
Author's personal copy

Future Generation Computer Systems 32 (2014) 54–68

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An interoperable and self-adaptive approach for SLA-based service virtualization
in heterogeneous Cloud environments
A. Kertesz a,∗, G. Kecskemeti a, I. Brandic b

a MTA SZTAKI, H-1518 Budapest, P.O. Box 63, Hungary
b Vienna University of Technology, A-1040 Vienna, Argentinierstr. 8/181-1, Austria

a r t i c l e i n f o

Article history:
Received 30 October 2011
Received in revised form
6 April 2012
Accepted 17 May 2012
Available online 28 May 2012

Keywords:
Cloud computing
Service virtualization
SLA negotiation
Service brokering
On-demand deployment
Self-management

a b s t r a c t

Cloud computing is a newly emerged computing infrastructure that builds on the latest achievements
of diverse research areas, such as Grid computing, Service-oriented computing, business process
management and virtualization. An important characteristic of Cloud-based services is the provision
of non-functional guarantees in the form of Service Level Agreements (SLAs), such as guarantees on
execution time or price. However, due to systemmalfunctions, changing workload conditions, hard- and
software failures, established SLAs can be violated. In order to avoid costly SLA violations, flexible and
adaptive SLA attainment strategies are needed. In this paper we present a self-manageable architecture
for SLA-based service virtualization that provides a way to ease interoperable service executions in a
diverse, heterogeneous, distributed and virtualized world of services. We demonstrate in this paper that
the combination of negotiation, brokering and deployment using SLA-aware extensions and autonomic
computing principles are required for achieving reliable and efficient service operation in distributed
environments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The newly emerging demands of users and researchers call
for expanding service models with business-oriented utilization
(agreement handling) and support for human-provided and
computation-intensive services [1]. Though Grid Computing [2]
has succeeded in establishing production Grids serving various
user communities, and both Grids and Service Based Applications
(SBAs) already provide solutions for executing complex user
tasks, they are still lacking non-functional guarantees. Providing
guarantees in the form of Service Level Agreements (SLAs) is also
highly studied in Grid Computing [3–5], but they have failed to be
commercialized and adapted for the business world.

Cloud Computing [1] is a novel infrastructure that focuses
on commercial resource provision and virtualization. These
infrastructures are also represented by services that are not only
used but also installed, deployed or replicated with the help
of virtualization. These services can appear in complex business
processes, which further complicates the fulfillment of SLAs. For
example, due to changing components, workload and external
conditions, hardware, and software failures, already established

∗ Corresponding author.
E-mail addresses: keratt@inf.u-szeged.hu, keratt@sztaki.hu (A. Kertesz),

kecskemeti@sztaki.hu (G. Kecskemeti), ivona@infosys.tuwien.ac.at (I. Brandic).

SLAs may be violated. Frequent user interactions with the system
during SLA negotiation and service executions (which are usually
necessary in case of failures), might turn out to be an obstacle
for the success of Cloud Computing. Thus, there is demand for
the development of SLA-aware Cloudmiddleware, and application
of appropriate strategies for autonomic SLA attainment. Despite
business-orientation, the applicability of Service-level agreements
in the Cloud field is rarely studied yet [6]. Most of the existing
works address provision of SLA guarantees to the consumer and
not necessarily the SLA-based management of loosely coupled
Cloud infrastructure. In such systems, it is hard to react to
unpredictable changes and localize, where the failures have
happened exactly, what is the reason for the failure and which
reaction should be taken to solve the problem. Such systems are
implemented in a proprietary way, making it almost impossible to
exchange the components (e.g. use another version of the broker).

Autonomic Computing is one of the candidate technologies
for the implementation of SLA attainment strategies. Autonomic
systems require high-level guidance from humans and decide
which steps need to be done to keep the system stable [7]. Such
systems constantly adapt themselves to changing environmental
conditions. Similar to biological systems (e.g. human body)
autonomic systems maintain their state and adjust operations
considering their changing environment. Usually, autonomic
systems comprise one or more managed elements e.g. QoS
elements.

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.05.016



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 55

Fig. 1. General architecture of an autonomic system.

An important characteristic of an autonomic system is an
intelligent closed loop of control. As shown in Fig. 1, the Autonomic
Manager (AM) manages the element’s state and behavior. It is able
to sense state changes of the managed resources and to invoke an
appropriate set of actions to maintain some desired system state.
Typically control loops are implemented as MAPE (monitoring,
analysis, planning, and execution) functions [7]. The monitor
collects state information and prepares it for analysis. If deviations
to the desired state are discovered during the analysis, the
planner elaborates change plans, which are passed to the executor.
For the successful implementation of the autonomic principles
to loosely coupled SLA-based distributed system management,
the failure source should be identified based on violated SLAs,
and firmly located considering different components of the
heterogeneousmiddleware (virtualization, brokering, negotiation,
etc. components). Thus, once the failure is identified, Service Level
Objectives (SLOs) can be used as a guideline for the autonomic
reactions.

In this paper we propose a novel holistic architecture con-
sidering resource provision using a virtualization approach com-
bined with business-oriented utilization used for SLA agreement.
Thus, we provide an SLA-coupled infrastructure for on-demand
service provision based on SLAs. First we gather the requirements
of a unified service architecture, then present our solution called
SLA-based Service Virtualization (SSV) built on agreement negoti-
ation, brokering and service deployment combined with business-
oriented utilization. We further examine this architecture and
investigate how previously introduced principles of Autonomic
Computing appear in the basic components of the architecture in
order to cope with changing user requirements and on-demand
failure handling. After presenting our proposed solution, we eval-
uate the performance gains of the architecture through a more
computationally-intensive biochemical use case.

The main contributions of this paper include: (i) the presenta-
tion of the novel loosely coupled architecture for the SLA-based
Service Virtualization and on-demand resource provision, (ii) the
description of the architecture including meta-negotiation, meta-
brokering, brokering and automatic service deployment with respect
to the principles of autonomic computing, and (iii) the evaluation
of the SSV architecture with a biochemical case study using simu-
lations.

In the following section we summarize related works. Then, in
Section 3,we provide the requirement analysis for autonomous be-
havior in the SSV architecture through two scenarios. Afterwards,
in Section 4, we introduce the SSV architecture, while in Section 5
the autonomous operations of the components are detailed. In
Section 6 we present the evaluation of the SSV architecture with
a biochemical case study in a heterogeneous simulation environ-
ment. Finally, Section 7 concludes the paper.

2. Related work

Though Cloud Computing is highly studied, and a large body of
work has been done trying to define and envision the boundaries

of this new area, the applicability of Service-level agreements in
the Cloud and in a unified distributedmiddleware is rarely studied.
The envisioned framework in [8] proposes a solution to extend
the web service model by introducing and using semantic web
services. The need for SLA handling, brokering and deployment
also appears in this vision, but they focus on using ontology
and knowledge-based approaches. Most of the related works
consider virtualization approaches [9–11] without taking care
of agreements or concentrate on SLA management neglecting
the appropriate resource virtualizations [12,5]. Works presented
in [13,14] discuss incorporation of SLA-based resource brokering
into existing Grid systems, but they do not deal with virtualization.
Venugopal et al. propose a negotiation mechanism for advanced
resource reservation using the alternate offers protocol [15];
however, it is assumed that both partners understand the alternate
offers protocol. Lee et al. discusses application of autonomic
computing to the adaptive management of Grid workflows [16]
with MAPE (Monitoring, Analysis, Planning, Execution) decision
making [7], but they also neglect deployment and virtualization.
The work by Van et al. [17] studied the applicability of autonomic
computing to Cloud-like systems, but they almost exclusively focus
on virtualization issues like VM packing and placement.

In [18], Buyya et al. suggest a Cloud federation oriented, just-in-
time, opportunistic and scalable application services provisioning
environment called InterCloud. They envision utility oriented
federated IaaS systems that are able to predict application service
behavior for intelligent down- and up-scaling infrastructures.
Then, they list the research issues of flexible service to resource
mapping, user- and resource-centric QoS optimization, integration
with in-house systems of enterprises, and scalable monitoring of
system components. Though they address self-management and
SLA handling, the unified utilization of other distributed systems is
not studied. Recent Cloud Computing projects, e.g. Reservoir [19]
and OPTIMIS [20], address specific research topics like Cloud
interoperability, but they do not consider autonomous SLA
management across diverse distributed environments. Comparing
the currently available solutions, autonomic principles are not
implemented in a adequate way because they are lacking an
SLA-coupled Cloud infrastructure, where failures andmalfunctions
can be identified using well defined SLA contracts.

Regarding high-level service brokering, LA Grid [21] developers
aim at supporting grid applications with resources located and
managed in different domains. They define broker instances,
each of them collecting resource information from its neighbors
and saving the information in its resource repository. The Koala
grid scheduler [22] was redesigned to inter-connect different
grid domains. They use a so-called delegated matchmaking
(DMM), where Koala instances delegate resource information
in a peer-to-peer manner. Gridway introduced a Scheduling
Architectures Taxonomy to form a grid federation [23,24], where
Gridway instances can communicate and interact through grid
gateways. These instances can access resources belonging to
different Grid domains. Comparing the previous approaches, we
can see that all of them use high level brokering that delegates
resource information among different domains, broker instances
or gateways. These solutions are almost exclusively used in Grids;
they cannot co-operate with different brokers operating in pure
service-based or Cloud infrastructures.

Current service deployment solutions do not leverage their
benefits on higher level. For example the Workspace Service
(WS) [9] as a Globus incubator project supports a wide range
of scenarios involving virtual workspaces, virtual clusters and
service deployment from installing a large service stack to
deploying a single WSRF service if the Virtual Machine (VM)
image of the service is available. It is designed to support several
virtual machines. The XenoServer open platform [10] is an open



Author's personal copy

56 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

distributed architecture based on the XEN virtualization technique
aiming at global public computing. The platform provides services
for server lookup, registry, distributed storage and a widely
available virtualization server. Also the VMPlants [11] project
proposes an automated virtualmachine configuration and creation
service which is heavily dependent on software dependency
graphs, but this project stays within cluster boundaries.

3. Use case and requirements for SLA-coupled autonomic cloud
middleware

Deployment and runtime management in cloud-like environ-
ments aim at providing or modifying services in a dynamic way
according to temporal, spatial or semantic requirements. Among
many other purposes, it has also a strong relation with adapta-
tion and self-management. To gather the requirements for an au-
tonomic service virtualization environment we refer tomotivating
scenarios.

3.1. Requirement analysis for a transparent, autonomic service
virtualization

The aim of this section is to investigate the requirements of the
self-management aspects of the runtime management of service
virtualization. Temporal provision of services requires certain
infrastructure features that we classified into three groups. There
must be
• a negotiation phase where it is specified which negotiation

protocols can be used, which kind of service has to be invoked,
what are the non-functional conditions and constraints (tem-
poral availability, reliability, performance, cost, etc.);

• abrokering phasewhich selects available resources that can be
allocated for providing the services. These resources can be pro-
vided in many ways: Clouds (virtualized resources configured
for a certain specification and service level guarantees), clus-
ters or local Grids (distributed computing power with limited
service level guarantees) or volunteer computing resources (no
service level guarantees at all).

• Finally, during the deployment phase services have to be
prepared for use on the selected resources in an automatic
manner.

In the following we refer to two motivating scenarios to gather
requirements from, and exemplify the need for an autonomous
service virtualization solution.
Scenario 1. There are certain procedures in various activities that
may require specific services and resources in an ad-hoc, temporal
way. Generally, there is no reason to provide these services in a
static 24/7 manner with performance guarantees; instead, these
services should be created and decommissioned in a dynamic, on-
demand way for the following reasons:
• These tasks represent fundamentally different computations

that cannot be re-used or composed, potentially not even
overlapped, e.g. air tunnel simulation, crash test analysis,
various optimization procedures, and so on. These services
must be provided independently from each other in a well
defined and disjoint time frame.

• There is no need to dedicate certain resources to these activities
as they occur rarely or at least infrequently. For example,
resources used by the optimization services can be re-used for
other purposes if they are not required in the foreseeable future.

Scenario 2. Similarly to the previous case, if we think of
using real life products, we also face problems that require an
autonomic service management infrastructure. For example, in a
car navigation scenario there are services that do not need to,
or cannot be, provided in a static, permanent way. Instead, these

Fig. 2. SSV architecture.

services should be created and decommissioned in an adaptive,
dynamic or on-demand way for the following reasons:
• There is no need to dedicate certain resources to these activities

as they occur rarely or at least infrequently. As an example this
happens when an accident causes a traffic jam that causes all
the surrounding navigation systems to request services from
the GPS unit provider. This situation however does not last
longer than the last carmoving away from the problematic area
with the help of the unit.

• It is possible that certain services are needed upon a certain
event, e.g., only in case the testing phase do not complete
successfully specific simulation services have to be invoked.

• As some ad-hoc services may be mobile, they cannot be
assumed constant. For example, navigation systems offer
services within the ad-hoc network and the network splits into
two disjunct parts, then the availability of the offered services
should be ensured in both parts.

• In certain cases, dynamic deployment of a service that is
not available locally may be necessary. For example, the GPS
unit is used to broadcast live information by the customer
(like a radio transmission) towards the navigation system
provider that might not have enough bandwidth to distribute
the content towards its other users. Therefore the provider
deploys a repeating service right next to the source. This service
will serve the consumers and even enable re-encoding the
transmission for the different needs of the different users,
meanwhile demanding small bandwidth and processing power
from the broadcaster itself.

4. The autonomic, SLA-based service virtualization architecture

According to the requirements introduced in the previous
section, here we present a unified service architecture that
builds on three main areas: agreement negotiation, brokering and
service deployment using virtualization. We suppose that service
providers and service consumers meet on demand and usually do
not know about the negotiation protocols, document languages or
required infrastructure of the potential partners. Firstwe introduce
the general architecture naming the novelties and open issues,
then we detail the aforementioned three main areas with respect
to the shown architecture. Fig. 2 shows our proposed, general
architecture called SLA-based Service Virtualization (SSV).

4.1. The SSV architecture and the roles of its components

The main components of the architecture and their roles are
gathered in Table 1.



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 57

Table 1
Roles in SSV architecture.

Abbreviation Role Description

U User A person, who wants to use a service
MN Meta-negotiator A component that manages Service-level agreements. It mediates between the user and the Meta-Broker,

selects appropriate protocols for agreements; negotiates SLA creation, handles fulfillment and violation.
MB Meta-broker Its role is to select a broker that is capable of deploying a service with the specified user requirements.
B Broker It interacts with virtual or physical resources, and in case the required service needs to be deployed it interacts

directly with the ASD.
ASD Automatic service deployment It installs the required service on the selected resource on demand
S Service The service that users want to deploy and/or execute
R Resource Physical machines, on which virtual machines can be deployed/installed

Fig. 3. Component interactions in the SSV architecture.

The sequence diagram in Fig. 3 reveals the interactions of the
components and the utilization steps of the architecture, which are
detailed in the following:

• User starts a negotiation for executing a service with certain
QoS requirements (specified in a Service Description (SD) with
an SLA)

• MN asks MB, if it could execute the service with the specified
requirements

• MBmatches the requirements to the properties of the available
brokers and replies with an acceptance or a different offer for
renegotiation

• MN replies with the answer of MB. Steps 1–4 may continue for
renegotiations until both sides agree on the terms (to bewritten
to an SLA document)

• User calls the service with the SD and SLA
• MNpasses SD and the possibly transformed SLA (to the protocol

the selected broker understands) to the MB

• MB calls the selected Broker with SLA and a possibly translated
SD (to the language of the Broker)

• The Broker executes the service with respect to the terms of the
SLA (if needed deploys the service before execution)

• In the final step the result of the execution is reported to the
Broker, the MB, the MN, and finally to the User (or workflow
engine)

Note that this utilization discussion does not reflect cases when
failures occur in the operational processes of the components,
when local adaptation is required. This sequence represents the
ideal execution flow of the SSV architecture. In this case there is
no autonomic behaviour needed; however in the next section we
discuss and head towards the autonomous components and their
effects on this ideal sequence (see Tables 2–4 for details).

While serving requests the architecture also processes back-
ground tasks that are not in the ideal execution path. These are also
presented on Fig. 3. The following background tasks are informa-
tion collecting procedures that provide accurate information about



Author's personal copy

58 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

Table 2
Taxonomy of faults and autonomic reactions for Meta Negotiation.

Fault Autonomic reaction Propagation

Non matching SLA templates SLA Mapping as described in [25] No, handled by the meta-negotiation layer
Non-matching SLA languages Bootstrapping as described in [36] No, handled by the meta-negotiation layer

Table 3
Taxonomy of faults and autonomic reactions in Service brokering.

Fault Autonomic reaction Propagation

Physical resource failure new service selection possible SLA renegotiation or redeployment with ASD
Service failure new service selection possible SLA renegotiation or redeployment with ASD
Wrong service response new service selection possible SLA renegotiation
Broker failure new broker selection possible SLA renegotiation or possible deployment with ASD
No service found by some broker initiate new service deployment deployment with ASD
No service found by some broker new broker selection possible SLA renegotiation
Broker overloading initiate new broker deployment deployment with ASD and possible SLA renegotiation
Meta-broker overloading initiate new meta-broker deployment deployment with ASD

Table 4
Taxonomy of faults and autonomic reactions in Self-Initiated Deployment.

Fault Autonomic reaction Propagation

Degraded service health state Service reconfiguration –
Reconfiguration fails Initiate service cloning with state transfer If the SLA will not be violated notify service broker about change,

otherwise ask for renegotiation
Defunct service Initiate service cloning If the SLA will not be violated notify service broker about change,

otherwise ask for renegotiation
Service decommissioned Offer proxy If the proxy receives request after redirecting the request it also

notifies the broker about the new target to avoid later calls
Proxy lifetime expired Decommission service proxy –

Fig. 4. Autonomic components in the SSV architecture.

the current state of the infrastructure up to the meta-brokering
level:
• ASD monitors the states of the virtual resources and deployed

services (step a)
• ASD reports service availability and properties to its Broker

(step b)
• All Brokers report available service properties to the MB

(step c)

4.2. Autonomically managed service virtualization

The previously presented SSV architecture and the detailed
utilization steps show that agreement negotiation, brokering
and service deployment are closely related and each of them
requires extended capabilities in order to interoperate smoothly.
Nevertheless each part represents an open issue, since agreement
negotiation, SLA-based service brokering and on-demand adaptive
service deployment are not supported by current solutions in

diverse distributed environments. In this subsection we focus on
illustrating how autonomic operations appear in the components
of the SSV architecture. Fig. 4 shows the autonomic management
interfaces and connections of the three main components:
agreement negotiation, brokering and service deployment.

We distinguish three types of interfaces in our architecture:
the job management interface, the negotiation interface and the
self-management interface. Negotiation interfaces are typically
used by the monitoring processes of brokers and meta-brokers
during the negotiation phases of the service deployment process.
Self-management is needed to re-negotiate established SLAs
during service execution. The negotiation interface implements
negotiation protocols, SLA specification languages, and security
standards as stated in the meta-negotiation document (see Fig. 5).

Job management interfaces are necessary for the manipulation
of services during execution, for example for the upload of input
data, or for the download of output data, and for starting or
cancelling job executions. Jobmanagement interfaces are provided



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 59

Fig. 5. Example meta negotiation document.

by the service infrastructure and are automatically utilized during
the service deployment and execution processes.

In the next section we will focus on the self-management
interface. The Autonomic manager in the SSV architecture is an
abstract component, that specifies howself-management is carried
out. (Later on use cases in Fig. 9 will reflect how the abstract
Autonomic Manager is realized and used in the three components
of the architecture.) All components of the architecture are notified
about the system malfunction through appropriate sensors (see
Fig. 4). This interface specifies operations for sensing changes of
the desired state and for reacting to those changes. Sensors can be
activated using some notification approach (e.g. implemented by
theWS-Notification standard). Sensorsmay subscribe for a specific
topic, e.g. violation of the execution time. Based on the measured
values as demonstrated in [25] notifications are obtained if
execution time is violated or seems to be violated very soon. After
the activation of the control loop, i.e. propagation of the sensed
changes to the appropriate component, the service actuator reacts
and invokes proper operations, e.g. migration of resources. An
example software actuator used for the meta-negotiations is the
VieSLAF framework [25], which bridges between the incompatible
SLA templates by executing the predefined SLAmappings. Based on
various malfunction cases, the autonomic manager propagates the
reactions to the Meta negotiator, Meta-broker or Automatic Service
Deployer. We discuss the closed loop of control using the example
with meta-negotiations in the next section.

5. Required components to realize the autonomic SSV architec-
ture

In this section we detail three main categories, where the basic
requirements of SLA-based service virtualization arise. We place
these areas in the SSV architecture shown in Fig. 2, and detail
the related parts of the proposed solution. We also emphasize
the interactions among these components in order to build one
coherent system.

In our proposed approach, users describe the requirements for
an SLA negotiation on a high level using the concept of meta-
negotiations. During the meta-negotiation only those services are
selected which understand a specific SLA document language and
negotiation strategy or provide a specific security infrastructure.
After the meta-negotiation process, a meta-broker selects a broker
that is capable of deploying a service with the specified user
requirements. Thereafter, the selected broker negotiates with
virtual or physical resources using the requested SLA document
language andusing the specified negotiation strategy. Once the SLA

negotiation is concluded, service can be deployed on the selected
resource using the virtualization approach.

In Section 5.1 we discuss the meta-negotiation component
and detail the autonomic negotiation bootstrapping and service
mediation scenario. In Section 5.2 we discuss the brokering
functionalities of SSV and present a self-management scenario
for dealing with broker failures. Then, in Section 5.3 we discuss
autonomic service deployment and virtualization for handling
resource and service failures. Finally, in Section 5.4 we discuss the
autonomic capabilities of each SSV layer through representative
use cases.

5.1. Agreement negotiation

Prior Cloud infrastructures, users, who did not have access
to supercomputers or did not have local clusters big enough,
had to rely on Grid systems to execute services requiring high
performance computations. In such environments, users had to
commit themselves to dedicated Grid portals to find appropriate
resources for their services, and on-demand execution was very
much dependent on the actual load of the appropriate Grid. Service
providers and consumers had to communicate using proprietary
negotiation formats supported by the particular portal limiting the
number of services a consumer may negotiate with. Nowadays,
with the emergence of Clouds, service providers and consumers
need to meet each other dynamically and on demand. Novel
negotiation strategies and formats are necessary supporting the
communication dynamics of the present day service invocations.

Before committing themselves to an SLA, the user and the
providermay enter into negotiations that determine the definition
and measurement of user QoS parameters, and the rewards and
penalties for meeting and violating them respectively. The term
‘‘negotiation strategy’’ represents the logic used by a partner to
decide which provider or consumer satisfies his needs best. A
negotiation protocol represents the exchange of messages during
the negotiationprocess. Recently,many researchers have proposed
different protocols and strategies for SLA negotiation in Grids [3].
However, these not only assume that the parties to the negotiation
understand a common protocol but also assume that they share a
commonperception about the goods or services under negotiation.
In reality however, a participant may prefer to negotiate using
certain protocols for which it has developed better strategies, over
others. Thus, the parties to a negotiation may not share the same
understanding that is assumed by the earlier publications in this
field.

In order to bridge the gap between different negotiation
protocols and scenarios, we propose a so-called meta-negotiation
architecture [4]. Meta-negotiation is needed by means of a meta-
negotiation document where participating parties may express:
the pre-requisites to be satisfied for a negotiation, for example
a specific authentication method required or terms they want to
negotiate on (e.g. time, price, reliability); the negotiation protocols
and document languages for the specification of SLAs that they
support; and conditions for the establishment of an agreement, for
example, a required third-party arbitrator. These documents are
published into a searchable registry through which participants
can discover suitable partners for conducting negotiations. In our
approach, the participating parties publish only the protocols and
terms while keeping negotiation strategies hidden from potential
partners.

The participants publishing into the registry follow a common
document structure that makes it easy to discover matching
documents (as shown in Fig. 5). This document structure
consists of the following main sections. Each document is
enclosed within the ⟨meta-negotiation⟩...⟨/meta-negotiation⟩ tags.
The document contains an ⟨entity⟩ element defining contact



Author's personal copy

60 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

Fig. 6. Meta-negotiation in the SSV architecture.

information, organization and a unique ID of the participant. Each
meta-negotiation comprises three distinguishing parts, namely
pre-requisites, negotiation and agreement as described in the
following paragraph.

As shown in Fig. 5, prerequisites define the role a participating
party takes in a negotiation, the security credentials and the
negotiation terms. For example, the security element specifies the
authentication and authorizationmechanisms that the partywants
to apply before starting the negotiation process. For example, the
consumer requires that the other party should be authenticated
through the Grid Security Infrastructure (GSI) [26]. The negotiation
terms specify QoS attributes that a party is willing to negotiate
and are specified in the ⟨negotiation-term⟩ element. As an example,
the negotiation terms of the consumer are beginTime, endTime,
and price. Details about the negotiation process are defined within
the ⟨negotiation⟩ element. Each document language is specified
within ⟨document⟩ element. Once the negotiation has concluded
and if both parties agree to the terms, then they have to sign
an agreement. This agreement may be verified by a third party
organization or may be lodged with another institution who will
also arbitrate in case of a dispute. Fig. 6 emphasizes a meta-
negotiation infrastructure embedded into the SSV architecture
as proposed in Fig. 2. In the following we explain the Meta-
Negotiation infrastructure.

The registry is a searchable repository for meta-negotiation
documents that are created by the participants. The meta-
negotiation middleware facilitates the publishing of the meta-
negotiation documents into the registry and the integration of the
meta-negotiation framework into the existing client and/or service
infrastructure, including, for example, negotiation or security
clients. Besides being a client for publishing and querying meta-
negotiation documents (steps 1 and 2 in Fig. 6), the middleware
delivers necessary information for the existing negotiation clients,
i.e. information for the establishment of the negotiation sessions
(step 4, Fig. 6) and information necessary to start a negotiation
(step 5 in Fig. 6).

5.2. Service brokering

To dealwith heterogeneity and the growing number of services,
special purpose brokers (for human-provided or computation-
intensive services) or distributed broker instances should be
managed together in an interoperable way with a higher-level
mediator, which is able to distribute the load of user requests
among diverse infrastructures. This high-levelmediator (whichwe
call a meta-broker) component in a unified service infrastructure
needs to monitor the states of the services and the performances
of these brokers, since brokers may have various properties, which
should be expressedwith a general description language known by
service consumers. These properties may include static ones, some
of which are specialized for managing human-provided services,
others for computation-intensive or data-intensive services; and
dynamic ones, e.g. if two brokers are managing the same type of
services, someof thesemayhave longer response times, less secure
or more reliable. Information on the available services (e.g. type,
costs, amount) also belongs to this category, since it changes over
time. The broker properties should be stored and updated in a
registry accessible by higher-level managers. The update intervals
of broker state changes and the amount of data transferred should
also be set automatically, with respect to the number of available
services and utilized brokers. Too frequent updates could lead to
an unhealthy state and rare updates cause higher uncertainty and
inefficient management. Therefore this registry should be more
like a local database that makes this higher level brokering able
to decide which broker could provide the fittest service (according
to the consumer requirements and SLA terms).

Self-adaptability also appears at this level: generally a bit
higher uncertainty exists in broker selection compared to service
selection, since the high dynamicity of the broker (and forwarded,
filtered service) properties and availability cause volatility in the
information available at this level. To cope with this issue, several
policies could be defined by sophisticated predicting algorithms,
machine learning techniques or random generator functions.
Load balancing among the utilized brokers should also be taken



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 61

Fig. 7. Meta-broker in the SSV architecture.

into account during broker selection. Finally basic fault tolerant
operations, such as re-selection onbroker failure ormalfunctioning
also need to be handled.

In our proposed SSV architecture Brokers (B) are the basic
components that are responsible for finding the required services
deployed on a specific infrastructure with the help of the ASD.
This task requires various activities, such as service discovery,
matchmaking and interactions with information systems, service
registries, and repositories. There are several brokering solutions
both in Grid [27] and SOAs [28], but agreement support is still an
open issue. In our architecture brokers need to interact with ASDs
and use adaptive mechanisms in order to fulfill the agreement.

A higher-level component is also responsible for brokering
in our architecture: the Meta-Broker (MB) [29]. Meta-brokering
means a higher level resource management that utilizes existing
resource or service brokers to access various resources. In a more
generalizedway, it acts as amediator between users or higher level
tools (e.g. negotiators or workflow managers) and environment-
specific resource managers. The main tasks of this component
are: to gather static and dynamic broker properties (availability,
performance, provided and deployable services, resources, and
dynamic QoS properties related to service execution), to interact
with MN to create agreements for service calls, and to schedule
these service calls to lower level brokers, i.e. match service
descriptions (SD) to broker properties (which includes broker-
provided services). Finally the service call needs to be forwarded
to the selected broker.

Fig. 7 details the Meta-Broker (MB) architecture showing
the required components to fulfill the above mentioned tasks.
Different brokers use different service or resource specification
descriptions for understanding the user request. These documents
need to be written by the users to specify all kinds of service-
related requirements. In case of resource utilization in Grids,
OGF [30] has developed a resource specification language standard
called JSDL [31]. As the JSDL is general enough to describe jobs
and services of different grids and brokers, this is the default
description format of MB. The Translator component of the Meta-
Broker is responsible for translating the resource specification
defined by the user to the language of the appropriate resource
broker that MB selects to use for a given call. These brokers have
various features for supporting different user needs, therefore
an extendible Broker Property Description Language (BPDL) [29]
is needed to express metadata about brokers and their offered
services. The Information Collector (IC) component of MB stores the
data of the reachable brokers and historical data of the previous
submissions. This information showswhether the chosen broker is
available, or how reliable its services are. During broker utilization
the successful submissions and failures are tracked, and regarding
these events a rank is modified for each special attribute in
the BPDL of the appropriate broker (these attributes were listed
above). In this way, the BPDL documents represent and store the

dynamic states of the brokers. In order to support load balancing,
there is an IS Agent (IS refers to Information System) reporting to
the IC, which regularly checks the load of the underlying resources
of each connected broker, and store this data. It also communicates
with the ASDs, and receives up-to-date data about the available
services and predicted invocation times (that are used in the
negotiations). The matchmaking process consists of the following
steps: The MatchMaker (MM) compares the received descriptions
to the BPDL of the registered brokers. This selection determines a
group of brokers that can provide the required service. Otherwise
the request is rejected. In the second phase the MM counts a rank
for each of the remaining brokers. This rank is calculated from the
broker properties that the IS Agent updates regularly, and from the
service completion rate that is updated in the BPDL for each broker.
When all the ranks are counted, the list of the brokers is ordered
by these ranks. Finally the first broker of the priority list is selected,
and the Invoker component forwards the call to the broker.

As previously mentioned, three main tasks need to be done by
MB. The first, namely the information gathering, is done by the
IS Agent, the second one is negotiation handling and the third
one is service selection. They need the following steps. During the
negotiation process theMB interacts withMN: it receives a service
request with the service description (in JSDL) and SLA terms (in
the MN document) and looks for a deployed service reachable by
some broker that is able to fulfill the specified terms. If a service is
found, the SLAwill be accepted and theMN notified, otherwise the
SLA will be rejected. If the service requirements are matched and
only the terms cannot be fulfilled, it could continue the negotiation
by modifying the terms and wait for user approval or further
modifications.

In the following we demonstrate how principles of autonomic
computing are applied to this level of the SSV. Brokers are the basic
components that are responsible for finding the required services
with the help of ASD. This task requires various activities, such as
service discovery, matchmaking and interactionswith information
systems and service registries. In our architecture brokers need to
interact with ASD and use adaptive mechanisms in order to fulfill
agreements.

5.3. Service deployment and virtualization

Automatic service deployment (ASD) builds on basic service
management functionalities. It provides the dynamics to service
based applications (SBAs) — e.g. during the SBA‘s lifecycle
services can appear and disappear (because of infrastructure
fragmentation, failures, etc.) without disruption of the SBA’s
overall behavior. The service deployment process is composed
of 8 steps: (i) Selection of the node where the further steps will
take place; (ii) Installation of the service code; (iii) Configuration
of the service instance; (iv) Activation of the service to make it



Author's personal copy

62 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

Fig. 8. Service deployment in SSV.

public; (v) Adaptation of the service configurationwhile it is active;
(vi) Deactivation of the service to support its offline modifications;
(vii) Offline update of the service code to be up-to-date;
after update the new code optionally gets reconfigured; and,
(viii) Decommission of the offline service when it is not needed on
the given host anymore. Automation of deployment is automation
of all these steps.

In this article, even though there could be other services that
are built on top of service deployment, we focus and provide an
overview on the various requirements and tasks to be fulfilled
by the ASD to support the meta-negotiation and meta-brokering
components of the SSV architecture.

Fig. 8 shows the SSV components related to ASD and their
interconnections. The ASD is built on a repository where all
deployable services are stored as virtual appliances (VA). In this
context, virtual appliancemeans everything that is needed in order
to deploy a service on a selected site. The virtual appliance could
be either defined by an external entity or by the ASD’s appliance
extraction functionality [32].

To interface with the broker the ASD publishes in the
repository the deployable and the already offered services. Thus
the repository helps to define a schedule to execute a service
request taking into consideration those sites where the service has
been deployed andwhere it could be executed but has not yet been
installed. If the requested services are not available, the broker
checks whether any of the resources can deliver the service taking
into account the possible deployments.

According to the OGSA-Execution Planning Services (EPS) [33]
scenarios, a typical service broker has two main connections with
the outside world: the Candidate Set Generators (CSG), and the
Information Services. The task of the CSG is to offer a list of sites,
which can perform the requested service according to the SLA and
other requirements. Whilst the information services should offer a
general overview about the state of the SBA, Grid or Cloud, in most
cases the candidate set generator is an integral part of the broker.
Thus instead of the candidate set adjustments, the broker queries
the candidate site list as it would do without ASD. Then the broker
would evaluate the list and as a possible result to the evaluation it
would initiate the deployment of a given service. As a result the
service call will be executed as a composed service instead of a
regular call. The composition will contain the deployment task as
its starting point and the actual service call as its dependent task.

Since both the CSG and the brokers heavily rely on the information
system, the ASD can influence their decision through publishing
dynamic data. This data could state service presence on siteswhere
the service is not even deployed.

The selected placement of the ASD depends on the site policies
on which the brokering takes place. In case the site policy requires
a strict scheduling solution then either the CSG or the information
system can be our target. If there is no restriction then the current
broker can be replaced with an ASD extended one. In case the
candidate set generator is altered then it should be a distributed,
ontology-based adaptive classifier to define a set of resources on
which the service call can be executed [34]. The CSG can build
its classification rules using the specific attributes of the local
information systems. Each CSG could have a feedback about the
performance of the schedule made upon its candidates. The ASD
extended CSG should have three interfaces to interoperate with
other CSGs and the broker. First of all, the CSGs could form a
P2P network, which requires two interfaces. The first manages
the ontology of the different information systems by sharing the
classifier rules and the common ontology patterns distributed as
an OWL schema. The second interface supports decision-making
among thepeers. It enables the forwarding of the candidate request
from the broker. The third interface lies between the broker and the
CSGs to support passing the feedback for the supervised learning
technique applied by the CSGs. This interface makes it possible for
the broker to send back a metric packet about the success rate of
the candidates.

The brokers should be adapted to ASD differently depending
on where the ASD extensions are placed. If both the CSG’s and
the broker’s behavior is changed then the broker can make
smarter decisions. After receiving the candidate site set, the broker
estimates the deployment and usage costs of the given service per
candidate. For the estimation it queries the workspace service (WS
— provided by the Nimbus project) that offers the virtualization
capabilities – virtual machine creation, removal and management
– of a given site as a service. This service should accept cost
estimate querieswith a repository entry (VA) reference as an input.
The ASD should support different agents discovering different
aspects of the deployment. If only the broker’s behavior is changed,
and the CSG remains untouched, then the ASD would generate
deployment service calls on overloaded situations (e.g. when SLA
requirements are endangered). These deployment service calls
should use the workspace service with the overloaded service’s
repository reference.

Finally it is possible to alter the information system’s behavior.
This way the ASD provides information sources of sites which
can accept service calls after deployment. The ASD estimates and
publishes the performance related entries (like estimated response
time) of the information system. These entries are estimated for
each service and site pair, and only those are published which are
over a predefined threshold.

Regarding component interactions, the ASD needs to be ex-
tended with the following in order to communicate with brokers:
Requested service constraints have to be forced independently
from which Virtual Machine Monitor (or hypervisor [35]) is used.
To help the brokersmaking their decisions aboutwhich site should
be used the ASD has to offer deployment cost metrics which can
even be incorporated on higher level SLAs. The ASD might initiate
service deployment/decommission on its ownwhen it can prevent
service usage peaks/lows; to do so it should be aware of the agree-
ments made on higher levels.

In SSV there is a bidirectional connection between the ASD and
the service brokers. First the service brokers could instruct ASD to
deploy a new service (wediscussed this in detail in Fig. 8). However,
deployments could also occur independently from the brokers as
explained in the following. After these deployments the ASD has



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 63

Fig. 9. Use cases for autonomic processes in the SSV architecture.

tonotify the corresponding service brokers about the infrastructure
changes. This notification is required, because information systems
cache the state of the SBA for scalability. Thus even though a service
has just been deployed on a new site, the broker will not direct
service requests to the new site. This is especially needed when
the deployment was initiated to avoid an SLA violation.

5.4. Autonomous case studies in the SSV architecture

This subsection introduces how the self-management and
autonomous capabilities of the SSV architecture are used in
representative use cases in each SSV layer. Fig. 9 summarizes
the SSV components and the corresponding self-management
examples.

5.4.1. Negotiation bootstrapping case study
A taxonomy of possible faults in this part of the architecture and

the autonomic reactions to these faults are summarized in Table 2.
Before using the service, the service consumer and the service

provider have to establish an electronic contract defining the
terms of use. Thus, they have to negotiate the detailed terms of
contract, e.g. the execution time of the service. However, each
service provides a unique negotiation protocol, often expressed
using different languages representing an obstacle within the
SOA architecture and especially in emerging Cloud computing
infrastructures [1]. We propose novel concepts for automatic
bootstrapping between different protocols and contract formats
increasing the number of services a consumer may negotiate with.
Consequently, the full potential of publicly available services could
be exploited.

Fig. 9 depicts how the principles of autonomic computing are
to be applied to negotiation bootstrapping [36]. The management
is done through the following steps: as a prerequisite of the
negotiation bootstrapping users have to specify ameta negotiation
(MN) document describing the requirements of a negotiation,
as for example required negotiation protocols, required security
infrastructure, provided document specification languages, etc.
(More on meta negotiation can be read in [4].) The autonomic
management phases are described in the following:

Monitoring.During themonitoring phase all candidate services
are selected, where negotiation is possible or bootstrapping is
required.

Analysis. During the analysis phase the existing knowledge
base is queried and potential bootstrapping strategies are found
(e.g. in order to bootstrap between WSLA and WS-Agreement).

Planning. In case of missing bootstrapping strategies users can
define new strategies in a semi-automatic way.

Execution. Finally, during the execution phase the negotiation
is started by utilizing appropriate bootstrapping strategies.

5.4.2. Broker failures case study
Autonomic behaviour is needed by brokers basically in two

cases: the first one is to survive failures of lower level components,
the second is to regain a healthy state after local failures. A
taxonomy of the sensible failures and the autonomic reactions of
the appropriate brokering components is gathered and shown in
Table 3. The fourth case, the broker failure, is detailed in the next
paragraph. To overcome some of these difficulties brokers in SSV
use the help of the ASD component to re-deploy some services.

In the following we present a case study showing how
autonomic principles are applied to the Meta-Broker to handle
broker failures.

Monitoring. During the monitoring phase all the intercon-
nected brokers are tracked: the IS Agent component of the
Meta-Broker gathers state information about the brokers. The
Matchmaker component also incorporates a feedback-based solu-
tion to keep track of the performances of the brokers.

Analysis.During the analysis phase the Information Collector of
theMeta-Broker is queried for broker availability and performance
results.

Planning. In case of an incoming service request the Match-
Maker component determines the ranking of the broker according
to their performance data gathered in the previous phases, and the
broker with the highest rank is selected. In case of a broker fail-
ure the ranks are recalculated and the failed broker is skipped. If
the SLA cannot be fulfilled by the new broker, SLA renegotiation
is propagated to MN. If no other matching broker is found a new
broker deployment request is propagated to ASD.

Execution. Finally, during the execution phase the selected
broker is invoked.



Author's personal copy

64 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

5.4.3. Self-initiated deployment
To cope with the ever varying demand of the services in

the service based application, service instances should form
autonomous groups based on locality and on the service interfaces
they offer (e.g., neighboring instances offering the same interface
should belong to the samegroup). Using peer-to-peermechanisms,
the group can decide to locally increase the processing power of a
given service. This decision could either involve reconfiguring an
underperforming service instance in the group to allowheavier loads
or it could also introduce the deployment of a new instance to handle
the increased needs.

The smallest autonomous group our architecture can handle
is formed by a single service instance. In the case of such small
groups, we refer to the previously listed techniques as self-
initiated deployment. These single service instances are offering
self-management interfaces (seen in Fig. 4), thus they could
identify erroneous situations that could be solved by deploying
an identical service instance on another site. A summary of the
possible erroneous situations and the autonomic reactions taken
when they arise is summarized in Table 4. In the following, we
describe the autonomous behavior of a single service instance:

Monitoring. During the monitoring phase the ASD identifies
two critical situations: (i) the autonomous service instance
becomes defunct (it is not possible to modify the instance
so it could serve requests again) and (ii) the instance turns
overloaded on such an extent that the underlying virtual machine
cannot handle more requests. To identify these situations, service
instances should offer interfaces to share their health status
independently from an information service. This health status
information does not need to be externally understood; the only
requirement being that other service instances, which offer the
same interface should understand it.

Analysis. The ASD first decides whether the service initiated
deployment is required (because it was overloaded) or its
replication is necessary (because it has became defunct). First in
both cases the ASD identifies the service’s virtual appliance to be
deployed, then in the latter case the ASD also prepares for state
transfer of the service before it is actually decommissioned.

Planning. After the ASD identified the service it generates a
deployment job and requests its execution from the service broker.

Execution. If a service is decommissioned on the original site,
then a service proxy is placed instead on the site. This proxy
forwards the remaining service requests to the newly deployed
service using WS-Addressing. The proxy decommissions itself
when the frequency of the service requests to the proxy decreases
under a predefined value.

6. Evaluation of the SSV architecture in a simulated environ-
ment

In order to evaluate our proposed solution, we decided to
set up a simulation environment, in which the interoperable
infrastructure management of our approach can be examined. For
the evaluation of the performance gains using our proposed SSV
solution, we use a typical biochemical application as a case study
called TINKER Conformer Generator application [37], gridified and
tested on production Grids. The application generates conformers
by unconstrained molecular dynamics at high temperature to
overcome conformational bias then finishes each conformer by
simulated annealing and energy minimization to obtain reliable
structures. Its aim is to obtain conformation ensembles to be
evaluated by multivariate statistical modeling.

The execution of the application consists of three phases. The
first one is performed by a generator service responsible for
the generation of input data for parameter studies (PS) in the
next phase. The second phase consist of a PS sub-workflow, in

which three PS services are defined for executing three different
algorithms (dynamics, minimization and simulated annealing —
we refer to these services and the generator service as TINKERALG),
and an additional PS task that collects the outputs of the three
threads and compresses them (COLL). Finally in the third phase,
a collector service gathers the output files of the PS sub-workflows
and uploads them in a single compressed file to the remote storage
(UPLOAD). These phases contain 6 services, out of which four are
parameter study tasks that are executed 50 times. Therefore the
execution of the whole workflow means 202 service calls. We set
up the simulation environment for executing a similar workflow.

For the evaluation, we have created a general simulation en-
vironment, in which all stages of service execution in the SSV ar-
chitecture can be simulated and coordinated. We have created the
simulation environment with the help of the CloudSim toolkit [38]
(that includes and extendsGridSim). It supportsmodeling and sim-
ulation of large scale Cloud computing infrastructure, including
data centers, service brokers and provide scheduling and alloca-
tion policies. Our general simulation architecture that builds both
on GridSim and on CloudSim can be seen in Fig. 10. On the left-
bottom part we can see the GridSim components used for the sim-
ulated Grid infrastructures, and on the right-bottom part we can
find CloudSim components. Grid resources can be defined with
different Grid types; they consist ofmoremachines towhichwork-
loads can be set, while Cloud resources are organized into Data-
centers, on which Virtual machines can be deployed. Here service
requests are called as cloudlets, which can be executed on virtual
machines. On top of this simulated Grid and Cloud infrastructures
we can set up brokers. Grid brokers can be connected to one or
more resources, on which they can execute so-called gridlets (i.e.
service requests). Different properties can be set to these brokers
and various scheduling policies can also be defined. A Cloud bro-
ker can be connected to a data center with one or more virtual ma-
chines, and it is able to create and destroy virtual machines during
simulation, and execute cloudlets on these virtual machines. The
Simulator class is a CloudSim entity that can generate a requested
number of service requests with different properties, start and run
time. It is connected to the created brokers and is able to submit
these requests to them (so it acts as a user or workflow engine).
It is also connected to the realized meta-broker component of SSV,
the GridMeta-Broker Service through its web service interface and
able to call its matchmaking service for broker selection.

We submitted the simulated workflow in three phases: in the
first round 61 service requests for input generation, then 90 for
executing various TINKER algorithms; finally in the third round
51 calls for output preparation. The simulation environment was
set up similarly to the real Grid environment we used for testing
the TINKERworkflow application. Estimating the real sizes of these
distributed environments, we set up four simulated Grids (GILDA,
VOCE, SEEGRID and BIOMED [39]) with 2, 4, 6 and 8 resources
(each of them had 4machines). Out of the 202 jobs 151 had special
requirements: they use the TINKER library available in the last
three Grids, whichmeans these calls need to be submitted to these
environments, or to Cloud resources (with pre-deployed TINKER
environments). The simulated execution timeof the 150parameter
study services was set to 30 min, the first generator service to
90min, and the other 51 set to 10min. All of the four brokers (set to
each simulated Grid one-by-one) used random resource selection
policy, and all the resources had background workload, for which
the traceswere taken from theGridWorkloads Archive (GWA) [40]
(we used the GWA-T-11 LCG Grid log file). In our simulation
architecturewe used 20 nodes (called resources in the simulation);
therefore we partitioned the logs and created 20 workload files
(out of the possible 170 according to the number of nodes in
the log). The sorting of the job data to files from the original
log file were done continuously, and their arrival times have not



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 65

Fig. 10. Simulation architecture with CloudSim.

Table 5
Deployment times of the different services in the TINKER application.

Service Average deployment time (s) Standard deviation (s)

GEN 8.2 1.34
TINKERALG 8.3 1.48
COLL 6.9 0.84
UPLOAD 6.9 1.21

been modified, and the run time of the jobs also remained the
same. According to these workload files the load of the simulated
environments are shown in Fig. 11 (which are also similar to the
load experienced on the real Grids). One Cloud broker has also
been set up. It managed four virtual machines deployed on a data
center with four hosts of dual-core CPUs. In each simulation all the
jobs were sent to the Meta-Broker to select an available broker for
submission. It takes into account the actual background load and
the previous performance results of the brokers for selection. If
the selected Grid broker had a background load that exceeded a
predefined threshold value, it selected the Cloud broker instead.

Out of the 202 workflow services 151 use TINKER binaries
(three different algorithms are executed 50 times plus one
generator job). These requirements can be formulated in SLA
terms, therefore each service of the workflow has an SLA request.
If one of these requests is sent to the Cloud broker, it has to check
if a virtual machine (VM) has already been created that is able
to fulfill this request. If there is no such VM, it deploys one on-
the-fly. For the evaluation we used three different Cloud broker
configurations: in the first one four pre-deployed VMs are used
— one for each TINKER algorithm (TINKERALG) and one for data
collecting (capable for both COLL and UPLOAD, used by the last 51
jobs). In the second case we used only one pre-deployed VM, and
deployed the rest on-the-fly, when the first call arrived with an
SLA. Finally in the third case, when a VM received more then 15
requests the Cloud broker duplicated it (in order to minimize the
overall execution time).

Regarding on-demand deployment, we have created 4 virtual
appliances encapsulating the four different services our TINKER
workflow is based on (namely TINKERALG, COLL and UPLOAD
— we defined them at the beginning of this section). Then we
have reduced the size of the created appliances with ASD’s virtual
appliance optimization facility. Finally we have deployed each
service 50 times on an 8 node (32 CPU) Eucalyptus [41] cluster, and
measured the interval between the deployment request and the
service’s first availability. Table 5 shows the measurement results
for the TINKERALG, COLL and UPLOAD images. These latencies
were also applied in the simulation environment within the Cloud
broker.

Fig. 11. Workload of simulated Grids.

In order to evaluate the performance of our proposed SSV
solution we compare it to a general meta-brokering architecture
used in Grid environments. Using this approach we created four
simulations: in the first one we use only grid brokers by the Meta-
Broker (denoted by MB in the figures) to reach grid resources
of the simulated Grids. In the second, third and fourth cases we
extend the matchmaking of the Meta-Broker (in order to simulate
the whole SSV): when the background load of the selected grid
broker exceeds 113%, it selects the Cloud broker instead to perform
Cloud bursting. In the second case the Cloud broker has four pre-
deployed VMs (4VMs), while in the third case only one, and later
creates threemore as described before (1+3VMs), and in the fourth
it has one pre-deployed and creates at most 7 more on demand
(1+3+4VMs).

In Fig. 12 we can see detailed execution times for the
simulations using purely Grid resources and the first strategy using
4 VMs for Cloud bursting. The first phase of the workflow has been
executed only onGrid resources in both strategies. Around the 60th
job submission the load of Grid resources exceeded the predefined
overload threshold, therefore the Cloud Broker has been selected
by the GMBS to move further job submissions to Cloud resources.
The arrows in the figure denote the places, where Cloud VMs
managed to keep constant load by taking over jobs from the Grids.
In Fig. 13 we denoted the second strategy, where initially only 1
VM was made available for Cloud bursting. The rest of the 3 VMs
have been started on-demand, after the first VM got overloaded.
In this case we could save some operational costs for 3 VMs for a
short period, but later delayed startup times of the 3 VMs resulted
in longer run times for the last 60 jobs of the workflow. Finally, in
Fig. 14we can see the third strategy, inwhichweperformed service



Author's personal copy

66 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

Fig. 12. Detailed run times for Cloud bursting with 4 VMs.

Fig. 13. Detailed run times for Cloud bursting with 1+3 VMs.

Fig. 14. Detailed run times for Cloud bursting with 1+3+4 VMs.

duplication with 4 additional VMs. In this case we also used on-
demand VM startups, but the doubled service instances managed
to keep the overall Cloud load down.

In Fig. 15we can see the evaluation results denoting the average
aggregated execution times of the service requests. From these
results we can clearly see that the simulated SSV architecture
overperforms the former meta-brokering solution using only Grid
resources. Comparing the different deployment strategies we can
see that on-demand deployment introduces some overhead (4VMs
was faster then 1+3VMs), but service duplication (1+3+4VMs) can
enhance the performance and help to avoid SLA violations with
additional VM deployment costs.

We have to mention that the SSV architecture puts some
overhead on service executions. Regarding the overhead themeta-
brokering layer generates, we only need to consider the latency of

Fig. 15. Average request run times.

the web service calls and the matchmaking time of the GMBS. In
this evaluation, this latency took up around200ms for a call (which
is less than 0.1% for all the calls of the application compared to the
total execution time we measured in the simulation), and it is also
negligible compared to general brokering response times (which
can last up to several minutes in grid environments). At the cloud
brokering layer, VM startup times also affect the overall execution
times, as we have seen in Fig. 13. In our opinion, these latencies are
acceptable; hence our automated service execution can manage
a federation of heterogeneous infrastructure environments by
providing SLA-based service executions under such conditions,
where amanual user interactionwith a single infrastructurewould
fail.

7. Conclusions

In a unified system consisting of heterogeneous, distributed
service-based environments such as Grids, SBAs and Clouds, there
is an emerging need for transparent, business-oriented autonomic
service execution. In the futuremore andmore companieswill face
the problem of unforeseen, occasional demand for a high number
of computing resources. In this paper we investigated how such
problems could arise and gathered the requirements for a service
architecture that is able to copewith these demands.We addressed
these requirements to develop a functionally and architecturally
well-designed solution, and proposed a novel approach called
Service-level agreement-based Service Virtualization (SSV). The
presented general architecture is built on three main components:
the Meta-Negotiator responsible for agreement negotiations, the
Meta-Broker for selecting the proper execution environment, and
the Automatic Service Deployer for service virtualization and on-
demand deployment.

We have also discussed how the principles of autonomic
computing are incorporated to the SSV architecture to cope with
the error-prone virtualization environments, and demonstrated
how autonomic actions are triggered responding to various
possible failures in the service infrastructure. The autonomic
reactions are demonstrated with corresponding case studies. The
operation of the proposed architecture is exemplified through
highlighting the cases where the autonomous properties of the
components of the architecture were activated in order to cope
with failures during service executions.

Finally the SSV architecture is validated in a simulation
environment based on CloudSim, using a general biochemical
application as a case study. The evaluation results clearly fulfill the
expected utilization gains compared to a less heterogeneous Grid
solution.

Acknowledgments

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement 215483 (S-Cube).



Author's personal copy

A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68 67

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging it platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems (2009).

[2] C. Kesselman, I. Foster, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, 1998.

[3] M. Parkin, D. Kuo, J. Brooke, A. MacCulloch, Challenges in eu grid contracts, in:
Proceedings of the 4th eChallenges Conference, 2006, pp. 67–75.

[4] I. Brandic, D. Music, S. Dustdar, S. Venugopal, R. Buyya, Advanced qosmethods
for grid workflows based on meta-negotiations and sla-mappings, in: The 3rd
Workshop on Workflows in Support of Large-Scale Science, November 2008,
pp. 1–10.

[5] M.Q. Dang, J. Altmann, Resource allocation algorithm for light communication
grid-based workflows within an sla context, International Journal of Parallel,
Emergent and Distributed Systems 24 (1) (2009) 31–48.

[6] C.A. Yfoulis, A. Gounaris, Honoring SLAs on cloud computing services: a control
perspective, in: Proceedings of the European Control Conference, 2009.

[7] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50.

[8] R. Howard, L. Kerschberg, A knowledge-based framework for dynamic
semantic web services brokering and management, in: DEXA’04: Proceedings
of the Database and Expert Systems Applications, 15th International
Workshop, Washington, DC, USA, IEEE Computer Society, 2004, pp. 174–178.

[9] K. Keahey, I. Foster, T. Freeman, X. Zhang, Virtual workspaces: Achieving
quality of service and quality of life in the grid, Scientific Programming 13 (4)
(2005) 265–275.

[10] D. Reed, I. Pratt, P. Menage, S. Early, N. Stratford, Xenoservers: Accountable
execution of untrusted programs, in: In Workshop on Hot Topics in Operating
Systems, 1999, pp. 136–141.

[11] I. Krsul, A. Ganguly, J. Zhang, J.A.B. Fortes, R.J. Figueiredo, Vmplants: providing
and managing virtual machine execution environments for grid computing,
in: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
Washington, DC, USA, IEEE Computer Society, 2004.

[12] M. Surridge, S. Taylor, D. De Roure, E. Zaluska, Experiences with gria –
industrial applications on a web services grid, in: E-SCIENCE’05: Proceedings
of the First International Conference on e-Science and Grid Computing,
Washington, DC, USA, IEEE Computer Society, 2005, pp. 98–105.

[13] D.M. Quan, J. Altmann, Mapping a group of jobs in the error recovery
of the grid-based workflow within sla context, in: Advanced Information
Networking and Applications, International Conference on, 2007 986–993.

[14] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, K. Krishnakumar, A multi-
agent infrastructure and a service level agreement negotiation protocol for
robust scheduling in grid computing, in: Proceedings of the 2005 European
Grid Computing Conference, EGC 2005, February 2005.

[15] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling e-
science applications on global data grids, Concurrency and Computation:
Practice and Experience 18 (6) (2006) 685–699.

[16] K. Lee, N.W. Paton, R. Sakellariou, E. Deelman, A.A.A. Fernandes, G. Mehta,
Adaptive Workflow Processing and Execution in Pegasus, in: Proceedings of
3rd International Workshop on Workflow Management and Applications in
Grid Environments, 2008, pp. 99–106.

[17] H.N. Van, F.D. Tran, J. Menaud, Autonomic virtual resource management for
service hosting platforms, in: Proceedings of the ICSE Workshop on Software
Engineering Challenges of Cloud Computing, 2009, pp. 1–8.

[18] R. Buyya, R. Ranjan, R.N. Calheiros, InterCloud: Utility-Oriented Federation
of Cloud Computing Environments for Scaling of Application Services,
in: Lecture Notes in Computer Science: Algorithms and Architectures for
Parallel Processing., vol. 6081, 2010.

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Lloriente, R. Montero,
Y.Wolfsthal, E. Elmroth, J. Caceres,M. Ben-Yehuda,W. Emmerich, F. Galan, The
RESERVOIR model and architecture for open federated cloud computing, IBM
Journal of Research and Development 53 (4) (2009).

[20] A.J. Ferrer, et al., OPTIMIS: a holistic approach to cloud service provisioning,
Future Generation Computer Systems 28 (2012) 66–77.

[21] I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, S. Sadjadi, Looking for
an evolution of grid scheduling: meta-brokering, in: Grid Middleware and
Services Challenges and Solutions, Springer, US, 2008, pp. 105–119.

[22] A. Iosup, T. Tannenbaum, M. Farrellee, D. Epema, M. Livny, Inter-operating
grids through delegated matchmaking, Scientific Programming 16 (2–3)
(2008) 233–253.

[23] C. Vazquez, E. Huedo, R.S. Montero et, I.M. Llorente, Federation of TeraGrid,
EGEE and OSG infrastructures through a metascheduler, Future Generation
Computer Systems 26 (2010) 979–985.

[24] K. Leal, E. Huedo, I.M. Llorente, A decentralized model for scheduling
independent tasks in federated grids, Future Generation Computer Systems
25 (8) (2009) 840–852.

[25] I. Brandic, D. Music, P. Leitner, S. Dustdar, VieSLAF Framework: Enabling
Adaptive and Versatile SLA-Management, in: the 6th International Workshop
on Grid Economics and Business Models 2009 (Gecon09), 2009.

[26] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture for
computational grids, in: CCS’98: Proceedings of the 5th ACM Conference on
Computer and Communications Security, New York, NY, USA, ACM, 1998,
pp. 83–92.

[27] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource
management systems for distributed computing, Software: Practice and
Experience 32 (2) (2002) 135–164.

[28] Y. Liu, A.H. Ngu, L.Z. Zeng, Qos computation and policing in dynamic web
service selection, in: WWW Alt. ’04: Proceedings of the 13th International
World Wide Web Conference on Alternate Track Papers & posters, pages
66–73, New York, NY, USA, 2004.

[29] A. Kertesz, P. Kacsuk, GMBS: a new middleware service for making grids
interoperable, Future Generation Computer Systems 26 (4) (2010) 542–553.

[30] The Open Grid Forum website. http://www.ogf.org, 2010.
[31] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D.

Pulsipher, A. Savva, Job submission description language (JSDL) specification,
version 1.0, Technical report, 2005. http://www.gridforum.org/documents/
GFD.56.pdf.

[32] G. Kecskemeti, G. Terstyanszky, P. Kacsuk, Zs. Nemeth, An approach for virtual
appliance distribution for service deployment, Future Generation Computer
Systems 27 (3) (2011) 280–289.

[33] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, J. Reich, The open grid
services architecture, version 1.5, Technical report, 2006. http://www.ogf.org/
documents/GFD.80.pdf.

[34] M. Taylor, C. Matuszek, B. Klimt, M. Witbrock, Autonomous classification of
knowledge into an ontology, in: The 20th International FLAIRS Conference
(FLAIRS), 2007.

[35] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.
Pratt, A.Warfield, Xen and the art of virtualization, in: SOSP’03: Proceedings of
the nineteenth ACM symposium on Operating systems principles, New York,
NY, USA, ACM, 2003, pp. 164–177.

[36] I. Brandic, D. Music, S. Dustdar, Service mediation and negotiation bootstrap-
ping as first achievements towards self-adaptable grid and cloud services,
in: Proceedings of Grids meet Autonomic Computing Workshop, June, ACM,
2009.

[37] TINKER Conformer Generator workflow. http://www.lpds.sztaki.hu/gasuc/
index.php?m=6\&r=12, 2011.

[38] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and Simulation of Scalable
Cloud Computing Environments and the CloudSim Toolkit: Challenges and
Opportunities, in: Proc. of the 7th High Performance Computing and
Simulation Conference, 2009.

[39] Enabling Grids for E-sciencE (EGEE) project website. http://public.eu-
egee.org/, 2008.

[40] The Grid Workloads Archive website. http://gwa.ewi.tudelft.nl, 2010.
[41] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D.

Zagorodnov, The eucalyptus open-source cloud-computing system, in: CC-
GRID, IEEE Computer Society, 2009, pp. 124–131.

Attila Kertész is a research fellow at the Labora-
tory of Parallel and Distributed Systems of MTA
SZTAKI Computer and Automation Research Institute,
Hungary. He graduated as a program-designermathemati-
cian, and defended his Ph.D. thesis at the University of
Szeged, Hungary. His research interests include cloud and
grid brokering, scheduling and web services. He is par-
ticipating in two leading European projects S-Cube and
CoreGRID Network of Excellence, and is also a member
of the CoreGRID Institute on Resource Management and
Scheduling.

GaborKecskemeti is a research assistant at the Laboratory
of Parallel and Distributed Systems (LPDS) in MTA SZTAKI.
He received his MSc degree in 2004 from the University
of Miskolc, and his PhD degree in 2011 from the Centre
of Parallel Computing at the University of Westminster.
He has got involved in several successful grid and service
oriented research projects (e.g., ePerSpace, EDGeS, S-
Cube). Recently he is coordinating the Cloud Computing
research group of the LPDS. He has published over 30
scientific papers (incl. 3 journal articles) about cloud
and grid computing, particularly from the field of virtual

appliance delivery in IaaS clouds.

Ivona Brandic is Assistant Professor at the Distributed
Systems Group, Information Systems Institute, Vienna
University of Technology (TU Wien). Prior to that, she
was Assistant Professor at the Department of Scientific
Computing, Vienna University. She received her Ph.D.
degree from Vienna University of Technology in 2007.
From 2003 to 2007 she participated in the special
research project AURORA (AdvancedModels, Applications
and Software Systems for High Performance Computing)
and the European Union’s GEMSS (Grid-Enabled Medical
Simulation Services) project. She is involved in the



Author's personal copy

68 A. Kertesz et al. / Future Generation Computer Systems 32 (2014) 54–68

European Union’s S-Cube project and she is leading the Austrian national FoSII
(Foundations of Selfgoverning ICT Infrastructures) project funded by the Vienna
Science and Technology Fund (WWTF). She is Management Committee member of
the European Commission’s COST Action on Energy Efficient Large Scale Distributed

Systems. From June-August 2008 she was visiting researcher at the University of
Melbourne. Her interests comprise SLA and QoS management, service-oriented
architectures, autonomic computing, workflow management, and large scale
distributed systems (Cloud, Grid, and Cluster).




