
On the Efficient Design of LSM Stores

MARTIN WEISE
Vienna University of Technology

April 7, 2020

Abstract

In the last decade, key-value data storage systems have gained significantly more interest from academia
and industry. These systems face numerous challenges concerning storage space- and read optimization.
There exists a large potential for improving current solutions by introducing new management techniques
and algorithms.

In this paper we give an overview of the basic concept of key-value data storage systems and provide an
explanation for bottlenecks. Further we introduce two new memory management algorithms and a improved
index structure. Finally, these solutions are compared to each other and discussed.

1 Introduction

Key-value stores have become more popular amongst developers, researchers and companies since the number of
applications for which they are used is ever-increasing. In this context, the underlying technology for key-value
stores has emerged to be the Log-structured merge-tree (LSM-tree). With the principle of LSM-trees, data stores
can replace expensive random disk I/O with storage-friendly sequential disk I/O.

Nonetheless, all of this comes with the trade-in of inefficiencies that are not obvious immediately upon
looking. Operations that are intended to free up space (compaction) for example are twofold: frequent com-
pactions that enables efficient reads come at a price of slower data store operations, high write amplifications
and increased disk wear-out. Since these compactions are part of the LSM-tree principle, they cannot simply
be eradicated from the data store. With this in mind, new algorithms need to be developed to counteract these
inefficiencies.

This pure literature study mounts primarily on the insights gained from SlimDB [1] and Accordion [2].
Additionally, this paper aims to give an overview of key-value data store problems regarding inefficient memory
management and high read tail latency, which are the main bottlenecks in key-value data stores that follow the
LSM-tree principle (so called LSM stores).

The rest of this paper is organized as follows: section 2 gives the reader information about the general
LSM store concepts, section 3 introduces the Stepped-Merge memory management algorithm with a new block
index structure and section 4 proposes an improvement of an LSM-tree implementation. Section 5 discusses the
aforementioned solutions and finally, section 6 concludes on the learned concepts.

2 Background

This section addresses the fundamental concepts of memory management in LSM-trees and takes a look at
a variant that is used today in a multitude of LSM-tree implementations. Additionally, this paper exhibits
performance bottlenecks in established LSM stores. We define LSM-stores to consist of an in-memory storage
with a large persistent storage volume that holds a collection of chunks (see Figure 1). To better comprehend
the new concepts and algorithms presented in this paper, we first describe the basic principle of LSM-trees
in detail and their boundaries, as well as the properties they fulfill. Later on, we present implementations
of LSM-trees into currently used LSM stores and their limitations as a motivation to argue the need for new
memory managements concepts and algorithms.

2.1 LSM-tree

With Log-structured merge-trees (LSM-trees) write-intensive workloads are first aggregated in a dynamic seg-
ment before being flushed onto log-structured persistent storage that is compacted in a background process.
Adding (PUT) a new entry to the LSM-tree means first inserting it to the in-memory buffer (and also append to
the persistent storage log for crash recovery). Once the buffer is full, a new in-memory buffer is created and the
old one is treated as immutable snapshot and flushed to the persistent storage in the background as chunks of
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Figure 1: Level structure visualization of a LSM-store.

data (most implementations name their data structure name, we independently call them chunks). Each flush
creates a new immutable snapshot and clears the active buffer.

These chunks written to the storage are immutable and allow a fast write to the persistent storage, but
result in a notable fraction of old data that is either“overwritten” (new data is present) or deleted although
older copies still exist and thus a waste of persistent storage. Also a search may consists of reading multiple
immutable chunks to finally result in the desired value for a given key.

To organize the available storage memory efficiently, the compaction process (see Figure 1) removes that
old data and duplicates that may occurred in multiple chunks before. This compaction process is executed in
the background and creates a level-type hierarchy that migrates chunks over time to a deeper level by merging
them. The hierarchy follows an exponential growth pattern: each level i is r-times larger than the level before
i− 1. As [1] addresses, common values are r ∈ [8, 16], additionally the maximum number of levels is therefore
O(logr n) with n being the number of unique keys. This is also the worst-case lookup time (accessing all levels).

The merging procedure keeps the number of files in a LSM-tree bounded. Again, the paper [1] addresses
the worst-case write amplification to be O(r logr n). The amortized I/O cost per insertion is O(r logr n).

Therefore the operations on a LSM-tree are quite efficient on large n in the context of computational
complexity. The sequential access pattern of LSM-trees for writes is the main advantage over other common
indexes such as B-trees. Accessing data in a B-tree may involves many random reads/writes, because of their
design which makes them not efficient for implementation in storage systems.

2.2 Bottlenecks

LSM-trees nowadays are well-studied and fine-tuned. However, with increasing demands for real-time perfor-
mance and scaling, they face numerous challenges. In this section, we take a look at performance bottlenecks
of LSM-trees.

Developers tune the performance of their LSM-stores (implementation of LSM-trees as a data store) with
certain performance parameters. This paper should give an overview of general parameters independently of
the underlying implementation in LSM-stores.

The first parameter is the rate at which compactions occur. Infrequent compactions makes the store inef-
ficient because multiple versions are scattered across chunks, therefore numerous chunks need to be searched
(this also makes caching not economical). Frequent compactions reduce both the space needed to store chunks
and their total number. Anyhow, this comes at a much higher CPU and I/O consumption which slows down
read/write performance of the store (also caches are invalidated at a higher rate). As [2] points out, the higher
write volume accelerates disk wear-out.

However, performance tuning with these parameters only deals with the consequences of organizing persistent
storage, not memory management itself. This paper addresses these problems that received much less attention
in the sections 3 and 4.
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3 Stepped-Merge

In this section we present the memory management algorithm Stepped-Merge and the Three-level Block Index
from [1]. To give the reader a solid understanding of the concepts used and how they work together, we first
give an overview in section 3.1, then we present the algorithm in detail in section 3.2.

3.1 Overview

The LSM-tree has performance tuning parameters that allow developers to optimize the operations based on
their application domain. As excpected, the performance gain is somehow always limited to the core design
decisions made when initially designing the LSM-tree. With this motivation the Stepped-Merge algorithm alters
the memory management and compaction strategy.

Traditional LSM-trees compact entries from a level i with the next level i + 1. As a consequence, the
LSM-tree must at least merge-sort one entry of level i with overlapping entries in level i + 1. To overcome
this write-overhead, the Stepped-Merge algorithm divides entries in each level into r sub-levels. Again, r is a
constant commonly chosen to be between [8, 16]. The LSM-tree now r-way sorts entries on level i and insert
them into level i + 1 as a new sub-level.

As [1] argues, this additional step only creates a minor overhead and results in a amortized I/O cost of
O( 1

C logr n) with entries of size C for the PUT operation. This improves the amortized I/O cost of general
LSM-trees and therefore the overall write-amplification of LSM-trees.

3.2 Algorithm

This improvement comes at the expense of a increased SEARCH operation cost with the Stepped-Merge algorithm.
The block based indexing mechanism replaces the original LSM- tree array based indexing mechanism entirely.
Because the LSM store organization has overlapping sub-levels at each level, the read-performance suffers and
involves O(r logr n) random reads. This trade off is unwanted and the algorithm further enhances LSM stores
by increasing the in-memory indexes and filters. Filters are omitted in this literature study, we focus on the
in-memory indexing mechanism in combination with the algorithm.

In this context another contribution to efficient LSM stores is the Three-level Block Index that gradually
generates a compact index of variable length for data blocks. This has some advantages: the average space
required to store a key can be as low as 8 bits and improve persistent storage access, because of higher cache hit
rates. Additionally the representation can be replaced without a need for changing the LSM store organization
and execution. However, this comes at the cost that keys are no longer totally ordered, but semi-sorted (ordered
prefix and suffix). Further, the extra-compaction step requires more CPU cycles.

Now we examine the compression-algorithm of the Three-level Block Index which is based on the original
LevelDB [3] implementation of a data block index. It creates an array of unique prefixes and their respective
last offset in the original block index (see Figure 2).

Figure 2: Generation of the Three-level Block Index (image adapted from [1])

Unfortunately the paper [1] does not provide (pseudo)code on the creation of a Three-level Block Index.
Also, the textual description of the algorithm is not easy to understand for novices. Independently from that,
we did an approach to translate the textual description into pseudocode in Listing 1.

rom a cost perspective, the Three-level Block Index consumes at average 10 bits per block using ECT for
the suffix-array. Its main bottleneck is the need for creating a Entropy-Encoded Trie that consumes CPU
cycles. With 16 entries (key-value pairs) assumed per block this results in a memory overhead of 0.7 bits per
key compared to 8 using LevelDB. Replacing the original LSM algorithm with Stepped-Merge does not induce
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additional memory cost, but increased positive-/negative read cost. Stepped-Merges main advantage over the
traditional LSM algorithm is an improved write cost of w

8 bits/key instead of rw
8 bits/key (to the best of our

knowledge we were not able to examine what w means: it is assumed to denote a write process measured in bits).

Input : Chunk conta in ing data b locks
Output : Three−l e v e l Block Index corre spond ing to the chunk

func t i on generate ( chunk ) {
v an i l l a b l o c k i n d e x = {}
f o r each block in chunk {

append ( van i l l a b l o c k i nd ex , b lock . keys [ 0 ] )
append ( van i l l a b l o c k i nd ex , b lock . keys [ b lock . keys . length −1])

}
p r e f i x a r r a y = {}
l a s t o f f s e t = {}
s u f f i x e s = {}
f o r each index , key in v an i l l a b l o c k i n d e x {

i f ( changed ( key . p r e f i x ) ) {
append ( p r e f i x a r r ay , key . p r e f i x )
append ( l a s t o f f s e t , index )

}
}
// c r e a t e ECT from van i l l a b l o c k i n d e x
fo r each block in chunk {

l a s t k e y = block . keys [ b lock . keys . length −1]
i f ( i s e c t s h o r t e s t u n i q u e p r e f i x p a t h ( l a s t k e y ) ) {

append ( s u f f i x e s , l a s t k e y )
}

}
}

Listing 1: Generation process of the Three-level Block Index (Pseudocode)

The combination of Stepped-Merge algorithm and Three-level Block Index has similar results compared
to the LSM-tree with Three-level Block Index. On average, both consume 2 bits/key memory and for writes
Stepped-Merge with Three-level Block index supersedes the LSM-tree with Three-level Block Index because
Stepped-Merge works with blind reads.

Input : Key o f the de s i r ed tuple , Fu l l data chunk conta in ing b locks
Output : Value that cor re sponds to the key

func t i on f i nd ( key , b lock index ) {
prev = n i l
cur = n i l
f o r each index , p r e f i x in b lock index . p r e f i x a r r a y {

i f ( p r e f i x = key . p r e f i x ) {
cur = index
break

}
prev = index

}
// bu i ld the ECT t r i e i f not cached
s = {}
f o r s u f f i x in b lock index . s u f f i x e s {

i f ( s u f f i x > key . p r e f i x ) {
s = s u f f i x

}
}
f o r ( ; prev < cur ; prev++) {

l a s t k e y = block . keys [ b lock . keys . length −1]
i f ( l a s t k e y . s u f f i x = s ) {

r e turn block [ l a s t k e y ]
}
i f ( l a s t k e y . s u f f i x > s ) {

cont inue
}
i f ( l a s t k e y . s u f f i x < s ) {

// get va lue from th i s b lock and return i t
}

}
}

Listing 2: FIND operation in Three-level Block Index (Pseudocode)
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4 Accordion

In this section we discuss the memory management algorithm Accordion [2]. To get a good understanding on
how the algorithm works, we give a short overview on the algorithms general working principle in section 4.1.
The algorithm is then analyzed and explained in detail in section 4.2.

4.1 Overview

Traditional LSM stores are split into the in-memory storage part and the persistent storage part that is usually
designed to be organized in compliance to the LSM design principles. Accordion is a memory store management
algorithm that re-applies the principles to the in-memory storage. It resolves the discrepancy of compaction rate
tuning by introducing proactive in-memory compactions that delay persistent memory flushes (thus reducing
write workload on the persistent storage and disk wear).

An increased number of data inside the in-memory storage part also means that read latency can be improved,
because the SEARCH operation is able to scan more keys in- memory. Additionally frequent PUT operations do not
necessarily trigger compaction procedures a lot. The high-throughput experiments of [2] show that Accordion
improves write throughput by up to 48% while reducing the read tail latency by up to 40% for Zipfian (heavy-
tailed) key access distribution. Additionally, the write volume is reduced by up to 30%.

4.2 Algorithm

The algorithm separates the in-memory storage into two units that work independently of each other: (1) one
mutable, small segment that absorbs PUT operations, and (2) a sequence of immutable segments that once were
a mutable.

Inside the in-memory storage, it manages indexed data cells as a pipeline of segments where the most recent
segment is mutable with PUT operations. Except for this active segment every other segment is immutable.
Fetch operations like SEARCH scan all segments (possible in parallel) inside the in-memory storage before con-
tinuing on the persistent storage, if no candidate is found (see Listing 3).

Input : Key o f d e s i r ed entry
Output : Value that cor re sponds to the key

func t i on search ( key ) {
f o r each chunk in in memory storage {

i f ( chunk conta in s key ) {
r e turn chunk . get ( key )

}
}
// cont inue with p e r s i s t e n t s t o rage

}

Listing 3: Fetching data in Accordion (Pseudocode)

The active segment size A and the maximum length of the pipeline S can be tuned, while a value of
A ∈ [0.02, 0.05] and S ∈ [2, 5] is recommended. Once the threshold A is reached, the active buffer becomes
immutable. Listing 4 shows the complete process of adding a key-value tuple to the LSM store.

Input : Key−value tuple , Act ive segment th r e sho ld A
Output : {}

f unc t i on put ( key , va lue ) {
segment = act ive segment
// wr i t e key−value tup l e to a c t i v e segment
i f ( s i z e ( ac t ive segment ) > A) {

act ive segment . mutable = f a l s e
segment = act ive segment
act ive segment = {}

}
i f ( l ength ( p i p e l i n e ) > S) {

// merge f l a t segments in p i p e l i n e ( i gno r e dup l i c a t e s )
// perform compaction on f l a t t e n e d segment
// add f l a t segment to snapshot s e t ( in−memory)

} e l s e {
// f l a t t e n segment ( e . g . r ep l a c e dynamic s k i p l i s t with ordered array )
// add f l a t t e n e d segment to p i p e l i n e

}
i f ( f u l l ( in memory store ) ) {
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// normal LSM f l u s h us ing snapshot technique
}

}

Listing 4: PUT operation in Accordion (Pseudocode)

Figure 3: Visualization of the Accordion architecture (image adapted from [2])

The FLATTEN operation in Figure 3 informally just replaces dynamic structures (e.g. skiplists) with ordered
arrays, the data cells are not re-organized. This optimizes the memory footprint and thus further delays
persistent storage flushes and also improves read-latency because more segments are stored in the in-memory
storage. Once the pipeline exceeds its maximum number of entries inside S, it performs a MERGE of the segments
in the pipeline by eliminating redundant data. The resulting flat segments are now snapshots and are FLUSH-ed
to the LSM store in the traditional way as already described in section 2.1.

This elimination of redundant data during the MERGE operation comes with a overhead of additional I/O
and CPU cycles. As [2] notes, this is particularly important in heavy-tailed (e.g. Zipfian) distributions that
regularly overwrite some keys. This compaction is defined in the form of three policies:

(1) Basic, some redundant elimination is done; (2) Eager, immediate redundant elimination is done; and
(3) Adaptive, that is a mix of Basic and Eager and uses a heuristic based on the level of redundancy.

Some extensive experiments with all three compaction policies were executed by [2]. Since the whole dis-
cussion would push the boundaries of this course, some results are omitted in detail here. However, their
results include that the Basic compaction policy improves throughput on SSDs by 47.2% and 25.4% for Zipfian
(heavy-tail) distributed keys. All reported results are summarized in Table 1.

Compaction Distribution SSD HDD

Basic (A = 0.02, S = 5)
Zipf 47.6% 25.4%

Uniform 23.8% 8.9%

Eager (A = 0.25, S = 2)
Zipf

Below Baseline
Uniform

Adaptive Zipf 45.3% 24.4%

Table 1: Improvements of write throughput based on the experimental results of different compaction policies
and distributions as reported in [2]

5 Comparison

In this section we discuss similarities and differences between the two memory management algorithms, Stepped-
Merge in section 3 and Accordion in section 4. First we take a short overview on both solutions in section 5.1
and discuss the advantages and drawbacks of both in section 5.2.

5.1 Overview

The presented solutions Accordion and Stepped Merge both address the same problems with LSM-trees: over-
head through compaction, no optimization for SSDs (low read performance) and a fragmented memory layout.
The algorithms deal with these major bottlenecks in a similar way and aim for the same goal: improving
write throughput while reducing overhead caused by compaction. Accordion proposes to re-apply the LSM
design principles to the in-memory storage of the LSM-tree to speed-up write operations and increase cache
hits. Stepped-Merge replaces the standard compaction procedure of LSM-trees by introducing sub-levels that
improve the amortized I/O cost of writes.
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5.2 Discussion

Both solutions increase the performance of traditional LSM stores. Accordion introduced three policies to tune
the compaction rate. Experiments showed that the Adaptive policy is the best strategy for Accordion by flushing
the in-memory store based on a heuristic (more redundancy equals less cost-effectiveness upon compaction).
With their recommended parameters they were able to improve write loads by 23.8% to 47.6% for SSD persistent
storage and 8.9% to 25.4% for HDD persistent storage. The paper [2] did extensive experiments with different
workloads and reported improvements for all of them. Surprisingly, their experiments showed that in many
different scenarios, disk I/O is not the principal bottleneck.

The Stepped-Merge algorithm replaced array based indexing mechanisms in LSM stores with a block based
indexing mechanism (Three-level Block Index). The key compression technique further allows a large reduction
in required storage space for each key, increasing the number of cache hits and the time a key resides in-memory.
This somehow comes at the cost of more expensive scanning operations, as more keys have to be searched and
duplicates are not eliminated a long time. The paper evaluated the possible combinations of the Stepped-Merge
algorithm together with LSM-trees and concluded that all of them improve the original LSM-tree.

6 Conclusion

With this literature study the principal bottlenecks of LSM stores are addressed at a reasonable level of detail
for novices and the need for improvement of existing concepts is discussed. We presented two algorithms that
greatly reduce these bottlenecks at a moderate trade-off cost.

LSM-trees are present for a long time and only until a few years ago, researchers picked up the topic
and started changing the memory management, because parameter tuning did not deliver the desired results.
Future work can pick up from here and further improve LSM-trees based on the findings of Accordion and
Stepped-Merge.
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