟩ (9b)

In Figure 4, the 3-qubit quantum register |ψ⟩ =
|qr 20 = 0⟩ ⊗ |qr 21 = 0⟩ ⊗ |qr 22 = 0⟩ is then initial-
ized with the concatenated atom-pair coordinate values
(x1, y1, z1, x2, y2, z2, 0, 0) ∈ R8.

Afterwards, we apply Hadamard gate H on the ancillary
qubit. This is followed by a controlled swap operation, which
is performed using the three-qubit Fredkin gate on the other
two registers. The ancillary qubit works like control bit. The
total state of the system after these two gate operations is,

|ΨII⟩ =
1√
2

(
|0, ψ, ϕ⟩+ |1, ϕ, ψ⟩

)
. (10)

Application of another Hadamard gate on the ancillary qubit
|0⟩ yields

1

2
|0⟩ (|ϕ, ψ⟩+ |ψ, ϕ⟩) + 1

2
|1⟩ (|ϕ, ψ⟩+ |ψ, ϕ⟩),

following from [18]. After application of Hadamard gate,
probability of measuring state ′0′, i.e., of control qubit yields,

Pr(0) =
1

2
+

1

2
| ⟨ϕ|ψ⟩ |2.

Euclidean distances between atoms can be obtained using
Equations 8, 9.

d(u⃗, v⃗)2 = 2W | ⟨ϕ|ψ⟩ |2 = 4W (Pr(0)− 0.5). (11)

Euclidean distances computed using a quantum machine con-
stitute the matrix elements of the matrix BIJ described in
Equation 4.

B. Calculation of LEBM

To calculate LEBM, as defined in Section III-B, we employ
VQE as described in Section II-C.

Our goal is to identify LEBM as close as possible to the real
value, i.e., the value calculated on a classic machine. However,
since VQE performs iterative optimization of a cost function
C (Equation 2), there is no guarantee it will reach the optimal
value [5]. To this end, we define the error function that we
use to evaluate VQE results.



From Section II-C, we notice that VQE execution is de-
fined by different hyperparameters, which affect results of its
execution. Therefore, first, we identify the hyperparameters
which affect execution of VQE, then we define our data-driven
method to identify the most suitable hyperparameters’ setting.

1) Error: For a distance matrix BIJ , we define its classic
LEBM Λc(BIJ) and its LEBM calculated with VQE using
a specific hyperparameter setting Π as Λvqe(BIJ ,Π). In
our case, we compare VQE results with results on classic
architectures, using Mean Square Error (MSE). For a set of
matrices, B̂ = {B0

IJ , B
1
IJ , . . . , B

n
IJ}, we define

Err(B̂,Π) =
∑

i∈[0,|B̂|]

(Λc(B
i
IJ)− Λvqe(B

i
IJ ,Π))

2

|B̂|
(12)

as the MSE between the classic and quantum eigenvalues,
calculated using hyperparameters Π.

2) Data-Driven Hyperparameters Selection: Π can be com-
posed of different hyperparameters, such as (1) the PQC
k ∈ K, where K is the set of available PQCs; (2) the
optimizer o ∈ O, where O is the set of all optimizers; (3)
a classic hardware node mi

c ∈Mc, where optimization of cost
function is performed; (4) mi

q ∈Mq; (5) s ∈ N which defines
how many times VQE is executed on the system to ensure a
statistically significant execution.

Our goal is to find a set Π∗
err such that minimizes an error

function Err(), namely

Π∗
err : Err(B̂,Π∗) ≤ Err(B̂,Π) ∀ Π. (13)

Concerning Π, the machines mi
c,m

i
q on which we execute

our application are decided depending on availability in the
system; Also s is usually decided in advance for statistical
significance. For this reason, we focus our analysis on k and o,
since according to our analysis they are the parameters which
mostly influence our problem.

Determining Π∗ before execution requires complex error
prediction models, which are not available at the time we
write; Also, development of error model for quantum machine
is a non-trivial issue, due to the fact that noise of quantum
gates is context-dependent [21]. For this reason, we decide to
employ a data-driven approach. Our approach is summarized
in Algorithm 1.

First, in line 2 we generate the input for our target problem,
in this case, N ×N matrices, for which we calculate LEBM
in line 4. Then, in lines 6-18 we calculate Π∗

err by trying
different configurations Π on selected machines. In line 7,
we initialize PQC considering its physical setup, composed of
quantum gates, their connectivity topology and entanglement
map, and the number of qubit needed by PQC k, which is
equal to log2N . In line 11, we compute VQE for matrix Bi

IJ

using current Π setting. Once all Λvqe(B
i
IJ ,Π) values are

calculated, we compute the error using input Err() function,
find Err(B̂,Π) and compare it with the minimum error err.
In case Err(B̂,Π) is lower than err, Π becomes the new
Π∗

err. At the end of the algorithm execution, Π∗
err is found.

Algorithm 1 Data-Driven Hyperparameter Selection
Input: PQCs configurations K, optimizer configurations O,
classic machine mc, quantum machine mq , N matrix size,
Err() function.
Output: Π∗

1: err ←∞
2: B̂ ← generateRandomMatrices(N)
3: for i ∈ |B̂| do
4: Λc(B

i
IJ)← calculateLEBM(BiIJ)

5: end for
6: for k ∈ K do
7: k ← initPQC(k, log2N,mq)
8: for o ∈ O do
9: Π← {k, o}

10: for i ∈ |B̂| do
11: Λvqe(B

i
IJ)← VQE(Bi

IJ ,mc,mq,Π)
12: end for
13: if Err(B̂,Π) < err then
14: Π∗

err ← Π
15: err ← Err(B̂,Π)
16: end if
17: end for
18: end for
19: return Π∗

err

V. EXPERIMENTAL SETUP

A. Configuration Selection

For an accurate training of Hyperparameter Optimization,
we have to collect data about error Err and convergence time
T using different parameters. We collect data from different
quantum machines, variating hyperparameters and evaluating
results in comparison with classic execution. We focus on two
main hyperparameters: PQC and optimizer. Once data have
been collected, we validate our method on the MD application
described in Section III.

1) PQC: We describe here the PQCs selected for our eval-
uation. PQCs are selected among Qiskit circuit library 1. Each
PQC is defined by three parameters: width, i.e. the number of
qubits needed by the PQC, which is dependent from the size of
input matrix (i.e., for a n×n matrix, log2n qubits are needed);
the repetitions, which define how much times the circuit is
repeated in serie, and the entanglement, which define how
the qubits are entangled at the end of each circuit repetition.
There are four types of entanglement: full, where each qubit
is entangled with all the others; linear, where each qubit i is
entangled to i + 1 qubit for all i ∈ [0, . . . , n − 2], where n
is the number of qubits; circular is linear entanglement, but
with an additional entanglement between n and 0 qubits; and
shifted-circular-alternating (SCA), proposed in [22], where
entanglement between 0 and n is shifted by one for each
repetition and role of control and target qubits are swapped
at each layer.

1https://qiskit.org/documentation/apidoc/circuit library.html



PQC WidthRepetitions Entanglement
SU2 [1, 5] [1, 5] {full, linear, SCA, circular}
RealAmplitudes [1, 5] [1, 5] {full, linear, SCA}
PauliTwo [1, 5] [1, 5] {linear}
ExcitationPreserving [1, 5] [1, 5] {full, linear, SCA}

TABLE I: Target PQCs

a) SU2: Circuit SU2 is summarized in Figure 5. For each
qubit, two rotations are performed, applying gate RY and RZ

in serie, depending on input Θ. Results are then entangled
according to the chosen entanglement protocol for the number
of block repetition performed.

q0 : RY (θ[0]) RZ (θ[2]) • RY (θ[4]) RZ (θ[6])

q1 : RY (θ[1]) RZ (θ[3]) RY (θ[5]) RZ (θ[7])

Fig. 5: SU2, (width=2, repetitions=1)

b) RealAmplitudes (RA): RA is visualized in Figure 6
and it is often used as Ansatz in chemistry applications. It
is composed of layers of rotations on the Y axis, entangled
according to the chosen entanglement protocol.

q0 : RY (θ[0]) • RY (θ[2])

q1 : RY (θ[1]) RY (θ[3])

Fig. 6: RA, (width=2, repetitions=1).

c) Pauli Two-Design (P2): P2 has been proposed in [23]
and it is often used in quantum machine learning litera-
ture [24]. As in Figure 7, it is composed of layers of rotations
and entanglements, where first rotation before performed on
the Y axis with π

4 as parameter, while the subsequent rotation
on Z is based on input θ.

q0 : RY (π4 ) RX (θ[0]) • RZ (θ[2])

q1 : RY (π4 ) RZ (θ[1]) • RX (θ[3])

Fig. 7: P2, (width=2, repetitions=1).

d) ExcitationPreserving (ExP): ExP PQC, visualized in
Figure 8, consists of layers of Z rotations and 2−qubits en-
tanglement. Entanglement is defined by selected entanglement
protocol.

q0 : RZ (θ[0])
RXX (θ[2])

0

RYY (θ[2])

0
RZ (θ[3])

q1 : RZ (θ[1])
1 1

RZ (θ[4])

Fig. 8: ExP, (width=2, repetitions=1).

Node id Version Processor Qubits
ibmq manila 1.0.29 Falcon r5.11L 5
ibmq santiago 1.4.1 Falcon r4L 5
ibm lagos 1.0.27 Falcon r5.11H 7
ibm jakarta 1.0.33 Falcon r5.11H 7

TABLE II: Selected Quantum Machines.

2) Optimizer: Similarly to [25], we select three off-the-
shelf optimizers for our evaluation:

a) Constrained Optimization BY Linear Approximations
(COBYLA): COBYLA performs linear approximations of both
target and constraints function, aiming at optimizing a simplex
within a trust region of the parameter space.

b) SPSA: SPSA is a stochastic optimization methods
focusing on measurement of objective function. Gradient ap-
proximation is performed by taking two measurements of the
objective function per iteration, regardless of the problem size.

c) Gradient Descent: Minimizes target objective func-
tion f by iteratively moving in the direction of steepest
descent, defined by the negative of the gradient. Gradient is
updated according to the learning factor, which we set to 0.1
in our experiments.

B. Target machines

Our goal is to select the hyperparameters that allow to
reduce error of VQE on different machines. To this end,
we collect execution data of VQE on different machines for
different hyperparameters configuration. Details of machines
selected for our experiments are summarized in Table II.
Machines are provided by the IBM Quantum Researchers pro-
gram (http://quantum-computing.ibm.com) and feature differ-
ent number of qubits and noise models. We simulate different
machines using Qiskit aer_simulator backend, to which
we provide the noise model of target machine as input.

C. Software APIs

We implement our benchmarks using Python 3.9 and IBM
Qiskit 0.36. The choice of Qiskit for our evaluation, as it
allows to exploit state-of-the-art IBM machines and IBM
Quantum Runtime API. Also, it provides implementation of
VQE and allows to set up all parameters needed by our
benchmarks, including state preparation, PQC and optimizer.
Analysis of data is performed using scikit-learn 1.02 func-
tions for MSE. Experiments’ source code is available at the
repository https://github.com/vindem/quantumMD.

VI. RESULTS

We evaluate our approach in different ways: first, we focus
on generation of distance matrix, which is performed by means
of C-SWAP test described in Section IV-A. Afterwards, we
evaluate calculation of LEBM described in Section IV-B.
Finally, we integrate both approaches in target application
described in Section III-B.



Node id Average Variance
MSE

ibmq manila 0.2317 0.000199
ibmq santiago 0.2832 0.000264
ibm lagos 0.2249 0.000190
ibm jakarta 0.2037 0.000149

TABLE III: CSWAP MSE on Different Machines.

A. Distance Matrix Generation

To evaluate generation of distance matrix, we calculate the
MSE between dQij , i.e., dij calculated with CSWAP test and
dij . The input for CSWAP test are segments of different
sizes (number of atoms), over which we calculate Euclidean
distance as specified by Equation 6. Once we calculate Eu-
clidean distance both on classic and quantum machines, we
generate two matrices: BQ

IJ , which is the matrix BIJ , as
defined in Equation 3, but with Euclidean distances calculated
on the quantum machine, and the classic counterpart, defined
as BIJ . Finally, we calculate the MSE between correspondings
bij in each matrix. MSE is calcualted between 100 pairs of
randomly generated matrices, variating segment size in the set
{1, 2, 4, 8, 16}. Table III shows result of evaluation for gen-
eration of distance matrix on quantum machines described in
Table II. We show the average MSE, calculated between MSE
with different segment sizes. Higher MSE for ibmq santiago
is probably dependent by the older quantum processor in
comparison with other machines. The variance of MSE also
shows that MSE is not affected by different segment sizes.

Results show that CSWAP results are very close to the
classic values, with average MSE between 0.2 − 0.3 in all
the examined cases. We also observe that MSE does not
change, regardless the increasing number of qubit required
by the quantum circuit to perform calculation on segments of
increasing sizes.

B. Hyperparameters Selection

Benchmarking results for VQE are visualized in Figures 9-
11. For brevity, we focus only on the most important re-
sults, while complete experiment data are available at Zenodo
repository2. We show the value of MSE between the classic
and the quantum value, with respect to the number of qubits,
since higher number of qubits introduce a higher noise in the
system. In the process of our experiments, we noticed that
variating optimizer has minimum effect on VQE results, which
is mostly affected by the selected PQC. Regarding PQC, as
shown by Figure 10, the lower MSE is achieved by using
linear entanglement, therefore we show only results for linear
entanglement and COBYLA optimizer for brevity. Also, there
is no correlation between number of circuit repetitions (reps)
and reduction of MSE, since, as shown by Figure 11, for each
PQC there is a value of reps, which we call reps∗, which
guarantees the minimum value for MSE, and increasing this
value does not provide any improvement in MSE. Actually,
while some PQCs seem to achieve lower MSE with higher

2https://zenodo.org/record/6477732#.YpdEhzlByWg

number of repetitions (i.e., P2, RA in Figures 11b, 11c), others
achieve lower MSE at higher reps, others (S2, Figure 11a)
have lower MSE for lower reps, while ExP MSE seems to
not be affected at all by reps parameter (Figure 11d). As a
consequence, in Figure 9, we set the value of reps to reps∗

for each PQC. From our benchmarks we can see that the PQC
is the parameter which mostly impact the error, with different
values of reps∗ depending on the amount of qubits of VQE
input, which depends on the size of the input matrix.

Based on these results, we plug our calculation of
VQE inside target MD application. To validate our ap-
proach, we collect execution data for selected PQCs on
ibmq_qasm_simulator backend to identify Π∗

mse and
examine its convergence to the classic value with increasing
number of iterations of different optimizers. We also eval-
uate MSE for different Π configuration. Results are shown
in Figure 12. In Figure 12a, we observe convergency of
LEBM calculation with increasing number of iterations for
selected optimizers. While all algorithms are converging, we
observe a slightly faster convergence for COBYLA in this
scenario, therefore we employ this optimizer for evaluation of
hyperparameter selection. Results for hyperparameter selection
in target use case are visualized in Figure 12b, where we
compare the results of hyperparameter selections Π∗

mse with
other configurations. We can notice that results of Π∗

mse affect
value of MSE up to 33%, showing the necessity of accurate
selection of hyperparameters to improve VQE convergence.

VII. RELATED WORK

Quantum computing and its applications to scientific com-
puting have attracted lot of interest from the scientific com-
munity. [26] is one of the first works considering the use of
quantum computers for MD simulations. More precisely, in [2]
possible advantages of application of quantum computing
for modelling of scientific systems, including the native 3D
modelling offered by quantum computing. Also, in [27] it is
discussed how many problems inherent to MD simulations can
be more efficiently solved by applying quantum computing
methods. More focused on MD simulation, [28] provides
a quantum computing perspective and discusses advantages
of VQAs for MD simulations. In [29], ACSE, a quantum
computing method for calculation of eigenvalues in MD
simulations is proposed, without considering VQE. Also, in
addition to eigenvalue calculation, we consider also calculation
of inter-atomic distances applying CSWAP-test, which has
been succesfully used in Quantum-ML applications such as k-
Neareast Neighbor [19]. Similar to our work, [30] provides an
implementation of MD simulation on IBM quantum machines,
using VQE to compute ground state of the molecular system,
without examining VQE hyperparameters. In this work, we
focus on decomposition of a scientific workflow on a hybrid
system, identifying tasks that could benefit from execution on
quantum hardware and design methods to perform execution
of these tasks on quantum machines.

A thorough discussion about VQAs and their applications
is given in [5]. However, this paper does not provide insights



1 2 3 4 5
0

20

40

60

80

Width

M
SE

P2
SU2
RA
ExP

(a) ibm_jakarta

1 2 3 4 5
0

20

40

60

80

Width

M
SE

P2
SU2
RA
ExP

(b) ibm_lagos

1 2 3 4 5
0

20

40

60

80

Width

M
SE

P2
SU2
RA
ExP

(c) ibmq_manila

1 2 3 4 5

0

20

40

60

80

Width

M
SE

P2
SU2
RA
ExP

(d) ibmq_santiago

Fig. 9: MSE w.r.t. Qubits, mq ∈ Table II. K = {P2, SU2, RA, ExP}, o = COBYLA, reps = reps∗, linear entanglement.
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Fig. 11: MSE w.r.t. Qubits, mq ∈ {ibm jakarta}. K = {P2, SU2, RA, ExP}, o = COBYLA, reps = [1, 5], linear entanglement.

on hyperparameters’ selection and methods to improve VQA
execution. Concerning benchmarking of VQAs, [31] Quantum
Approximate Optimization Algorithm algorithm is analyzed
in detail on different applications, focusing however more on
transpilation-related parameters (i.e., number of CNOT gates
of transpiled circuit) than on higher level metrics, i.e., runtime
or accuracy. Very similarly to this work, in [25] a study about
optimizers’ hyperparameters for different VQAs is performed,
which we further extend by considering different optimizers
and also quantum-hardware related parameters, such as PQCs.

A thorough analysis of VQE is provided in [32]. In [33], a
method to improve VQE using adiabatic quantum computing
is discussed. Measurement-based methods to improve VQE
are instead discussed in [34]. Our work provides a model of
execution for VQE and identifies the main hyperparameters
affecting its execution.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we describe the first steps towards execution
of scientific applications in hybrid quantum systems. First,
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Fig. 12: Evaluation on Target Use Case.

we identify tasks that can be executed on quantum machines
and guarantee a future quantum advantage. Based on that, we
design methods to execute selected tasks on quantum machines
and perform extensive evaluation of proposed methods. Results
of our evaluation and data of execution on quantum machines
are available online and could provide a valuable support
to computer scientists which are interested in working with
quantum machines. Finally, we plug identified methods into a
real MD application, showing the feasibility of our approach.

In future, we plan to include a wider range of hyperpa-
rameters, which might require to employ more sophisticated
methods for hyperparameter selections, i.e., Bayesian Opti-
mization or Grid Search. Also, we will investigate AI-assisted
compilation of quantum circuits to improve mapping on target
quantum hardware. Finally, we plan to design methods for
software-assisted design of VQAs and PQCs, to support future
quantum developers in the use of hybrid quantum systems.
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[8] A. Hospital, J. R. Goñi, M. Orozco, and J. L. Gelpı́, “Molecular
dynamics simulations: advances and applications,” Advances and
applications in bioinformatics and chemistry : AABC, vol. 8, pp. 37–47,
11 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26604800

[9] A. Barducci, M. Bonomi, and M. Parrinello, “Metadynamics,” WIREs
Computational Molecular Science, vol. 1, no. 5, pp. 826–843,
2011. [Online]. Available: https://wires.onlinelibrary.wiley.com/doi/abs/
10.1002/wcms.31

[10] T. Johnston, B. Zhang, A. Liwo, S. Crivelli, and M. Taufer, “In situ data
analytics and indexing of protein trajectories,” Journal of Computational
Chemistry, vol. 38, no. 16, pp. 1419–1430, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24729

[11] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum random access
memory,” Phys. Rev. Lett., vol. 100, p. 160501, Apr 2008. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.100.160501

[12] S. Aaronson, “Bqp and the polynomial hierarchy,” 2009. [Online].
Available: https://arxiv.org/abs/0910.4698

[13] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms
for supervised and unsupervised machine learning,” 2013. [Online].
Available: https://arxiv.org/abs/1307.0411

[14] A. Basheer, A. Afham, and S. K. Goyal, “Quantum k-nearest neighbors
algorithm,” 2020. [Online]. Available: https://arxiv.org/abs/2003.09187

[15] P. Li and B. Wang, “Quantum neural networks model based on
swap test and phase estimation,” Neural Networks, vol. 130, pp.
152–164, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0893608020302446

[16] M. Schuld and F. Petruccione, Supervised Learning with Quantum
Computers, 1st ed. Springer Publishing Company, Incorporated, 2018.

[17] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum
fingerprinting,” Phys. Rev. Lett., vol. 87, p. 167902, Sep 2001. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.87.167902

[18] D. Kopczyk, “Quantum machine learning for data scientists,” 2018.
[Online]. Available: https://arxiv.org/abs/1804.10068

[19] N. Wiebe, A. Kapoor, and K. M. Svore, “Quantum algorithms for
nearest-neighbor methods for supervised and unsupervised learning,”
Quantum Info. Comput., vol. 15, no. 3–4, p. 316–356, mar 2015.

[20] R. LaRose and B. Coyle, “Robust data encodings for quantum



classifiers,” Phys. Rev. A, vol. 102, p. 032420, Sep 2020. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.102.032420

[21] S. Resch and U. R. Karpuzcu, “Benchmarking quantum computers and
the impact of quantum noise,” 2019.

[22] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms,” Advanced Quantum Technologies, vol. 2, no. 12,
p. 1900070, oct 2019.

[23] Y. Nakata, C. Hirche, C. Morgan, and A. Winter, “Unitary 2-designs
from random x-and z-diagonal unitaries,” Journal of Mathematical
Physics, vol. 58, no. 5, p. 052203, 2017.

[24] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven,
“Barren plateaus in quantum neural network training landscapes,” Nature
communications, vol. 9, no. 1, pp. 1–6, 2018.

[25] X. Bonet-Monroig, H. Wang, D. Vermetten, B. Senjean, C. Moussa,
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